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Abstract: Sesame is an emerging crop of interest in Australia and has attracted widespread interest
due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans,
and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive
compounds, using eleven cultivars of black sesame seeds grown in Australia. Specific varieties
responded positively to water deficit (WD) conditions, showing increased levels of TPC, FRAP,
CUPRAC, and lignans. Varieties 1, 4, 7, and 12 showed significantly increased FRAP values ranging
from 158.02 ± 10.43 to 195.22 ± 9.63 mg TE/100 g DW in the WD treatment compared to the well-
watered (WW) treatment, whereas varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC
values of all varieties (2584.86 ± 99.68–2969.56 ± 159.72 mg TE/100 g) across both WW and WD
conditions, with no significant variations between irrigation regimes. Moreover, lignan contents
(sesamin and sesamolin) were higher in varieties 1, 2, 5, and 8 grown in WD conditions. Compared
to the optimal unsaturated to saturated fatty acid ratio (Σ UFA/Σ SFA ratio) of 0.45, all sesame
genotypes showed superior ratios (ranging between 1.86 and 2.34). Moreover, the ω-6/ω-3 PUFA
ratio varied from 33.7–65.5, with lower ratios in varieties 2, 4, 5, 8, and 18 under WD conditions.
The high levels of phenolic compounds and healthy fats suggest the potential of black sesame to be
incorporated into diets as a functional food. Furthermore, the enhanced phytochemistry of these
cultivars in WD conditions is promising for widespread adoption. However, larger trial studies to
confirm these findings across different geographic locations and seasons are warranted.

Keywords: antioxidant activity; cupric ion-reducing antioxidant capacity; fatty acids; ferric-reducing
antioxidant power; lignans; phytochemicals; sesame seeds; total phenolics

1. Introduction

Sesamum indicum Linn, belonging to the Pedaliaceae family, is a traditional health food
and an annual oilseed crop of unknown origin [1,2]. It is commonly known as sesame
and is among several species in the Sesamum genus. Sesamum indicum is considered a
domesticated crop [2,3], with the whole seed and products obtained from sesame seed used
for human consumption. The products derived from the seed initially involve pressing
of the seed, resulting in three well-known by-products: the oilseed extract, sesame cake,
and sesame sludge. The by-products have been extensively studied for numerous applica-
tions [4–7]. Sesame seeds are commonly used in Asian countries in bakery products for
garnishing handcrafted bread, sticks, rolls, biscuits, buns, and crackers, and in international
foods, such as the well-known “Tahini”, which is a staple in Mediterranean diets, and
“halvah”, a Middle Eastern confection made by grinding sesame seeds together with other
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minor products [8]. Sesame has also been used as a snack food by adding honey and other
minor sugar sources and is a major ingredient in hummus, a dip product resulting from
chickpea flour and sesame paste [9]. Sesame oil, on the other hand, attracts significantly
value for its health benefits [2,10], such as the prevention of obesity [11,12], coronary heart
diseases [13–15], colon cancer [11,16,17], and gastrointestinal disorders [18,19] and reduc-
tion of the risk of developing diabetes [17,18,20]. Consequently, the inclusion of sesame in
human diets may provide significant health benefits.

Sesame seeds have been imported to Australia since 1966 [21], and according to recent
market analysis, 6740 tonnes of sesame were imported in 2016 [22]. Moreover, the global
market value was around USD 6.5 billion in 2018, and the current trend forecasts future
growth in the Australian demand to 9800 tonnes by 2025, reaching USD 17.77 billion by
2025 [22,23]. The Australian sesame industry shows promising growth potential, with
a current focus on expanding cultivation across different territories [24]. Various field
trials for commercial-scale sesame production are currently progressing in Queensland,
Western Australia, Northern Territory, and New South Wales based on selecting optimum
varieties with increased heat tolerance, enhanced yield, high oil content, and other quality
parameters, targeting knowledge gaps in sowing techniques and weed management. Thus,
there is an increased interest in commercializing and expanding this promising oilseed crop
on the Australian market.

Both in Australia and globally, sesame has been extensively marketed due to its
high nutritional value, which is mainly attributed to its bioactive constituents [4]. These
compounds are present in the sesame seed [25,26], sesame oil [27–29], and their by-products.
Further value-adding applications have emerged for the sesame by-product known as
“sesame cake” or “press cake” [7]. It has been used in the development of biofuels and bio-
packaging, as well as in the design and improvement of sesame breeding programs [4,7,30],
and has been included as an ingredient in energy drinks and alcoholic beverages [31].
Hence, the large applicability of this valuable commodity explains the significance of
increased understanding and expansion as an industrial crop.

The main feature of the oil extracted from sesame is its proven high level of resistance
to oxidation when compared to oilseed crops such as corn, soybean, sunflower, peanut,
and other popular plant oilseeds [27,32]. The antioxidative factor of sesame-derived oil
has been attributed to the presence of phenolics, lignans, and other naturally occurring
minerals and vitamins [4,30,32]. Among several health-promoting effects, polyphenols
naturally present in sesame seed have demonstrated great antioxidant properties in pre-
venting and/or treating diseases [31,33,34]. In addition, lignans of sesame—which include
sesamin, sesamolin, pinoresinol, sesamol, sesaminol, and sesamolinol—have also played
an important role in biological systems due to their strong antioxidant activities [12,35,36].

The estimation of the levels of the key bioactive compounds unique to sesame, par-
ticularly lignans, explains the relevance of investment in and expansion of this promising
oilseed crop in the Australian market. Although sesame seeds and oilseed are used widely
in Australia, the natural antioxidant levels and their bioactive potential in Australian-grown
sesame cultivars have been scarcely reported. Therefore, this study aims to quantify the
levels of total antioxidant capacity (TAC), total phenols (TP), total anthocyanin content, and
individual sesame lignans (sesamin and sesamolin) in Australian-grown sesame. To our
knowledge, there is little investigation which reports the total content of key lignans in each
of the sesame derivatives, including sesame seeds, oil, cake, and sludge. Consequently,
this investigation also aims to quantify the lignans in sesame seeds and their derivatives
between different sesame varieties and irrigation conditions in the northern Australian
region. This will enable the identification of optimal cultivars for the further development
of this valuable crop.
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2. Results and Discussion
2.1. Moisture Content

The moisture content determined for each ground sesame is presented in Figure 1.
There was a significant difference noted in the moisture contents of the eleven sesame
varieties (two-way ANOVA; F = 3.87, p < 0.05); however, there was no significant difference
in the percentage of moisture content between the water irrigation treatments (two-way
ANOVA; F = 3.87, p > 0.05), except for varieties 4, 8, 10, 12, and 13. The average moisture
content ranged from 3.60–4.70% for the water deficit (WD) treatment and 3.64–4.40% for
the well-watered (WW) treatment (Figure 1).
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Figure 1. Average moisture content percentage of field-grown sesame under two irrigation treat-
ments; well-watered (WW) and water deficit (WD). Note: ANOVA testing was based on moisture
content data (p < 0.05). Varieties with the same lowercase letter on the bars are not significantly
different, p < 0.05. Abbreviations: WD, water-deficient irrigation treatment; WW, well-watered
irrigation treatment.

