Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = sesquiterpene quinones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10295 KiB  
Article
Parthenolide Phytosomes Attenuated Gentamicin-Induced Nephrotoxicity in Rats via Activation of Sirt-1, Nrf2, OH-1, and NQO1 Axis
by Rawan S. Albalawi, Lenah S. Binmahfouz, Rawan H. Hareeri, Rasheed A. Shaik and Amina M. Bagher
Molecules 2023, 28(6), 2741; https://doi.org/10.3390/molecules28062741 - 17 Mar 2023
Cited by 15 | Viewed by 2974
Abstract
Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes [...] Read more.
Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney. Full article
Show Figures

Graphical abstract

24 pages, 3764 KiB  
Article
Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea avara
by Marcello Casertano, Massimo Genovese, Alice Santi, Erica Pranzini, Francesco Balestri, Lucia Piazza, Antonella Del Corso, Sibel Avunduk, Concetta Imperatore, Marialuisa Menna and Paolo Paoli
Pharmaceutics 2023, 15(2), 528; https://doi.org/10.3390/pharmaceutics15020528 - 4 Feb 2023
Cited by 13 | Viewed by 2944
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use [...] Read more.
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications. Full article
(This article belongs to the Special Issue The Role of Natural Products on Diabetes Mellitus Treatment)
Show Figures

Figure 1

19 pages, 5638 KiB  
Review
Review on Chemical Constituents of Schizonepeta tenuifolia Briq. and Their Pharmacological Effects
by Xueying Zhao and Mingwei Zhou
Molecules 2022, 27(16), 5249; https://doi.org/10.3390/molecules27165249 - 17 Aug 2022
Cited by 19 | Viewed by 3470
Abstract
Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in [...] Read more.
Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in which volatile oil was considered to be the main chemical component. In this paper, the chemical constituents and their pharmacological effects were reviewed by summarizing the recent literature, revealing the relationship between them. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

23 pages, 3317 KiB  
Review
Natural Products with Antitumor Potential Targeting the MYB-C/EBPβ-p300 Transcription Module
by Thomas J. Schmidt and Karl-Heinz Klempnauer
Molecules 2022, 27(7), 2077; https://doi.org/10.3390/molecules27072077 - 23 Mar 2022
Cited by 8 | Viewed by 4290
Abstract
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding [...] Read more.
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding protein (C/EBP) family of transcription factors. MYB and C/EBPs interact with the co-activator p300 or its paralog CREB-binding protein (CBP), to form a transcriptional module involved in myeloid-specific gene expression. Recent work has demonstrated that MYB is involved in the development of human leukemia, especially in acute T-cell leukemia (T-ALL) and acute myeloid leukemia (AML). Chemical entities that inhibit the transcriptional activity of the MYB-C/EBPβ-p300 transcription module may therefore be of use as potential anti-tumour drugs. In searching for small molecule inhibitors, studies from our group over the last 10 years have identified natural products belonging to different structural classes, including various sesquiterpene lactones, a steroid lactone, quinone methide triterpenes and naphthoquinones that interfere with the activity of this transcriptional module in different ways. This review gives a comprehensive overview on the various classes of inhibitors and the inhibitory mechanisms by which they affect the MYB-C/EBPβ-p300 transcriptional module as a potential anti-tumor target. We also focus on the current knowledge on structure-activity relationships underlying these biological effects and on the potential of these compounds for further development. Full article
Show Figures

Figure 1

38 pages, 5990 KiB  
Review
Dactylospongia elegans—A Promising Drug Source: Metabolites, Bioactivities, Biosynthesis, Synthesis, and Structural-Activity Relationship
by Sabrin R. M. Ibrahim, Sana A. Fadil, Haifa A. Fadil, Rawan H. Hareeri, Sultan O. Alolayan, Hossam M. Abdallah and Gamal A. Mohamed
Mar. Drugs 2022, 20(4), 221; https://doi.org/10.3390/md20040221 - 23 Mar 2022
Cited by 8 | Viewed by 3236
Abstract
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans [...] Read more.
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed. Full article
Show Figures

