Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = sesamin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5050 KB  
Article
Antiviral Efficacy of Lignan Derivatives (-)-Asarinin and Sesamin Against Foot-and-Mouth Disease Virus by Targeting RNA-Dependent RNA Polymerase (3Dpol)
by Ploypailin Semkum, Natjira Mana, Varanya Lueangaramkul, Nantawan Phetcharat, Porntippa Lekcharoensuk and Sirin Theerawatanasirikul
Vet. Sci. 2025, 12(10), 971; https://doi.org/10.3390/vetsci12100971 - 10 Oct 2025
Viewed by 409
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious viral infection affecting livestock. Although inactivated vaccines are commonly used, their effectiveness is limited by an immunity gap. Therefore, complementary antiviral strategies are required for effective control and prevention. Lignans, plant-derived compounds, have shown promising antiviral properties, yet their potential against foot-and-mouth disease virus (FMDV) remains underexplored. This study employed virtual screening to identify lignan compounds targeting viral RNA-dependent RNA polymerase (3Dpol). Six lignan compounds were selected for cytotoxicity and antiviral activity evaluation including pre-viral entry, post-viral entry, and protective effect assays. Antiviral activity assay showed that (-)-asarinin and sesamin exhibit potent inhibition effects in the post-viral entry with EC50 of 15.11 μM and 52.98 μM, respectively, using immunoperoxidase monolayer assay. Both compounds exhibited dose-dependent reduction in viral replication with significant suppression of negative-strand RNA production. Lignans’ ability to target FMDV 3Dpol was further confirmed using a cell-based FMDV minigenome assay. Among the tested lignans, (-)-asarinin demonstrated remarkable inhibition of GFP expression (IC50 value at 10.37 μM), while sesamin required a higher concentration for similar effects. In silico prediction revealed that these lignans preferentially bind to FMDV 3Dpol active site. These findings are the first to establish (-)-asarinin and sesamin as promising antiviral candidates against FMDV. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

16 pages, 1167 KB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 1010
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

16 pages, 2301 KB  
Article
Haustorium Formation and Specialized Metabolites Biosynthesis Using Co-Culture of Castilleja tenuiflora Benth. and Baccharis conferta Kunth
by Annel Lizeth Leyva-Peralta, José Luis Trejo-Espino, Guadalupe Salcedo-Morales, Daniel Tapia-Maruri, Virginia Medina-Pérez, Alma Rosa López-Laredo and Gabriela Trejo-Tapia
Biology 2025, 14(8), 990; https://doi.org/10.3390/biology14080990 - 4 Aug 2025
Viewed by 968
Abstract
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning [...] Read more.
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning electron and confocal microscopy, confirming the successful establishment of the plant–plant interaction. Shoot height and biomass of the aerial part of the hemiparasite were not affected significantly by co-culture. However, root biomass increased by 53% compared to individually grown plants. Co-culture significantly reduced the host’s root length without negatively affecting its overall growth or survival. Phytochemical profile alterations were observed in both species. For C. tenuiflora, the lignans sesamin and eudesmin are proposed as differentially accumulated metabolites, while in B. conferta, the caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and the flavonoid acacetin were expressed differently. The development and chemical profiles of B. conferta and C. tenuiflora change when they grow in a co-culture because of the host–parasite interaction. Here, we report the feasibility of using a hemiparasite–host system to investigate more profound research questions. Future biotechnological applications of this system include elucidating the genetic regulators involved in haustorium formation, as well as optimizing environmental and physiological conditions to enhance its biosynthetic capacity for the production of specialized metabolites with therapeutic value. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