Observations from this study indicate that varieties 4, 8, and 12 had larger differences
in the average moisture values amongst water irrigation treatments (Figure 1). Most of
the sesame samples had higher average moisture content in the WD treatment than in the
WW treatment, with only variety 10 recording a greater moisture content than its WW
counterpart (Figure 1). This may indicate a certain degree of water-deficit resistance in
these cultivars. Additionally, varieties 1, 2, 5, 7, and 17 had no significant differences. Thus,
the results from this study may suggest that higher levels of moisture content in the seed
may be due to an adaptative response of the plant to water stress [37].

The level of variation in moisture content between the sesame samples was similar
to international studies on this crop [10,38–41]. For example, they were comparable to the
values reported in four sesame varieties from Turkey (4.16–4.62%) [41] and somewhat com-
parable to commercially sourced white sesame in India (3.26–4.18%) [39]. Rostami et al. [40]
reported a higher range in Iranian sesame genotypes (4.5–6.5%) than the values reported in
this study. These differences may be attributed to various factors such as genetic differences,
environmental conditions during cultivation, harvesting, processing methods, and storage
practices [12,22,42,43].

Higher levels of moisture content in the seeds have been associated with a reduction
in the oil content of the final product [40], which ultimately leads to more susceptibility to
mould growth and microbial development [44]. These factors can adversely affect product
quality and safety.
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2.2. Phytochemical Profile
2.2.1. Total Phenolic Content (TPC)

The average TPC determined for all the field-grown samples is presented in Figure 2.
The phenolic content for the field-grown sesame determined with the Folin–Ciocalteu (FC)
assay ranged from 76.65 mg of gallic acid equivalents (GAE) per 100 g to 192.85 mg of
GAE/100 g on a dry-weight (DW) basis across both irrigation treatments. A significant dif-
ference was observed for the TPC between sesame varieties (two-way ANOVA; F = 120.60,
p < 0.05). The average TPC values under WD and WW treatments were 146.68 ± 38.87 and
89.27 ± 9.96 mg GAE/100 g DW, respectively. Moreover, there was a significant difference
in the TPC contents due to the WD treatment (two-way ANOVA; F = 2180.40, p < 0.05).
The average TPC of each sesame variety ranged from 93.53 to 192.85 mg GAE/100 g DW
in the WD treatment, while sesame grown in the WW treatment ranged from 76.65 to
111.72 mg GAE/100 g DW. It was also noted that there was a significant impact on each of
the varieties subjected to the two water treatment conditions (two-way ANOVA; F = 255.10,
p < 0.05) (Figure 2).
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Figure 2. Average total phenolic content (TPC) of sesame seed from different varieties, separated
by water deficient and well-watered treatments. Note: ANOVA testing was based on TPC data
(p < 0.05). Tukey’s HSD average separation was used to distinguish between different varieties
and two different irrigation treatments. Varieties with the same lowercase letter on the bars are
not significantly different, p < 0.05. Abbreviations: WD, water-deficient irrigation treatment; WW,
well-watered irrigation treatment. Analyses were performed in duplicate for each sample.

The TPC content was significantly higher in the WD treatment for most of the sesame
varieties when compared to the WW treatment. For example, the phenolic content was
approximately two-fold higher in varieties 1 (193.85 ± 6.83 mg GAE/100 g DW) and
12 (167.42 ± 4.20 mg GAE/100 g DW) in the WD treatment than in the WW treatment
(86.20 ± 1.70 and 82.39 ± 2.21 mg GAE/100 g DW, respectively). Across the remaining
nine varieties, WD treatment provided a 48.25%, 42.42%, 40.81%, and 39.71% increase in
TPC for varieties 8, 4, 7, and 2, while varieties 18, 17, and 13 only showed a 21.82%, 14.71%,
and 6.33% increase, respectively. This is indicative of a wide range of genetic differences in
both the total phenolic content of the varieties and their physiological responses to water
stress [45–47].
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The current results were higher than the results reported in white sesame by
Elleuch et al. [10], the value of which was 87.8 mg GAE/100 g DW in Tunisia. Moreover,
the TPC results obtained in the current study were significantly lower than previous values
reported in China (370.5–786.8 mg of GAE/100 g DW) [33] and Ethiopia (370.5–786.8 mg
of GAE/100 g DW) [48]. Another previous investigation in India [49] obtained comparable
TPC values (126.8–154.3 mg of GAE/100 g DW) to the current investigation. In addition,
comparable values were reported in a previous investigation using ten dried and milled
sesame genotypes (including black, brown, light brown, and white colors) of different
origins worldwide and two different irrigation treatments [46] in Iran. Their TPC values
ranged from 76.0–262.0 mg GAE /100 g DW and 86.7–334.0 mg GAE /100 g DW in the
assessment of full irrigation (60% irrigation in the soil) and 90% in deficient irrigation,
respectively. In general, previous studies have found TPC ranging from 76.06 to 2569.0 mg
of GAE/100 g DW [10,33,48,49]. It should be noted that the whole seeds were analyzed
in the present study, while some previous researchers have investigated dehulled seeds.
In general, lower TPC values are found in the whole seed extracts compared to hull ex-
tracts [50]. Nevertheless, the relatively high TPC values found here for whole black sesame
seeds suggests that they may provide beneficial health effects.

The statistically significant variation within the WW and WD groups also indicated
that the genotypes of sesame reacted differently to water deficiency in terms of TPC. Similar
observations have been made for other crops such as cumin seeds and rapeseed, in which
water deficiency also affected the concentrations of these secondary metabolites [46,51].
Okello [52], Sánchez-Rodríguez [53], and Bettaieb [54] noted extensive variation in TPC
(76.0–2569.0 mg GAE/100 g DW) amongst plants in the Solanaceae family such as huck-
leberry (Solanium scabrum Mill.) and tomatoes, and in cumin (Cuminum cyminum L.) in
the Apiaceae family, varying widely depending on different factors such as genetics, envi-
ronmental conditions during cultivation, harvesting practices, processing methods, and
storage practices [45–47]. Based on the discussed information, it can be postulated that the
accumulation of phenolic compounds in sesame seeds could be due to the plant’s response
to water stress. This can be based on previous studies that have shown that plants often
produce more phenolic compounds in response to stress factors such as environmental
stress, disease, or insect attack [55–57]. This increase in secondary metabolites serves as
an adaptive strategy that has evolved over time to help plants cope with a wide range of
abiotic stresses. This adaptive behaviour often involves the activation of specific metabolic
pathways. The phenylpropanoid biosynthetic pathway is likely the pathway associated
with the secondary metabolism behind the stimulated biosynthesis of phenolic compounds
induced by abiotic stresses, such as water deficit [58]. Water deficit regulates many key
genes encoding the main enzymes of the phenylpropanoid pathway, which results in
stimulated biosynthesis of phenolic compounds [59]. However, it is important to note that
there may be other factors that can contribute to the variation in phenolic content, such as
the genetic diversity of the sesame varieties studied [10,33,49,60].

2.2.2. Ferric-Reducing Antioxidant Power (FRAP)

The average FRAP content (Figure 3) for the field trial samples varied significantly,
ranging from 53.53–195.22 mg of Trolox equivalents (TE) per 100 g DW, including both
irrigation treatments (two-way ANOVA; F = 123.60, p < 0.05).