Figure 1

13 pages, 4022 KiB  
Article
Exerting DNA Damaging Effects of the Ilimaquinones through the Active Hydroquinone Species
by Apisada Jiso, Laphatrada Yurasakpong, Sirorat Janta, Kulathida Chaithirayanon and Anuchit Plubrukarn
Sci. Pharm. 2021, 89(2), 26; https://doi.org/10.3390/scipharm89020026 - 3 Jun 2021
Cited by 1 | Viewed by 4834
Abstract
Possessing the quinone moiety, ilimaquinone (1), a sponge–derived sesquiterpene quinone, has been hypothesised to express its cytotoxicity through a redox cycling process, yielding active product(s) that can cause DNA damage. To determine the DNA damaging effects of 1 and examine whether [...] Read more.
Possessing the quinone moiety, ilimaquinone (1), a sponge–derived sesquiterpene quinone, has been hypothesised to express its cytotoxicity through a redox cycling process, yielding active product(s) that can cause DNA damage. To determine the DNA damaging effects of 1 and examine whether a redox transformation may participate in its functions, the DNA damaging properties of 1, the corresponding hydroquinone (2) and hydroquinone triacetates (3) and their 5-epimeric counterparts (46) were tested and compared. When incubated directly with plasmid DNA, the hydroquinones were the only active species capable of cleaving the DNA. In cell-based assays, however, the quinones and hydroquinone triacetates were active in the same range as that of the corresponding hydroquinones, and all damaged the cellular DNA in a similar manner. The in situ reduction of 1 and 4 were supported by the decreases in the cytotoxicity when cells were pre-exposed to dicoumarol, an NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitor. The results confirmed the DNA damaging activities of the ilimaquinones 1 and 4, and indicated the necessity to undergo an in-situ transformation into the active hydroquinones, thereby exerting the DNA damaging properties as parts of the cytotoxic mechanisms. Full article
Show Figures

Figure 1

15 pages, 2321 KiB  
Article
Ilimaquinone Induces the Apoptotic Cell Death of Cancer Cells by Reducing Pyruvate Dehydrogenase Kinase 1 Activity
by Choong-Hwan Kwak, Ling Jin, Jung Ho Han, Chang Woo Han, Eonmi Kim, MyoungLae Cho, Tae-Wook Chung, Sung-Jin Bae, Se Bok Jang and Ki-Tae Ha
Int. J. Mol. Sci. 2020, 21(17), 6021; https://doi.org/10.3390/ijms21176021 - 21 Aug 2020
Cited by 23 | Viewed by 4014
Abstract
In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit [...] Read more.
In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

12 pages, 2369 KiB  
Article
Ilimaquinone Induces Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma Cells
by Cheng-Wen Lin, Li-Yuan Bai, Jui-Hsin Su, Chang-Fang Chiu, Wei-Yu Lin, Wei-Ting Huang, Ming-Cheng Shih, Yu-Ting Huang, Jing-Lan Hu and Jing-Ru Weng
Biomedicines 2020, 8(9), 296; https://doi.org/10.3390/biomedicines8090296 - 20 Aug 2020
Cited by 16 | Viewed by 3255
Abstract
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values [...] Read more.
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 μM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ’s anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

22 pages, 6061 KiB  
Article
Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced Form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone
by Concetta Imperatore, Roberto Gimmelli, Marco Persico, Marcello Casertano, Alessandra Guidi, Fulvio Saccoccia, Giovina Ruberti, Paolo Luciano, Anna Aiello, Silvia Parapini, Sibel Avunduk, Nicoletta Basilico, Caterina Fattorusso and Marialuisa Menna
Mar. Drugs 2020, 18(2), 112; https://doi.org/10.3390/md18020112 - 14 Feb 2020
Cited by 24 | Viewed by 4700
Abstract
The chemical analysis of the sponge Dysidea avara afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the [...] Read more.
The chemical analysis of the sponge Dysidea avara afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the thiazinoquinone derivative thiazoavarone. The semisynthetic compound, as well as the natural metabolites avarone and avarol, were pharmacologically investigated in order to assess their antiparasitic properties against sexual and asexual stages of Plasmodium falciparum, larval and adult developmental stages of Schistosoma mansoni (eggs included), and also against promastigotes and amastigotes of Leishmania infantum and Leishmania tropica. Furthermore, in depth computational studies including density functional theory (DFT) calculations were performed. A toxic semiquinone radical species which can be produced starting both from quinone- and hydroquinone-based compounds could mediate the anti-parasitic effects of the tested compounds. Full article
(This article belongs to the Special Issue Selected Papers from XVI MaNaPro and XI ECMNP)
Show Figures