22 pages, 5219 KB  
Article
Study on Volatile Organic Compounds and Antioxidant Polyphenols in Cumin Produced in Xinjiang
by Minghao Sun, Xufang Lv, Xiuxiu Liu, Wenyu Chen, Xing Shen, Zhongping Chai and Maomao Zeng
Int. J. Mol. Sci. 2025, 26(6), 2628; https://doi.org/10.3390/ijms26062628 - 14 Mar 2025
Viewed by 1312
Abstract
This article investigated the composition and content of volatile organic compounds (VOCs) in cumin from three Xinjiang origins (Hami, Turpan, and Hetian) at different processing temperatures. VOCs varied with temperature and origin, but alcohols and terpenes were predominant in all samples. Hetian cumin [...] Read more.
This article investigated the composition and content of volatile organic compounds (VOCs) in cumin from three Xinjiang origins (Hami, Turpan, and Hetian) at different processing temperatures. VOCs varied with temperature and origin, but alcohols and terpenes were predominant in all samples. Hetian cumin exhibited the highest VOC content and stability under specific treatments, divided into an ambient temperature treatment (AMB) and a 70 °C heat treatment. A cluster analysis revealed high similarity between replicates and significant differences among the samples. A Venn diagram comparison showed that 70 °C processing reduced the number of common VOCs among the three origins from 36 to 19, which is a decrease of 47.22%, indicating a significant impact of heating on cumin VOCs and possibly promoting the formation of new compounds. Finally, utilizing the varying abilities of different types of polyphenols to inhibit heterocyclic aromatic amines (HAAs), six polyphenolic compounds, identified as sesamin, 6-caffeoylsucrose, apigenin, eschweilenol C, kaempferol glucuronide, and luteolin, were preliminarily determined to play an active role in the β-carboline HAA simulation system. Full article
(This article belongs to the Special Issue Molecular Innovations in Synthetic Organic Chemistry)
Show Figures

Figure 1

16 pages, 2931 KB  
Article
Evaluation of the Antinociceptive Effect of Sesamin: Role of 5HT1A Serotonergic Receptors
by Roberto Camacho-Cruz, David Francisco Alcalá-Hernández, Juan Carlos Huerta-Cruz, Jesús Arrieta-Valencia, María Elena Sánchez-Mendoza, Francisco Javier Flores-Murrieta, Andrés Navarrete, Juan Gerardo Reyes-García and Héctor Isaac Rocha-González
Pharmaceutics 2025, 17(3), 330; https://doi.org/10.3390/pharmaceutics17030330 - 3 Mar 2025
Cited by 1 | Viewed by 1430
Abstract
Background/Objectives: Sesame (Sesamum indicum L.) is used in folk medicine to treat painful disorders. Sesamin is the main lignan found in this plant; however, its antinociceptive potential has scarcely been studied. The aim was to investigate the antinociceptive effect of sesamin on [...] Read more.
Background/Objectives: Sesame (Sesamum indicum L.) is used in folk medicine to treat painful disorders. Sesamin is the main lignan found in this plant; however, its antinociceptive potential has scarcely been studied. The aim was to investigate the antinociceptive effect of sesamin on inflammatory and neuropathic pain models, as well as the possible mechanism of action through which sesamin mediates its own antinociceptive effect. Methods: Formalin and carrageenan animal models were used to assess inflammatory pain, whereas an L5/L6-spinal-nerve-ligated rat model was employed to evaluate neuropathic pain. Results: Oral sesamin significantly reduced carrageenan-induced hyperalgesia and inflammation, formalin-induced nociception, and L5/L6-spinal-nerve-ligation-induced allodynia. Sesamin was more effective than diclofenac in the inflammatory pain models, but it was less effective than pregabalin in the neuropathic pain model. The antinociceptive effect of sesamin, in the formalin test, was prevented by the intraperitoneal administration of methiothepin (5-HT1/5 antagonist), but not by naltrexone (an opioid antagonist) or L-NAME (an NOS inhibitor). In addition, WAY-100635 (5-HT1A antagonist), but not SB-224289 (5-HT1B antagonist), BRL-15542 (5-HT1D antagonist), and SB-699551 (5-HT5A antagonist), impeded sesamin-induced antinociception. Conclusions: This study’s results support the use of sesamin to treat inflammatory pain disorders and suggest that 5-HT1A receptors influence the antinociceptive effect of this drug. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
Show Figures