There was a significant difference amongst the average FRAP values for the irrigation
treatments, which ranged from 74.04–195.22 mg TE/100 g DW under WD treatment and
53.53–145.00 mg TE/100 g DW under WW treatment (two-way ANOVA; F = 69.51, p < 0.05).
In addition, FRAP levels varied significantly between varieties and water treatments (two-
way ANOVA; F = 29.52, p < 0.05) (Figure 3). These results indicate that the antioxidant
activity of the eleven sesame genotypes was influenced by water deficiency, but the extent
of the response to this stress varied greatly depending on the variety. Varieties 7, 1, and
4 showed 34.10%, 30.67%, and 24.99% higher FRAP values under WD conditions than in
the WW treatment. In contrast, the FRAP of varieties 10 and 2 were 30.64% and 21.51%



Plants 2024, 13, 793 6 of 26

greater under the WW treatment. In addition, varieties 5, 8, 12, 13, 17, and 18 did not differ
significantly between the two water treatments.
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Figure 3. Average ferric-reducing antioxidant power (FRAP) of different varieties of sesame seed,
separated by water deficient and well-watered treatments. Note: ANOVA testing (p < 0.05) was
based on FRAP data. Tukey’s HSD average separation was used to distinguish between different
varieties and two different irrigation treatments. Varieties with the same lowercase letter on the
bars are not significantly different, p < 0.05. Abbreviations: TE, Trolox equivalent; DW, dry weight;
WD, water-deficient irrigation treatment; WW, well-watered irrigation treatment. Analyses were
performed in duplicate for each sample.

The FRAP values observed in the sesame varieties analyzed in this study were gener-
ally comparable to previous reports concerning a range of other crops [10,46,48,49,61–65].
The FRAP values reported by Mercado et al. [66] represented a wider range (0.75–425 mg
TE/100 g DW), which may be due to genetic variation in the eight Iranian sesame genotypes
used in this study or different extraction parameters. The differences found amongst the
FRAP values obtained in the current study and the values reported globally could be also
attributed to the type, diversity, and concentration of different polyphenolic compounds
making up the different extracts [67]. It is believed that combinations of various minor
constituents present in sesame seeds may work synergistically to enhance the antioxidant
activity. This has been supported by findings from previous studies [67–73].

Our findings on the interaction between water stress and genotypes in this study
align with previous efforts conducted by Kim et al. [74], who suggested that the activity of
potential antioxidant compounds in sesame is affected by water deficiency stress; however,
the response to water deficit differs depending on the sesame cultivar. In line with other
studies [47,74], the antioxidant activity measured by FRAP was generally dependent on
the water stress level and sesame genotype. In this study, the genotypes with higher FRAP
values in the WW treatment can be categorized as sensitive to water stress, as described
in other studies [47,74]. Previous efforts have shown that plants generally produce more
phenolic, lignan, tocopherol, and sterol contents when subjected to environmental stress,
disease, or insect attack [55–57]. Thus, the differences in antioxidant activity observed in the
different sesame samples studied may be attributed to physiological changes experienced
by the plants as a defence mechanism by enhancing the bioactive content. However, it is
important to consider that other factors such as the diversity of sesame varieties studied
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may also contribute to the variation in antioxidant capacity, as postulated by previous
investigations [10,33,49,60].

2.2.3. Cupric Ion-Reducing Antioxidant Capacity (CUPRAC)

The CUPRAC assay was performed as an alternative method of investigating the
effect of water deficit stress on the antioxidant capacity of the various sesame cultivars.
The average CUPRAC values determined for the eleven field trial varieties are presented
in Figure 4.
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Figure 4. Average cupric ion-reducing antioxidant capacity (CUPRAC) values of sesame seed from
different varieties, separated by water-deficient and well-watered treatments. Note: ANOVA testing
(p < 0.05) was based on CUPRAC data. Tukey’s HSD average separation was used to distinguish
between different varieties and two different irrigation treatments. Varieties with the same lowercase
letter on the bars are not significantly different, p < 0.05. Abbreviations: WD, water-deficient
irrigation treatment; WW, well-watered irrigation treatment. Analyses were performed in duplicate
for each sample.

There was a significant difference noted in the antioxidant activity results obtained by
the CUPRAC method in the eleven sesame varieties, ranging from 465.99–2969.56 mg of
Trolox equivalents (TE) per 100 g DW (two-way ANOVA; F = 707.84, p < 0.05). In addition,
there was a significant impact noted amongst the average CUPRAC values for the irrigation
treatments, which ranged from 655.81–2896.05 mg TE/100 g DW for WD treatment, while
these values ranged from 465.99–2969.56 mg TE/100 g DW for WW treatment (two-way
ANOVA; F = 155.60; p < 0.05). These observed results suggest that the antioxidant activity of
the eleven sesame genotypes was influenced by the irrigation treatment and, furthermore,
that responses to such treatment differed depending on the sesame cultivar. For example,
varieties 5 and 1 showed 62.47% and 38.78% higher CUPRAC values under WD treatment
compared to the WW treatment. Although varieties 13 and 10 did show slightly higher
CUPRAC values under WW treatment, these, along with all other varieties, did not show
any statistically significant difference between irrigation treatments.

The evaluation of antioxidant activities using the FRAP and CUPRAC methods re-
vealed notable variability across all sesame samples. The CUPRAC method exhibited
generally higher levels of antioxidant activity than the FRAP method. While sesame sam-
ples from varieties 1, 4, 7, and 12 subjected to WD treatment showed greater antioxidant
activity than those with WW treatment, a few exceptions (varieties 2 and 10) displayed
higher antioxidant values in the WW treatment when tested using the FRAP assay. This
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divergence may suggest a potential genotype-dependent response. Meanwhile, varieties 1
and 5 demonstrated higher antioxidant activity (around twofold and threefold) in the WD
treatment than in the WW treatment, as determined by the CUPRAC method. Due to the
lack of studies in the literature reporting CUPRAC data, a comparison of CUPRAC levels in
sesame seeds was not able to be performed. Taken together, the results of this study and the
potential explanations given for other species highlight the need for further investigation
of individual phenolics and their potential contribution to the overall antioxidant activity.

2.3. Determination of Lignans in Sesame Seeds Using HPLC Analysis
2.3.1. Sesamin

The average sesamin content in the whole black sesame seed extracts (Figure 5) varied
significantly amongst the eleven lines, ranging from 0.36–2.56 mg/g, with significant
differences between varieties (two-way ANOVA; F = 174.86, p < 0.05). Moreover, there was
a significant difference between seeds from the WD irrigation treatment (0.60–2.56 mg/g)
and the WW treatment (0.36–2.05 mg/g; two-way ANOVA; F = 189.30, p < 0.05). In addition,
there was a significant interaction between varieties and irrigation treatments (two-way
ANOVA; F = 22.24, p < 0.05) (Figure 5). Among the eleven genotypes analyzed, the highest
average sesamin content was observed for variety 2 (2.56 mg/g) under WD treatment,
followed by variety 2 under WW treatment (2.05 mg/g) and variety 5 under WD treatment
(1.60 mg/g) (Figure 5). The lowest average sesamin value was observed in variety 4 under
WW treatment (0.36 mg/g).
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Figure 5. Average sesamin content (mg/g) of whole sesame seed from different varieties, separated
by water deficient and well-watered treatments. Note: ANOVA testing (p < 0.05) was based on
HPLC data. Tukey’s HSD average separation was used to distinguish between different varieties
and two different irrigation treatments. Varieties with the same lowercase letter on the bars are
not significantly different, p < 0.05. Abbreviations: WD, water-deficient irrigation treatment; WW,
well-watered irrigation treatment. Analyses were performed in duplicate for each sample.