Graphical abstract

13 pages, 2450 KiB  
Article
Green Approach Extraction of Perezone from the Roots of Acourtia platyphilla (A. Grey): A Comparison of Four Activating Modes and Supercritical Carbon Dioxide
by René Escobedo-González, Andrea Vázquez Vázquez Cabañas, Armando Martínez González, Pablo Mendoza Sánchez, Zenaida Saavedra-Leos, Julián Cruz-Olivares, Juan Nava Serrano, Joel Martínez and René Miranda Ruvalcaba
Molecules 2019, 24(17), 3035; https://doi.org/10.3390/molecules24173035 - 21 Aug 2019
Cited by 9 | Viewed by 3509
Abstract
Perezone, a sesquiterpene quinone, is a very important molecule due to its pharmacological activities in addition to the fact that it is considered to be the first secondary metabolite isolated in the new world (America–Mexico, 1852). This study aims to offer a green [...] Read more.
Perezone, a sesquiterpene quinone, is a very important molecule due to its pharmacological activities in addition to the fact that it is considered to be the first secondary metabolite isolated in the new world (America–Mexico, 1852). This study aims to offer a green comparative study about the extraction of the target molecule from the roots of the vegetable specimen Acourtia platyphilla (A. Grey). The study was performed comparing five different modes of extraction: supercritical CO2, electromagnetic infrared and microwave irradiations, mechanical-wave ultrasound versus typical mantle heating procedure. An exhaustive comparative-discussion of the obtained results is provided. It is worth noting that the corresponding quantifications were established using 1H NMR, correlating appropriately the integrals of the vinylic proton H-6 of perezone with the aromatic singlet of p-dinitrobenzene employed as an internal reference. It is also important to highlight that the four presented procedures are novel modes to extract perezone. Finally, a complementary study about the solubility of the target sesquiterpene quinone related to the use of supercritical CO2 is also reported. Full article
(This article belongs to the Special Issue Green Extraction of Natural Products)
Show Figures

Figure 1

13 pages, 1561 KiB  
Review
Pleiotropic Role of Puupehenones in Biomedical Research
by Beatriz Martínez-Poveda, Ana R. Quesada and Miguel Ángel Medina
Mar. Drugs 2017, 15(10), 325; https://doi.org/10.3390/md15100325 - 21 Oct 2017
Cited by 17 | Viewed by 4902
Abstract
Marine sponges represent a vast source of metabolites with very interesting potential biomedical applications. Puupehenones are sesquiterpene quinones isolated from sponges of the orders Verongida and Dictyoceratida. This family of chemical compounds is composed of a high number of metabolites, including puupehenone, the [...] Read more.
Marine sponges represent a vast source of metabolites with very interesting potential biomedical applications. Puupehenones are sesquiterpene quinones isolated from sponges of the orders Verongida and Dictyoceratida. This family of chemical compounds is composed of a high number of metabolites, including puupehenone, the most characteristic compound of the family. Chemical synthesis of puupehenone has been reached by different routes, and the special chemical reactivity of this molecule has allowed the synthesis of many puupehenone-derived compounds. The biological activities of puupehenones are very diverse, including antiangiogenic, antitumoral, antioxidant, antimicrobial, immunomodulatory and antiatherosclerotic effects. Despite the very important roles described for puupehenones concerning different pathologies, the exact mechanism of action of these compounds and the putative therapeutic effects in vivo remain to be elucidated. This review offers an updated and global view about the biology of puupehenones and their therapeutic possibilities in human diseases such as cancer. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