Figure 1

16 pages, 1803 KB  
Article
Sustainable Supercritical Carbon Dioxide Extraction of Value-Added Lignan from Sesame Meal: Achieving Green Neuroprotection and Waste Valorization by Optimizing Temperature, Solvent, and Pressure
by Kuo-Ching Jan and Mohsen Gavahian
Molecules 2025, 30(3), 539; https://doi.org/10.3390/molecules30030539 - 24 Jan 2025
Cited by 3 | Viewed by 1604
Abstract
In pursuing sustainable health solutions and growing demand for neuroprotective interventions, the industry demands alternative green extraction technologies to valorize agri-food by-products. This study aimed to develop an optimized supercritical carbon dioxide extraction to isolate sesame meal’s functional compound (lignans) and assess their [...] Read more.
In pursuing sustainable health solutions and growing demand for neuroprotective interventions, the industry demands alternative green extraction technologies to valorize agri-food by-products. This study aimed to develop an optimized supercritical carbon dioxide extraction to isolate sesame meal’s functional compound (lignans) and assess their neuroprotective effects. Extraction was performed at various pressures (2–4 kpsi), temperatures (40–60 °C), co-solvent concentrations (2–25 mol% ethanol), and CO2 collection segments (0–100 NL) to systematically analyze extraction parameters. Extracts were analyzed quantitatively using high-performance liquid chromatography followed by neuroprotective mechanisms analysis through PC12 neural cell and ischemic stroke models. The results showed that adding ethanol enhanced the polarity and density of supercritical CO2, improving the extraction efficiency of polar lignans. Optimal extraction conditions (4 kpsi, 50 °C, 10 mol% ethanol) yielded the highest sesamol, sesamin, and sesamolin. Extracts showed remarkable protective capabilities when subjected to oxygen–glucose deprivation (OGD) conditions simulating ischemic stress, preventing the enhancement of lactate dehydrogenase activity. Relatively low extract concentrations (25–100 μg/mL) significantly mitigated cellular damage induced by short and extended OGD conditions. The findings revealed green extraction methodologies’ capability to transform sesame meal, a food processing waste, into value-added compounds, in line with sustainable development goals for responsible and sustainable food production, particularly SDGs 3, 9, 12, and 13. Full article
Show Figures

Graphical abstract

16 pages, 1575 KB  
Article
Synthesis and Bioactivity Assessment of N-Aryl-Azasesamins
by Jiri Wu, Xubing Qi, Yogini S. Jaiswal, Cui Lin, Xun Song, Xinrong Xie, Shaoyang Su, Yifu Guan, Leonard L. Williams and Hedong Bian
Chemistry 2024, 6(6), 1347-1362; https://doi.org/10.3390/chemistry6060079 - 30 Oct 2024
Cited by 1 | Viewed by 1173
Abstract
Sesamin, a tetrahydrofuran lignan, has gained significant attention over the past few decades due to its versatile medicinal activities. However, until now, the research on sesamin analogues has not been explored extensively. In this study, a series of new N-aryl-azasesamins were synthesized [...] Read more.
Sesamin, a tetrahydrofuran lignan, has gained significant attention over the past few decades due to its versatile medicinal activities. However, until now, the research on sesamin analogues has not been explored extensively. In this study, a series of new N-aryl-azasesamins were synthesized for the first time using sesamin as a raw material. The mechanism of the key breakage of the ethereal bond of the tetrahydrofuran ring in sesamin has been studied. The configuration of C6 in N-aryl-azasesamins was confirmed through NMR and X-ray single crystal refraction analyses. The results showed that the configuration of N-aryl-azasesamins was opposite to sesamin in C6. Subsequently, the N-aryl-azasesamins were evaluated for their antifungal and antitumor activities via micro-broth dilution and MTT assays. It was observed that none of the N-aryl-azasesamins exhibited inhibitory activity against the growth of C. albicans and C. neoformans at a concentration of 100 μg/mL. Most analogues showed no activity against HepG2 cells. However, 21c and 21k demonstrated antitumor activity after 24 h of incubation with IC50 values of 6.49 μM and 4.73 μM, respectively. These results suggest that some N-aryl-azasesamins exhibit significantly enhanced antitumor activity compared with sesamin. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Figure 1