Water stress influenced sesamin content in some varieties, specifically increasing the
average values in the WD treatment [46]. For example, varieties 1, 4, 18, and 17 were 52.17%,
50.47%, 44.51%, and 44.36% higher in average sesamin content in the WD treatment than in
the WW treatment (Figure 5). On the other hand, variety 7 was unique in showing a greater
sesamin content in the WW treatment than the WD treatment, although the difference
between treatments was not statistically significant (Figure 5).

These observed results indicate that water deficit treatment appeared to affect the
sesamin content in sesame samples, as evidenced by a higher sesamin content in most of
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the sesame samples subjected to WD treatment, with the exception of varieties 4, 7, 13,
and 17. More specifically, in varieties subjected to WD conditions, 45% of the genotypes
(varieties 1, 2, 5, 7, 8) exhibited sesamin contents of greater than 1.0 mg/g, whilst 55% of the
samples (varieties 4, 10, 12, 13, 17, and 18) had from 0.7–1.0 mg/g. In contrast, under WW
treatment, only 27% of the samples (varieties 2, 5, and 7) exhibited average sesamin values
greater than 1.0 mg/g, whereas 64% of genotypes (varieties 1, 8, 10, 12, 13, 17, and 18) had
average values below 1.0 mg/g. As can be seen in Figure 5, the response to the irrigation
treatment was different depending on the sesame cultivars. For example, varieties 8, 10,
and 12 were 50.02%, 46.14%, and 34% higher in the average sesamin values for the WD
treatment than the same varieties in the WW treatment. The average sesamin values in
varieties 13, 5, and 2 were greater (23.54%, 23.01%, and 19.74%, respectively) for the WD
group than for the WW group.

The average sesamin content in this study was comparable to values reported in a
previous Korean study [74], ranging from 0.97–3.76 mg/g under WD treatment and from
0.31–4.12 mg/g under WW treatment in eighteen sesame genotypes investigated. Other
studies attributed the variation in the average sesamin ranges to different seedcoat colors
and irrigation regimes [46]. For example, a study on ten Iranian genotypes found that
the average sesamin values were higher in dark-colored sesame seeds subjected to WW
treatment (1.67–3.05 mg/g; average of 3.45 mg/g) than those same genotypes subjected to
WD treatment (0.49–2.47 mg/g; average of 2.68 mg/g).

2.3.2. Sesamolin

The average sesamolin content (Figure 6) varied significantly amongst the eleven lines,
ranging from 0.46–1.67 mg/g in the whole seeds, with significant differences between
varieties and irrigation treatments (two-way ANOVA; F = 43.71, p < 0.05).
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Figure 6. Average sesamolin content (mg/g) of sesame seed from different varieties, separated
by water deficient and well-watered treatments. Note: ANOVA testing (p < 0.05) was based on
HPLC data. Tukey’s HSD average separation was used to distinguish between different varieties
and two different irrigation treatments. Varieties with the same lowercase letter on the bars are
not significantly different, p < 0.05. Abbreviations: WD, water-deficient irrigation treatment; WW,
well-watered irrigation treatment. Analyses were performed in duplicate for each sample.
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There was a significant difference amongst the average sesamolin values between
varieties, which ranged from 0.71–1.67 mg/g under WD treatment and 0.46–1.25 mg/g
under WW treatment (two-way ANOVA; F = 429.97, p < 0.05). In addition, there was
a significant interaction between varieties and water treatments in the sesamolin levels
(two-way ANOVA; F = 116.73, p < 0.05), (Figure 6).

Among the eleven genotypes analyzed, the highest average sesamolin content was
observed again in variety 2 (1.67 mg/g) under WD treatment, followed by variety 2 under
WW treatment (1.25 mg/g) and variety 1 under WD treatment (1.21 mg/g) (Figure 6). The
lowest average sesamolin value was found in variety 13 under WW treatment (0.46 mg/g)
(Figure 6).

Compared to the sesamin content, the effect of WD treatment was generally more
evident in sesamolin content across almost all sesame genotypes, except in variety 7,
which showed no significant differences in sesamolin content between the two irrigation
treatments (WD and WW). The average sesamolin content was 33.5% higher in the WD
treatment compared to the WW treatment (Figure 6). Similarly, 36% of the samples (varieties
2, 1, 5, and 7) in the WD treatment exhibited a sesamolin content higher than 1.0 mg/g,
whilst only 9% of the samples (variety 2) had a sesamolin value greater than 1.0 mg/g
under WW treatment.

Nevertheless, the response to water stress did differ depending on the cultivar. Most
of the sesame varieties had higher average sesamolin values under the WD treatment than
in the WW treatment, with prominent differences in varieties 1 (52.5%), 10 (45%), 8 (43%),
13 (39%), and 4 (35%). Only variety 7 had no significant difference in the average sesamolin
content between the two irrigation treatments (WD and WW), with values of 1.08 mg/g
and 0.94 mg/g, respectively.

Previous authors such as Wang et al. [75], Dossa et al. [76], and Dar et al. [60] compared
the amount of lignans in differently colored sesame seeds (white, yellow, brown, and
black) across a large number of accessions. These authors found that white sesame seeds
had higher levels of lignans than the other sesame genotypes. Likewise Shi et al. [77],
Dar et al. [60], Muthulakshmi et al. [78], and Kim et al. [74] found that black-colored seeds
contained larger quantities of sesamin and sesamolin contents. Dar et al. [79] reported
an average sesamolin content of 1.56–3.28 mg/g in black sesame, slightly higher than the
range of 0.46–1.67 mg/g found in the present study. Again, this difference may be due to
genotypic variation or different environmental conditions.

There is also limited previous research on the influence of irrigation treatments on the
phytochemical composition of sesame seeds, particularly with respect to lignans. Several
studies have reported a slight increase in the average sesamin content under water-deficit
treatment [2,74,80]. However, ref. [76] reported no significant variation in the sesamolin
content of ten African sesame genotypes under water stress.

The primary cause behind the wide variations in lignan content is likely induced
during irrigation deficit conditions, in which there is an adjustment of the phenylpropanoid
biosynthetic pathway [59,81]. Water deficit influences several crucial genes responsible
for encoding essential enzymes in the phenylpropanoid pathway, leading to increased
production of various bioactive compounds to protect the plant from unfavourable envi-
ronmental conditions [25,59]. While acknowledging the necessity for additional research
in this domain, this study tentatively proposes that inducing water deficit may represent
a viable strategy for increasing lignan content in sesame seeds; however, a broader range
of genotypes should be examined to fully understand the effects of different irrigation
regimes on the phytochemical composition in sesame seeds.

2.4. FAME Analysis by GC–MS in Sesame Seeds

Sesame seeds are recognized for their diverse fatty acid compositions, with notable
constituents including linoleic acid, oleic acid, palmitic acid, and stearic acid [3,10,41,82–86].
Nine fatty acids were more prevalent in all the eleven ground sesame varieties under both
WD and WW irrigation treatments, as indicated in Figure 7. The fatty acid profiles of
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the eleven black sesame varieties are categorized based on carbon saturation levels into
saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated
fatty acids (PUFA).
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Figure 7. Average fatty acid content (mg/g) of sesame seeds from different varieties, categorized
by water deficient and well-watered treatments. Note: ANOVA testing was based on GC–MS data
(p < 0.05). Tukey’s HSD average separation was used to distinguish between two different irrigation
treatments. Abbreviations: AVG: average; WD, water-deficient irrigation treatment; WW, well-
watered irrigation treatment; C16:0, palmitic acid; C17:0, margaric acid; C18:0, stearic acid; C18:1,
oleic acid; C18:2, linoleic acid; C18:3, a-linolenic acid; C20:0, arachidic acid; C22:0, behenic acid.
Analyses were performed in duplicate for each sample.