23 pages, 6289 KiB  
Article
In silico Study of the Pharmacologic Properties and Cytotoxicity Pathways in Cancer Cells of Various Indolylquinone Analogues of Perezone
by René Escobedo-González, Claudia Lucia Vargas-Requena, Edgar Moyers-Montoya, Juan Manuel Aceves-Hernández, María Inés Nicolás-Vázquez and René Miranda-Ruvalcaba
Molecules 2017, 22(7), 1060; https://doi.org/10.3390/molecules22071060 - 25 Jun 2017
Cited by 19 | Viewed by 6267
Abstract
Several indolylquinone analogues of perezone, a natural sesquiterpene quinone, were characterized in this work by theoretical methods. In addition, some physicochemical, toxicological and metabolic properties were predicted using bioinformatics software. The predicted physicochemical properties are in agreement with the solubility and cLogP values, [...] Read more.
Several indolylquinone analogues of perezone, a natural sesquiterpene quinone, were characterized in this work by theoretical methods. In addition, some physicochemical, toxicological and metabolic properties were predicted using bioinformatics software. The predicted physicochemical properties are in agreement with the solubility and cLogP values, the penetration across the cell membrane, and absorption values, as well as with a possible apoptosis-activated mechanism of cytotoxic action. The toxicological predictions suggest no mutagenic, tumorigenic or reproductive effects of the four target molecules. Complementarily, the results of a performed docking study show high scoring values and hydrogen bonding values in agreement with the cytotoxicity IC50 value ranking, i.e: indolylmenadione > indolylperezone > indolylplumbagine > indolylisoperezone. Consequently, it is possible to suggest an appropriate apoptotic pathway for each compound. Finally, potential metabolic pathways of the molecules were proposed. Full article
(This article belongs to the Special Issue The Biomedical Importance of Indoles and Their Derivatives)
Show Figures

Graphical abstract

13 pages, 2921 KiB  
Article
General Methodologies Toward cis-Fused Quinone Sesquiterpenoids. Enantiospecific Synthesis of the epi-Ilimaquinone Core Featuring Sc-Catalyzed Ring Expansion
by Hilan Z. Kaplan, Victor L. Rendina and Jason S. Kingsbury
Molecules 2017, 22(7), 1041; https://doi.org/10.3390/molecules22071041 - 24 Jun 2017
Cited by 6 | Viewed by 6591
Abstract
A stereocontrolled approach to the cis-decalin framework of clerodane diterpenes and biologically active quinone sesquiterpenes is reported. Starting from an inexpensive optically pure tetrahydroindanone, Birch reductive alkylation builds two new contiguous chiral centers—one of which is quaternary and all-carbon-substituted. Also featured is [...] Read more.
A stereocontrolled approach to the cis-decalin framework of clerodane diterpenes and biologically active quinone sesquiterpenes is reported. Starting from an inexpensive optically pure tetrahydroindanone, Birch reductive alkylation builds two new contiguous chiral centers—one of which is quaternary and all-carbon-substituted. Also featured is a highly regioselective diazoalkane—carbonyl homologation reaction to prepare the 6,6-bicyclic skeleton. Therein, the utility of Sc(OTf)3 as a mild catalyst for formal 1C insertion in complex settings is demonstrated. Full article
(This article belongs to the Special Issue Asymmetric Synthesis 2017)
Show Figures

Graphical abstract

71 pages, 32454 KiB  
Review
The Role of Spongia sp. in the Discovery of Marine Lead Compounds
by Patrícia Máximo, Luísa M. Ferreira, Paula Branco, Pedro Lima and Ana Lourenço
Mar. Drugs 2016, 14(8), 139; https://doi.org/10.3390/md14080139 - 23 Jul 2016
Cited by 24 | Viewed by 10912
Abstract
A comprehensive review on the chemistry of Spongia sp. is here presented, together with the biological activity of the isolated compounds. The compounds are grouped in sesquiterpene quinones, diterpenes, C21 and other linear furanoterpenes, sesterterpenes, sterols (including secosterols), macrolides and miscellaneous compounds. Among [...] Read more.
A comprehensive review on the chemistry of Spongia sp. is here presented, together with the biological activity of the isolated compounds. The compounds are grouped in sesquiterpene quinones, diterpenes, C21 and other linear furanoterpenes, sesterterpenes, sterols (including secosterols), macrolides and miscellaneous compounds. Among other reports we include studies on the intraspecific diversity of a Mediterranean species, compounds isolated from associated sponge and nudibranch and compounds isolated from S. zimocca and the red seaweed Laurentia microcladia. Under biological activity a table of the reported biological activities of the various compounds and the biological screening of extracts are described. The present review covers the literature from 1971 to 2015. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

19 pages, 3016 KiB  
Article
Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds
by Hassan Y. Ebrahim and Khalid A. El Sayed
Mar. Drugs 2016, 14(3), 57; https://doi.org/10.3390/md14030057 - 11 Mar 2016
Cited by 13 | Viewed by 7393
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis [...] Read more.
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds. Full article
(This article belongs to the Special Issue Drug Design Based on Marine Natural Product Scaffolds)
Show Figures

Graphical abstract

Back to TopTop