21 pages, 5068 KB  
Article
Enhancing Functional Compounds in Sesame Oil through Acid-Soaking and Microwave-Heating of Sesame Seeds
by Jitkunya Yuenyong, Suchintana Limkoey, Chonlathit Phuksuk, Thitima Winan, Chonlada Bennett, Sudarat Jiamyangyuen, Sugunya Mahatheeranont and Phumon Sookwong
Foods 2024, 13(18), 2891; https://doi.org/10.3390/foods13182891 - 12 Sep 2024
Cited by 2 | Viewed by 3356
Abstract
This study investigated whether pre-treating sesame (Sesamum indicum L.) seeds with a combination of acid-soaking and microwave-heating could significantly enhance the quality of the resulting sesame oil, particularly by increasing its content of functional compounds such as lignans, tocopherol, phytosterol, and squalene. [...] Read more.
This study investigated whether pre-treating sesame (Sesamum indicum L.) seeds with a combination of acid-soaking and microwave-heating could significantly enhance the quality of the resulting sesame oil, particularly by increasing its content of functional compounds such as lignans, tocopherol, phytosterol, and squalene. The study revealed that soaking the sesame seeds in a solution of HCl and citric acid, along with microwave-heating, significantly increased the content of these compounds. The detected ranges were sesamin (1365–6927 µg g−1), sesamolin (605–3493 µg g−1), tocopherol (69.31–282.76 µg g−1), asarinin (ND–383.52 µg g−1), sesamol (ND–49.59 µg g−1), phytosterol (3690–6201 µg g−1), and squalene (532−1628 µg g−1). Additionally, the study found that the pre-treatment of sesame seeds had a minimal effect on the fatty acid composition, antioxidant activity (92.94–95.08% DPPH scavenging activity), and oxidative stability (2.13–2.90 mg MDA kg−1 oil). This is the first study to demonstrate that using acid-soaking and microwave-heating to prepare sesame seeds can produce sesame oil enriched with functional compounds, potentially benefiting cosmetic, pharmaceutical, and health applications. Full article
(This article belongs to the Special Issue Plant Oil: Processing, Chemical Contents and Nutritional Effects)
Show Figures

Graphical abstract

19 pages, 2104 KB  
Article
Sesamin Exerts an Antioxidative Effect by Activating the Nrf2 Transcription Factor in the Glial Cells of the Central Nervous System in Drosophila Larvae
by Akihiro Tsuji, Eiji Kotani and Yoshihiro H. Inoue
Antioxidants 2024, 13(7), 787; https://doi.org/10.3390/antiox13070787 - 28 Jun 2024
Cited by 2 | Viewed by 1901
Abstract
Sesame seeds are abundant in sesamin, which exerts health-promoting effects such as extending the lifespan of adult Drosophila and suppressing oxidative stress by activating the Nrf2 transcription factor. Here, we investigated whether sesamin activated Nrf2 in larval tissues and induced the expression of [...] Read more.
Sesame seeds are abundant in sesamin, which exerts health-promoting effects such as extending the lifespan of adult Drosophila and suppressing oxidative stress by activating the Nrf2 transcription factor. Here, we investigated whether sesamin activated Nrf2 in larval tissues and induced the expression of Nrf2 target genes. In the sesamin-fed larvae, Nrf2 was activated in the central nervous system (CNS), gut, and salivary glands. The ectopic expression of Keap1 in glial cells inhibited sesamin-induced Nrf2 activation in the whole CNS more than in the neurons, indicating that sesamin activates Nrf2 in glia efficiently. We labeled the astrocytes as well as cortex and surface glia with fluorescence to identify the glial cell types in which Nrf2 was activated; we observed their activation in both cell types. These data suggest that sesamin may stimulate the expression of antioxidative genes in glial cells. Among the 17 candidate Nrf2 targets, the mRNA levels of Cyp6a2 and Cyp6g1 in cytochrome P450 were elevated in the CNS, gut, and salivary glands of the sesamin-fed larvae. However, this elevation did not lead to resistance against imidacloprid, which is detoxified by these enzymes. Our results suggest that sesamin may exert similar health-promoting effects on the human CNS and digestive tissues. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease)
Show Figures