The composition of these fatty acids in sesame seeds varies with the seed variety and
environmental factors such as soil type, weather, and growing conditions [3,60,87,88]. The
SFAs, such as palmitic acid (C16:0), margaric acid (C17:0), stearic acid (C18:0), arachidic
acid (C20:0), and behenic acid (C22:0), were present in all the black sesame varieties. The
MUFAs, like oleic acid (C18:1) and cis-11-eicosenoic (C20:1), were also detected across all
varieties. Additionally, PUFAs such as linoleic acid (C18:2) and α-linolenic acid (C18:3;
cis-9,12,15) were identified.

The SFA profile of sesame seeds, particularly palmitic acid (C16:0) and stearic acid
(C18:0), showed notable differences based on irrigation treatment. Palmitic and stearic acid
levels were lower in the WD treatment (13.34 ± 2.49 and 6.56 ± 1.10 (mg/g)) compared to
the WW treatment (15.11 ± 3.07 and 7.35 ± 1.25 (mg/g) of seed). Significant differences
(two-way ANOVA; p < 0.05) in the levels of various SFAs were observed among sesame
varieties under both irrigation treatments. Specifically, palmitic acid, stearic acid, arachidic
acid, and behenic acid exhibited significant differences, ranging from 9.00–21.93 (F = 9.75,
p < 0.05), 4.63–10.06 (F = 8.39, p < 0.05), 1.54–2.14 (F = 9.75, p < 0.05), and 1.30–1.43 (F = 11.00,
p < 0.05) mg/g, respectively. However, no significant difference (two-way ANOVA; F = 1.03,
p > 0.05) was observed in margaric acid levels under both treatments, ranging between 0.50
and 0.56 mg/g. Furthermore, the major SFA content varied significantly among sesame
genotypes and irrigation treatments. For example, higher palmitic acid and stearic acid
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contents were observed in the WW treatment (11.44–21.93 mg/g and 5.73–10.03 mg/g,
respectively) compared to the WD treatment (9.00 to 16.73 mg/g and 4.63 to 8.0.7 mg/g,
respectively), indicating a greater influence of WW treatment on major SFA levels.

Figure 8 illustrates the total saturated fatty acids (Total SFA content) derived from
each field-grown sample, categorized by varety and irrigation condition. Variety 2 had
higher average total MUFAs than all other varieties for WW and had the second highest
average total MUFAs after variety 17 (Figure 9). Only variety 8 had a statistical difference
between WD and WW, with WW having a higher value.
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The average MUFAs, specifically oleic acid (C18:1) and cis-11-eicosenoic acid (C20:1),
responded differently to the irrigation treatments. Oleic acid showed a significant difference
(F = 8.90, p < 0.05), ranging from 27.38 to 63.91 mg/g, compared to cis-11-eicosenoic acid
(F = 9.60, p < 0.05), which ranged from 0.85 to 1.05 mg/g. Varieties and irrigation treatments
significantly influenced the average MUFA levels. Oleic acid content ranged from 27.38
to 50.33 mg/g under WD treatment and from 34.78 to 63.91 mg/g under WW treatment.
The average cis-11-eicosenoic acid content was slightly lower under WD treatment (0.85
to 0.97 mg/g) than under WW treatment (0.88 to 1.05 mg/g). Variety 2 exhibited the
highest average oleic acid content (63.91 mg/g) under WW treatment, while variety 8 had
the lowest (27.38 mg/g) under WD treatment. These findings suggest that water stress
significantly affected oleic acid content in some genotypes, particularly varieties 2, 8, 4, and
5, while cis-11-Eicosenoic acid content was less influenced by water stress, as was observed
in varieties 2, 12, and 5.
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Figure 10 displays the total polyunsaturated fatty acid (Total PUFA) content in field-
grown samples, categorized by variety and irrigation. Generally, most genotypes under WD
treatment showed slightly lower total PUFA levels compared to WW treatment. Varieties
1, 5, 7, 10, 13, and 17 exhibited consistent total PUFA contents across both treatments
(Figure 10).

The average linoleic acid content differed significantly among the eleven lines (two-
way ANOVA; F = 10.04, p < 0.05), ranging from 48.67 to 55.6 mg/g. There were notable dif-
ferences between varieties and irrigation treatments (two-way ANOVA; F = 10.46, p < 0.05).
Under WD treatment, linoleic acid ranged from 30.69 to 64.35 mg/g, lower than under
the WW treatment (40.35 to 84.46 mg/g). However, the average α-linolenic acid content
showed significant differences between irrigation treatments (two-way ANOVA; F = 1.75,
p > 0.05), averaging 1.04 ± 0.09 and 1.06 ± 0.10 mg/g.

Among the eleven genotypes, variety 2 exhibited the highest average linoleic acid
content (84.46 mg/g) under WW treatment, followed by variety 18 (66.22 mg/g) under WW
treatment and variety 2 under WD treatment (64.35 mg/g). The lowest average linoleic
acid value was found in variety 8 under WD treatment (30.69 mg/g). Meanwhile, average
α-linolenic acid values were greater in the WW treatment for varieties 2 (7%), 4 (4.5%), 8
(4%), and 5 (3%) compared to the same varieties in the WD treatment. However, varieties 1
and 17 showed a marginal increase of around 2% in their average α-linolenic acid values
under WD treatment compared to the WW treatment.
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Figure 10. Average total polyunsaturated fatty acid (PUFA) content (mg/g) of different varieties of
sesame seed, separated by water deficient and well-watered treatments. Note: ANOVA testing was
based on GC–MS data (p < 0.05). Tukey’s HSD average separation was used to distinguish between
different varieties and two different irrigation treatments. Varieties with the same lowercase letters
on the bars are not significantly different, p < 0.05. Abbreviations: AVG: average; Total PUFA, total
polyunsaturated fatty acids; WD, water-deficient irrigation treatment; WW, well-watered irrigation
treatment. Analyses were performed in duplicate for each sample.

Based on the results, different irrigation regimes significantly influenced the fatty
acid composition of the eleven black sesame varieties. Some varieties showed better
performance in maintaining higher levels of unsaturated fatty acids and lower levels of
saturated fatty acids under water-deficient conditions. For instance, variety 8 exhibited
the lowest average saturated fatty acids under WD treatment, while varieties 13, 5, and
4 showed moderate ranges of unsaturated fatty acids and the second lowest average
of saturated fatty acids under the same treatment. Conversely, varieties 2 and 18 had
the highest average linoleic acid contents under WW treatment, indicating potential for
cultivation under water-deficient conditions. However, further research is needed to fully
assess their cultivation potential, considering factors like genetics, growing conditions, and
plant architecture [60,75,76,89].