Graphical abstract

26 pages, 5233 KB  
Article
The Effect of Water Stress on Bioactive Compounds in Australian-Grown Black Sesame
by Beatriz E. Hoyos, Joel B. Johnson, Janice S. Mani, Ryan J. Batley, Tieneke Trotter, Surya P. Bhattarai and Mani Naiker
Plants 2024, 13(6), 793; https://doi.org/10.3390/plants13060793 - 11 Mar 2024
Cited by 4 | Viewed by 2956
Abstract
Sesame is an emerging crop of interest in Australia and has attracted widespread interest due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans, and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive compounds, [...] Read more.
Sesame is an emerging crop of interest in Australia and has attracted widespread interest due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans, and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive compounds, using eleven cultivars of black sesame seeds grown in Australia. Specific varieties responded positively to water deficit (WD) conditions, showing increased levels of TPC, FRAP, CUPRAC, and lignans. Varieties 1, 4, 7, and 12 showed significantly increased FRAP values ranging from 158.02 ± 10.43 to 195.22 ± 9.63 mg TE/100 g DW in the WD treatment compared to the well-watered (WW) treatment, whereas varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC values of all varieties (2584.86 ± 99.68–2969.56 ± 159.72 mg TE/100 g) across both WW and WD conditions, with no significant variations between irrigation regimes. Moreover, lignan contents (sesamin and sesamolin) were higher in varieties 1, 2, 5, and 8 grown in WD conditions. Compared to the optimal unsaturated to saturated fatty acid ratio (Σ UFA/Σ SFA ratio) of 0.45, all sesame genotypes showed superior ratios (ranging between 1.86 and 2.34). Moreover, the ω-6/ω-3 PUFA ratio varied from 33.7–65.5, with lower ratios in varieties 2, 4, 5, 8, and 18 under WD conditions. The high levels of phenolic compounds and healthy fats suggest the potential of black sesame to be incorporated into diets as a functional food. Furthermore, the enhanced phytochemistry of these cultivars in WD conditions is promising for widespread adoption. However, larger trial studies to confirm these findings across different geographic locations and seasons are warranted. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants)
Show Figures

Figure 1

16 pages, 3038 KB  
Article
Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum
by Liben Pan, Nan Yang, Yushu Sui, Yi Li, Wen Zhao, Liqiu Zhang, Liqiang Mu and Zhonghua Tang
Metabolites 2023, 13(12), 1193; https://doi.org/10.3390/metabo13121193 - 9 Dec 2023
Cited by 22 | Viewed by 2919
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum’s plant growth are significantly affected by altitude. [...] Read more.
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum’s plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum. Full article
(This article belongs to the Special Issue Identification of Secondary Metabolites by Multi-Omics Methods)
Show Figures

Graphical abstract

12 pages, 2796 KB  
Article
Sesamin’s Therapeutic Actions on Cyclophosphamide-Induced Hepatotoxicity, Molecular Mechanisms, and Histopathological Characteristics
by Abdulmajeed M. Jali, Mohammad Firoz Alam, Ali Hanbashi, Wedad Mawkili, Basher M. Abdlasaed, Saeed Alshahrani, Abdullah M. Qahl, Ahmad S. S. Alrashah and Hamad Al Shahi
Biomedicines 2023, 11(12), 3238; https://doi.org/10.3390/biomedicines11123238 - 7 Dec 2023
Cited by 6 | Viewed by 2931
Abstract
Cyclophosphamide, an alkylating agent integral to specific cancer chemotherapy protocols, is often curtailed in application owing to its significant hepatotoxic side effects. Therefore, this study was conducted to assess the hepatoprotective potential of sesamin, a plant-originated antioxidant, using rat models. The rats were [...] Read more.
Cyclophosphamide, an alkylating agent integral to specific cancer chemotherapy protocols, is often curtailed in application owing to its significant hepatotoxic side effects. Therefore, this study was conducted to assess the hepatoprotective potential of sesamin, a plant-originated antioxidant, using rat models. The rats were divided into five groups: a control group received only the vehicle for six days; a cyclophosphamide group received an intraperitoneal (i.p.) single injection of cyclophosphamide (150 mg/kg) on day four; a sesamin group received a daily high oral dose (20 mg/kg) of sesamin for six days; and two groups were pretreated with oral sesamin (10 and 20 mg/kg daily from day one to day six) followed by an i.p. injection of cyclophosphamide on day four. The final and last sesamin dose was administered 24 h before euthanasia. At the end of the experiment, blood and liver tissue were collected for biochemical and histopathological assessments. The results indicated significantly increased liver markers (AST, ALT, ALP, and BIL), cytokines (TNFα and IL-1β), caspase-3, and malondialdehyde (MDA) in the cyclophosphamide group as compared to the normal control. Additionally, there was a significant decline in antioxidants (GSH) and antioxidant enzymes (CAT and SOD), but the sesamin treatment reduced liver marker enzymes, cytokines, and caspase-3 and improved antioxidants and antioxidant enzymes. Thus, sesamin effectively countered these alterations and helped to normalize the histopathological alterations. In conclusion, sesamin demonstrated the potential for attenuating cyclophosphamide-induced hepatotoxicity by modulating cytokine networks, apoptotic pathways, and oxidative stress, suggesting its potential role as an adjunct in chemotherapy to reduce hepatotoxicity. Full article
(This article belongs to the Special Issue Hepatotoxicity: From Pathology to Novel Therapeutic Approaches)
Show Figures