Previous studies [2,35,46,74,77,79,80,89] have shown that the concentration of oleic
acid and linoleic acid in sesame seeds is affected by various factors, including water stress,
climate, storage, and growing conditions. For instance, a study in Korea observed differ-
ences in UFA contents among eighteen genotypes under different irrigation regimes [74].
These genotypes presented differences in oleic acid and linoleic acid contents, with a wider
range under WD treatment (from 40.3–45.3 mg/g and 40.9–46.1 mg/g, respectively) com-
pared to WW treatment (from 41.0–44.3 mg/g and 42.4–46.2 mg/g, respectively) conditions.
In Iran, Khorami et al. [90] found decreased unsaturated fatty acid and increased saturated
fatty acid levels in a hybrid sesame genotype under different water stress levels. They
observed a reduction in oleic acid from 42.4% (WW) to 40.6% (WD) and a drop in linoleic
acid from 30.2% (WW) to 29.5% (WD). However, palmitic acid remained unaffected, while
stearic acid increased. In Turkey, Ozkan et al. [91] reported that as water deficit severity
increased, oleic acid decreased from 44.21 to 42.18 mg/g, while linoleic acid levels varied
among genotypes, indicating genotype-dependent responses to water deficiency.
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This study revealed varying responses in fatty acid composition among the eleven
black sesame varieties under different irrigation regimes. Genotypes maintaining higher
unsaturated fatty acid and lower saturated fatty acid levels under water deficiency are
of significant interest due to their potential health benefits [50]. These health benefits
are supported by a Σ PUFA/Σ SFA ratio exceeding 0.45 [92–94] and a ratio of 5~10:1 for
ω-6/ω-3 PUFA, recommended by health organizations to mitigate cardiovascular diseases
and other chronic conditions [93,94]. All field-grown sesame samples achieved this ratio,
ranging from 1.86 to 2.34. Additionally, the ω-6/ω-3 PUFA ratio varied from 33.7 to 65.5,
with lower ratios observed in specific varieties under water deficit conditions, suggesting
their potential for further investigation and cultivation.

2.5. Correlation Analysis of Bioactive Compounds in Sesame Seeds

Pearson correlation analysis was performed to explore relationships between phyto-
chemical analytes in ground sesame extracts. A correlogram (Figure 11) was generated,
where correlation coefficients were interpreted: negative values denote negative linear
correlations, positive values denote positive linear correlations; 0 indicates no linear corre-
lation, 0–0.3 signifies weak linear correlation, 0.3–0.7 indicates moderate linear correlation,
and 0.7–1 indicates a strong correlation [95].
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The correlation analysis revealed negative relationships between fatty acids and some
antioxidant activity assays. The TPC, CUPRAC, and FRAP were not significantly correlated
with any of the fatty acids, and only TPC and FRAP showed a moderate positive association
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with one another (r = 0.6, p < 0.05). (Zhou and Yu [96] found significant correlations among
CUPRAC, FRAP, and total phenolics in cauliflower genotypes, with moderate positive
associations between CUPRAC and FRAP (r = 0.71), CUPRAC and TPC (r = 0.470), and
FRAP and TPC (0.504). These correlations were attributed to higher TPC values, possibly
due to other individual compounds acting as binding agents. The varying results obtained
from different techniques for assessing antioxidant activity suggest the need for further
exploration using alternative analytical methods.

Again, no significant correlations were found between FRAP or CUPRAC and the
major lignans (sesamin and sesamolin); however, TPC showed a moderate positive correla-
tion with sesamin (r = 0.42, p < 0.05) and sesamolin (r = 0.54, p < 0.05). Previous studies
have shown minimal antioxidative effectiveness of lignans like sesamin and sesamolin
in traditional in vitro evaluations [97], but they can become potent antioxidants through
in vivo metabolic alterations. Recently, Ruslan et al. [61] observed a significant negative
correlation (r = −0.976, p < 0.01) between TPC and EC50 FRAP in sesame seed extracts.
The authors attributed these results to increased TPC values found in sesame extracts,
with higher values in dark-colored than in light-colored extracts. Moreover, a more recent
report [98], claimed significant correlations between FRAP and TPC (r = 0.708, p < 0.01),
together with other correlations between minor compounds. These findings suggest that
the total phenolics may contribute minimally to the overall antioxidant activity, possibly
due to synergistic interactions among various phenolic compounds and the major phenolics.
Furthermore, CUPRAC and FRAP assays specifically measure unique compounds and
functional groups, indicating that the antioxidants present in sesame extracts may not
effectively reduce oxidants (ferric and cupric) in the present study [99].

Similarly, the strong correlation between sesamin and sesamolin in this study was
consistent with findings from previous studies [60,100]. However, the correlation coefficient
between sesamin and sesamolin in this study (r = 0.95, p < 0.05) was higher than those
reported in studies conducted in Texas [100] and India [60], with correlation coefficients
of r = 0.69 and r = 0.55 (p < 0.05), respectively. These differences could be attributed to
genetic variations and the physical attributes of the sesame genotypes used in the respective
studies. Additionally, associations between sesamin and sesamolin across different seed
colors have demonstrated wider disparities, with stronger correlations observed in darker
sesame genotypes (r = 0.77) compared to lighter-seed varieties (r = 0.23) [75].

On the other hand, the relationships between palmitic and linoleic acids, palmitic
and arachidic acids, and stearic and arachidic acids showed significant, strong positive
correlations in this study (Figure 11), which aligns with results from a previous study [86].
Voelker and Kinney [101] suggest that the synthesis of 18-carbon fatty acids involves a
crucial elongation step of 16-carbon acyl chains, followed by desaturation. When this
process is impaired, leading to deficiencies, the levels of 18-carbon fatty acids decrease
while palmitic acid content increases in plant tissues. This deficiency likely contributes to
the observed correlations. These insights indicate the potential to manipulate palmitic acid
levels in sesame varieties through recurrent selection for oleic acid content.

Contrastingly, previous findings in Indian sesame genotypes [60] reported weak
negative relationships between certain fatty acids. Notably, these authors found strong
negative correlation coefficients between oleic and linoleic acids (r = −0.96, p < 0.01), while
a more moderate negative relationship was observed between palmitic and stearic acids
(r = −0.44, p < 0.01) and palmitic and arachidic acids (r = −0.40, p < 0.01). All these opposing
associations in Indian sesame genotypes suggest a combined influence of environmental
conditions and inherent genetic characteristics [60,102] and contrasted with the strong
positive correlations between these fatty acids observed in the present study. In addition
to deficit irrigation stress, factors such as genetics, growing location, and environmental
variations could significantly contribute to the variations in fatty acid composition in
sesame seeds, as evidenced by other studies [60,100].

This study highlights intricate relationships among phytochemicals in sesame seed
extracts, suggesting varying influences on total antioxidant capacity. Thus, it strongly
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advocates further investigation into key bioactives and alternative analytical protocols to
better understand correlations between assays and antioxidant activity across different
sesame genotypes [103].

3. Materials and Methods
3.1. Field Trial Information

Field trials were conducted at Alton Downs, Queensland using a two-factorial ran-
domized complete block design (RCBD) experiment employing genotype and irrigation
treatments. Eleven cultivars of black sesame were assessed for their response to available
moisture (well-watered and water-deficient). Each cultivar had three field replications
under well-watered conditions (100% crop evapotranspiration demand, ETC) and three
replications under water-deficient conditions (50% ETC). These irrigation treatments are
referred to as water-deficient (WD) for 50% ETC and well-watered (WW) for 100% ETC.

Sowing took place in mid-November 2019, with plants maintained at 100% and
50% ETC until the late bloom stage. Harvesting occurred in mid-March 2020 at Alton
Downs, Queensland [104]. Photographs of the crop at different growth stages are shown
in Figure 12.
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After harvest, the three field replicates of each line (cultivar) were manually cleaned
and air-dried until pods reached complete dryness. Threshing was the next step, using
different sieve sizes [104]. Subsamples of 250 g were oven-dried (60 ◦C for 24 h) to a
constant moisture content ranging from 2.6–5.7%.

3.2. Sesame Seed Material

The black sesame seed samples from the field trials were sourced from an Australian
seed technology company “AgriVentis Technologies Pty Ltd.”. (Sydney, Australia) (https://
www.agriventistechnologies.com.au/; accessed 5 Mar 2024). Full details of these genotypes
are provided in Table 1; throughout the manuscript they are referred to by their respective
variety numbers (1, 2, 4, 5, 7, 8, 10, 12, 13, 17, and 18) for simplicity. It should be noted that
some of these genotypes are not currently commercially grown.

Table 1. Details of the sesame genotypes investigated in this study. Data are sourced from [104].

No. Genotype
Code

Genotype
Name

Branching
Habit Maturity Irrigated Yield

(kg/ha) 1
Rainfed
Yield (kg/ha)

Rank
(Irrigated)

Rank
(Rainfed) Difference

1 AVTBS#1 Third Gen
Moriah

Multiple
branching Mid-maturing 2228 1562 10 8 2

2 AVTBS#2 Black eyes Multiple
branching Late maturing 1275 1086 15 15 0

4 AVTBS#4 Black patch Multiple
branching Early maturing 2449 2024 3 1 2

5 AVTBS#5 Black prince Multiple
branching Early maturing 2276 1194 8 14 −6

7 AVTBS#7 Hammond Multiple
branching Mid-maturing 1950 1520 13 9 4

8 AVTBS#8 Joshua IV Multiple
branching Early maturing 2340 1565 7 7 0

10 AVTBS#10 Konji-SV Multiple
branching Late maturing 2157 1420 11 12 −1

12 AVTBS#12 Morriah–B Multiple
branching Early maturing 2244 1695 9 5 4

13 AVTBS#13 Black Watch *
A.T. Moriah

Multiple
branching Mid-maturing 2348 1913 6 3 3

17 AVTBS#17 NA/1 Multiple
branching Mid-maturing 2549 1738 1 4 −3

18 AVTBS#18 A.T. Moriarty Multiple
branching Early maturing 2415 1955 4 2 2

1 Yields are hand-harvested yields.

Samples (50 g) from each seed type were ground into a fine powder using an electric
grinder (Breville BCG200 Coffee and Spice Grinder) following established protocols [105].
The powdered samples were then stored in sterile screw cap containers in darkness at room
temperature until further analysis.

3.3. Reagents and Chemicals

All reagents used were of analytical grade and purchased from Chem-Supply Australia
Scientific (Port Adelaide, SA, Australia). Hexane (>97% purity) was purchased from
Sigma-Aldrich Australia. Anhydrous sodium sulphate was purchased from May and
Baker Ltd. (Shrewsbury, Berkshire, UK). Dichloromethane (DCM) was purchased from
Merck Australia (Sydney, Australia). Unless otherwise specified, all dilutions and assay
preparations were performed using Milli-Q® water (Merck Millipore; Bayswater, Victoria,
Australia) and stored at 4 ◦C until required for use.

3.4. Sesame Standards

Individual lignan standards, including sesamin (>98% purity) and sesamolin (>98%
purity) were obtained from CSA Scientific (Port Adelaide, SA, Australia). Stock standard
solutions (1 mg/mL of sesamin and sesamolin) were prepared in methanol individually
and then stored in the dark at 4 ◦C. A reference standard solution for food analysis, namely,
Restek Food Industry FAME Mix (REST-35077), was obtained from Shimadzu (Rydalmere,
Sydney NSA, Australia). Stock standard solution (1 mg/mL of FAME mix) was prepared
in DCM.

https://www.agriventistechnologies.com.au/
https://www.agriventistechnologies.com.au/
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3.5. Moisture Content

The moisture content of the ground sesame seeds (3 g) was determined as the mass
percentage following the method described by Grabe [106]. A single sample from all
three replicates of each variety and treatment were weighed onto pre-weighed watch
glasses and dried in a Memmert oven (UM400 with natural convection, V: 220 V–50 Hz,
Power: 1400 W, Germany) set at 120 ± 1.0 ◦C until a constant weight was achieved, typically
for 18 min.

3.6. Sample Extraction

The methanolic extraction protocol previously developed by our laboratory [107] was
used in this study. Approximately 2 g of ground sesame seed powder underwent duplicate
extractions. Firstly, 7 mL of 90% v/v aqueous methanol was added to the powdered and
mixed for 60 min on an end-over-end rotary mixer (RM4, Ratek, Australia) at 50 rpm.
After centrifugation at 1000 g for 10 min (Heraeus X1 Multifuge, Thermo Fisher Scientific,
Scoresby, Australia), the supernatant was collected. Another extraction was performed
on the pellet with 7 mL of 90% methanol, followed by mixing for 20 min. The combined
supernatants were vacuum filtered through a 0.45 µm Advantec® filter paper (Advantec
MFS; Dublin, CA, USA) and adjusted to 14 mL with 90% methanol. The methanolic extracts
were stored at 4 ◦C in the dark until further analyses. Extractions and subsequent analysis
of TPC, FRAP, and CUPRAC were performed in duplicate.

3.7. Total Phenolic Content (TPC)

Total phenolics were determined through a modified Folin–Ciocalteu method devel-
oped by Singleton and Rossi [108]. In this assay, 2 mL of a 1:10 diluted aqueous Folin–
Ciocalteu (FC) reagent was combined with 400 µL of the sample extract and allowed to
incubate in darkness at room temperature for 10 min. Subsequently, 2 mL of 7.5% w/v
aqueous sodium carbonate solution was added, and the samples were vortexed for 30 s
before being incubated in a covered water bath at 40 ◦C for 30 min. Absorbance readings at
760 nm were measured with a UV spectrometer (Thermo Scientific Genesys 10S UV–Vis,
MA, USA), using Milli-Q® water as the blank. The TPC was calculated based on the
equivalent absorbance of gallic acid in the range of 20–120 mg/L (r2 = 0.999). Results were
expressed as milligrams of gallic acid equivalents (GAE) per 100 g of dry sample weight
(mg GAE/100 g DW).

3.8. Ferric-Reducing Antioxidant Power (FRAP)

The ferric-reducing antioxidant power (FRAP) assay, developed by Benzie and Strain [109],
was conducted to assess the total antioxidant capacity of sesame seed varieties. The FRAP
reagent was freshly prepared by combining 300 mM sodium acetate buffer (pH 3.56),
20 mM aqueous ferric chloride, and 10 mM 2,4,6-tripyridyl-S-triazine (TPTZ) in a ratio of
10:1:1, respectively. Pre-equilibrated (37 ◦C) FRAP reagent (3 mL) and 100 µL of sample
extract were briefly vortexed and incubated in a covered water bath at 37 ◦C for 4 min.
Absorbances were measured at 593 nm using a UV spectrometer (Thermo Scientific Genesys
10S UV–Vis). The FRAP values were calculated based on the equivalent absorbance of
Trolox across the range of 10–175 mg/L (r2 = 0.999). Results were expressed as milligrams
of Trolox equivalents (TE) per 100 g of dry sample weight (mg TE/100 g DW).