Graphical abstract

16 pages, 7823 KB  
Article
Biological Activities in Sapwood and Heartwood Extractives from Paulownia tomentosa
by Hanna Park, Byeongho Kim, Kyoung-Chan Park, Yesun Kim, Taehee Kim, Min-Seok Kim, Sun-Eun Choi and Se-Yeong Park
Forests 2023, 14(11), 2171; https://doi.org/10.3390/f14112171 - 31 Oct 2023
Cited by 2 | Viewed by 2187
Abstract
Paulownia tomentosa is a representative deciduous tree in South Korea. After 10 years of growth, its wood can be used to make various products through chemical modifications, such as impregnation with a polymer, substitution with chemicals, and physical compression. However, research on the [...] Read more.
Paulownia tomentosa is a representative deciduous tree in South Korea. After 10 years of growth, its wood can be used to make various products through chemical modifications, such as impregnation with a polymer, substitution with chemicals, and physical compression. However, research on the biological resistance of the sapwood and heartwood parts of P. tomentosa xylem is lacking. To ensure the complete utilisation of Paulownia wood, this study aimed to collect baseline data on the necessity of xylem extraction before chemical modification to enhance wood porosity. First, we assessed the decay and termite resistance of sapwood and heartwood blocks. Furthermore, we evaluated the anti-microbial effect of sapwood and heartwood extracts after solvent fractionation. Quantitative and qualitative analyses of the active substances of the fractions with anti-microbial activity were also conducted. The hexane and chloroform solvent fractions of sapwood and heartwood extracts showed fungal resistance against Trametes versicolor and Fomiptosis palustis. Paulownin and sesamin were the main compounds showing anti-microbial activity, and their content in the extracts varied, depending on the wood part. These results provide valuable data for advancing research on porous wood materials and the utilisation of xylem-derived active compounds from Paulownia wood. Full article
(This article belongs to the Special Issue Utilization of Forest Products for Sustainable Growth)
Show Figures

Graphical abstract

18 pages, 6768 KB  
Article
Anti-COVID-19, Anti-Inflammatory, and Anti-Osteoarthritis Activities of Sesamin from Sesamum indicum L.
by Shu-Ming Huang, Cheng-Yang Hsieh, Jasmine U. Ting, Kathlia A. De Castro-Cruz, Ching-Chiung Wang, Chia-Jung Lee and Po-Wei Tsai
Bioengineering 2023, 10(11), 1263; https://doi.org/10.3390/bioengineering10111263 - 30 Oct 2023
Cited by 3 | Viewed by 4301
Abstract
During the COVID-19 (coronavirus disease 2019) outbreak, many people were infected, and the symptoms may persist for several weeks or months for recovering patients. This is also known as “long COVID” and includes symptoms such as fatigue, joint pain, muscle pain, et cetera. [...] Read more.
During the COVID-19 (coronavirus disease 2019) outbreak, many people were infected, and the symptoms may persist for several weeks or months for recovering patients. This is also known as “long COVID” and includes symptoms such as fatigue, joint pain, muscle pain, et cetera. The COVID-19 virus may trigger hyper-inflammation associated with cytokine levels in the body. COVID-19 can trigger inflammation in the joints, which can lead to osteoarthritis (OA), while long-term COVID-19 symptoms may lead to joint damage and other inflammation problems. According to several studies, sesame has potent anti-inflammatory properties due to its major constituent, sesamin. This study examined sesamin’s anti-inflammatory, anti-osteoarthritis, and anti-COVID-19 effects. Moreover, in vivo and in vitro assays were used to determine sesamin’s anti-inflammatory activity against the RAW264.7 and SW1353 cell lines. Sesamin had a dose-dependent effect (20 mg/kg) in a monoiodoacetic acid (MIA)-induced osteoarthritis rat model. Sesamin reduced paw swelling and joint discomfort. In addition, the findings indicated that sesamin suppressed the expression of iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) in the RAW264.7 cell line within the concentration range of 6.25–50 μM. Furthermore, sesamin also had a suppressive effect on MMP (matrix metalloproteinase) expression in chondrocytes and the SW1353 cell line within the same concentration range of 6.25–50 μM. To examine the anti-viral activity, an in silico analysis was performed to evaluate sesamin’s binding affinity with SARS-CoV-2 RdRp (severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase) and human ACE2 (angiotensin-converting enzyme 2). Compared to the controls, sesamin exhibited strong binding affinities towards SARS-CoV-2 RdRp and human ACE2. Furthermore, sesamin had a higher binding affinity for the ACE2 target protein. This study suggests that sesamin shows potential anti-SARS-CoV-2 activity for drug development. Full article
Show Figures

Graphical abstract

16 pages, 4283 KB  
Article
Sesamin: A Promising Therapeutic Agent for Ameliorating Symptoms of Diabetes
by Shu-Ming Huang, Cheng-Hung Chuang, Christine Joyce F. Rejano, Lemmuel L. Tayo, Cheng-Yang Hsieh, Steven Kuan-Hua Huang and Po-Wei Tsai
Molecules 2023, 28(21), 7255; https://doi.org/10.3390/molecules28217255 - 25 Oct 2023
Cited by 9 | Viewed by 5106
Abstract
Diabetes is a chronic metabolic disease characterized by improperly regulating proteins, carbohydrates, and lipids due to insulin deficiency or resistance. The increasing prevalence of diabetes poses a tremendous socioeconomic burden worldwide, resulting in the rise of many studies on Chinese herbal medicines to [...] Read more.
Diabetes is a chronic metabolic disease characterized by improperly regulating proteins, carbohydrates, and lipids due to insulin deficiency or resistance. The increasing prevalence of diabetes poses a tremendous socioeconomic burden worldwide, resulting in the rise of many studies on Chinese herbal medicines to discover the most effective cure for diabetes. Sesame seeds are among these Chinese herbal medicines that were found to contain various pharmacological activities, including antioxidant and anti-inflammatory properties, lowering cholesterol, improving liver function, blood pressure and sugar lowering, regulating lipid synthesis, and anticancer activities. These medicinal benefits are attributed to sesamin, which is the main lignan found in sesame seeds and oil. In this study, Wistar rat models were induced with type 2 diabetes using streptozotocin (STZ) and nicotinamide, and the effect of sesamin on the changes in body weight, blood sugar level, glycosylated hemoglobin (HbA1c), insulin levels, and the states of the pancreas and liver of the rats were evaluated. The results indicate a reduced blood glucose level, HbA1c, TG, and ALT and AST enzymes after sesamin treatment, while increased insulin level, SOD, CAT, and GPx activities were also observed. These findings prove sesamin’s efficacy in ameliorating the symptoms of diabetes through its potent pharmacological activities. Full article
(This article belongs to the Special Issue Functional and Bioactive Compounds from Food)
Show Figures

Figure 1

Back to TopTop