3.9. Cupric Ion-Reducing Antioxidant Capacity (CUPRAC)

The CUPRAC assay, adapted from Apak et al. [99], was performed by combining 1 mL
of 10 mM aqueous copper (II) chloride, 1 mL of 1 M aqueous ammonium acetate, 1 mL
of Milli-Q® water, and 1 mL of freshly prepared 7.5 mM ethanolic neocuproine solution
with 100 µL of the sample extract. After vortexing for 30 s, the mixture was incubated in a
covered water bath at 50 ◦C for 30 min. Absorbances were measured at 450 nm using a UV
spectrophotometer (Thermo Scientific Genesys 10S UV–Vis). The CUPRAC values were
calculated based on the equivalent absorbance of Trolox (TE) in ethanol solution across
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the range of 50–600 mg/L (r2 = 0.997). Results were expressed as milligrams of Trolox
equivalents (TE) per 100 g of dry sample weight (mg TE/100 g DW).

3.10. Determination of Lignans in Sesame Seeds Using HPLC Analysis

Sesamin and sesamolin in each methanolic sample extract (in duplicate) were quanti-
fied via HPLC analysis, following a modified protocol by Wu et al. [110]. Samples were
filtered through a polytetrafluoroethylene (PTFE) membrane (Livingstone 0.45 µm) be-
fore injection into an Agilent 1100 HPLC system equipped with a G1313A autosampler,
G1322A vacuum degasser, G1311A quaternary pump, and G1365B multi-wavelength de-
tector module. An Agilent Eclipse XDB-C18 reversed-phase column (150 × 4.6 mm; 5 µm
particle size) with a 10 µL injection volume was used. Isocratic elution with deionized
water and methanol (20:80 v/v) 0.8 mL/min was applied. The total run time was 10 min,
with a post-run flush time of 3 min. Retention times for sesamin and sesamolin (3.9 and
4.6 min, respectively) were verified with authentic standards (Figure 13). External standard
solutions for both analytes (r2 = 0.999) in methanol (0–300 mg/L) were injected into the
HPLC-DAD system to assess linearity between concentration, peak areas at 287 nm, and
retention time values.
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3.11. Preparation of Fatty Acid Methyl Esters (FAME) from Sesame Seed

The transesterification of sesame fatty acids followed a modified sodium methoxide
protocol as reported by O’Fallon et al. [111]. For FAME synthesis, 50 mg of each powdered
sesame seed (in duplicate) was mixed with 2 mL of 0.4 M sodium methoxide and incubated
in a water bath at 55 ◦C for 1.5 h with periodic shaking every 20 min. Saturated sodium
bicarbonate solution (2 mL) and 3 mL of hexane were then added to the tube and vortexed
briefly. After centrifugation (Heraeus X1 Multifuge, Thermo Fisher Scientific, Melbourne,
Victoria, Australia) at 1000 g for 10 min, the upper hexane layer containing the FAME
solution was removed using a glass Pasteur pipette into a 16 × 125 mm screw-cap Pyrex
culture tube. Subsequently, 1 mL of Milli-Q® water was added to the tube, and the lower
aqueous layer was discarded. This process was repeated twice more. Sodium sulphate
(0.5 g) was then added to each tube containing the washed FAME solution, followed by
brief vortex-mixing. The FAME solution was transferred into a 2 mL plastic tube using a
3 mL disposable syringe (Livingstone–Luer slip tip), filtered through a 0.45 mm porous
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filter (PTFE membrane), diluted with hexane (1:9), and stored in amber GC glass vials at
4 ◦C until required for GC–MS analysis.

3.12. FAME Analysis by Gas Chromatography–Mass Spectrometry (GC–MS) of Sesame
Seed Extracts

Fatty acid methyl esters were quantified using a GC–MS protocol based on previous
studies [112] with slight modifications. Analysis was performed on a single quadrupole
Shimadzu QP2010 Plus system equipped with an autoinjector/autosampler (AOC-20i/s)
and a Restek FAMEWAX column (30 m × 0.32 mm I.D. × 0.25 µm thickness). The injection
volume was 0.5 µL in split mode (split ratio = 10) at an injection temperature of 250 ◦C.
Helium served as the carrier gas at a column flow rate of 2 mL/min. The oven temperature
began at 195 ◦C, ramping at 5 ◦C/min to reach 240 ◦C, where it remained for 1 min. The
total run time was 10 min, with the ion source and mass spectrometer interface both held
at 230 ◦C.

For exploratory purposes, FAMEs were identified via scanning mode, with data
acquisition from 50–500 m/z. Identification was based on comparison of mass spectra with
the NIST14 and NIST14s libraries (https://chemdata.nist.gov/; accessed on 14 April 2023).

Consequently, FAMEs were confirmed by matching retention times with those of
authentic external standards from the Restek Food Industry FAME Mix (REST-35077). For
quantitative analysis, a selected ion monitoring (SIM) method was developed targeting 30
of the 37 f FAMEs in the Restek Food Industry FAME Mix.

External standard calibration was performed to quantify each individual FAME
present in the sample.

3.13. Data Analysis

Statistical analysis was performed in R Studio, running version R-4.1.2 (R Core Team,
2021) (9). Data were presented as averages ±1 σ, with the samples categorized by variety
and irrigation treatments (WD and WW) for factorial analysis. Two-way analysis of variance
(ANOVA) was performed to evaluate the effects of variety and irrigation on phenolics,
antioxidant activity, lignans, and fatty acids. Tukey’s adjustment was applied for comparing
treatment averages, with outliers removed using Grubb’s test (p < 0.05). Results are reported
on a dry weight (DW) basis. Pearson’s correlation coefficients were calculated to assess
significant correlations (p < 0.05; two-tailed) amongst phenolics, antioxidant activities,
lignans, and fatty acids.

4. Conclusions

The present study provides strong evidence that Australian-grown black sesame seeds
are a promising source of bioactive compounds which can offer potential health benefits.
The different analyses carried out on field-grown sesame samples indicate that specific
varieties responded positively to water deficit (WD) conditions, showing increased levels
of TPC, FRAP, CUPRAC, and lignans (i.e., sesamin and sesamolin). Varieties better adapted
to water deficit were 1, 2, 4, 5, 7, 8, 10, and 12, which recorded the most representative TPC
values. With regard to the total antioxidant activity, varieties 1, 4, 7, and 12 showed the
best response to water deficit, as per their recorded increased FRAP values. Meanwhile,
varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC values, with no significant
variations between the irrigation regimes applied in field trials. Moreover, the lignan
contents (sesamin and sesamolin) were greater in varieties 1, 2, 5, and 8 and responded
better to the water deficit regime in these varieties. In particular, variety 10 also showed
increased sesamolin content between the two irrigation conditions. Furthermore, a balanced
ratio of unsaturated and saturated fatty acids (Σ UFA/Σ SFA ratio) was observed in all
eleven field-grown sesame samples, with the ratios ranging from 1.86–2.34. This is well
above the target value of 0.45 and is indicative of optimal health benefits. Meanwhile, the
ω-6/ω-3 PUFA ratio varied from 33.7–65.5, with lower ratios in varieties 2, 4, 5, 8, and

https://chemdata.nist.gov/
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18 under the water deficit environment. The recorded sesame traits could be potentially
cultivated as the most promising lines for widespread adoption.

This study provides valuable information on the nutritional value of Australian-
grown black sesame seed, which may be useful for agricultural stakeholders such as food
technologists and nutritionists. It also highlights that future investigations should consider
other crucial factors such as post-harvesting conditions, environmental conditions, plant
architecture, and genetic factors. Conducting comprehensive investigations will help
identify the most promising cultivars for long-term nutritional quality and ensure that the
health benefits of Australian-grown black sesame seeds are maximized.
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