Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = series vacuum gap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8134 KiB  
Article
Simulations and Analyses of the Influence of a Vacuum Back-Pressure Environment on Laser Ablation Thrusters
by Ming Wen, Baosheng Du, Haichao Cui and Jianhui Han
Aerospace 2025, 12(5), 445; https://doi.org/10.3390/aerospace12050445 - 19 May 2025
Viewed by 375
Abstract
The study of thruster plume flow fields can yield a series of thruster performance parameters such as thrust effect, spacecraft plume contamination, etc., which is of great significance for thruster development. The paper presents a physical simulation model of a laser thruster under [...] Read more.
The study of thruster plume flow fields can yield a series of thruster performance parameters such as thrust effect, spacecraft plume contamination, etc., which is of great significance for thruster development. The paper presents a physical simulation model of a laser thruster under a vacuum back-pressure environment. Through the finite difference method and the Direct Simulation Monte Carlo (DSMC) calculation method, based on the actual laser ablation thruster structure and working mode, the changes in the flow-field distribution in the laser thruster plume under different vacuum back-pressure conditions are obtained. The influence of different vacuum back-pressure conditions on the plume density, pressure, temperature, and velocity field of the thruster was verified through physical experiments, and the evolution of the plume flow field during the laser ablation of a polyamide glycidyl ether (GAP) solid target material was analyzed in detail. The simulation results are in good agreement with the test results, and the deviation between the simulated data and the test data from 0 to 3000 ns is less than 10.4%. This study presents a foundation for a prediction model of laser ablation thrusters under vacuum environments and provides an important reference for ground tests and in-orbit applications of satellite laser propulsion systems. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

12 pages, 2248 KiB  
Article
Research on Conduction Delay Time Characteristics of Double-Gap Surface Flashover Triggered Multistage Vacuum Switch
by Ming Zhang, Minfu Liao, Liang Bu, Gang Lu, Longfei Yu, Yifan Sun and Xiongying Duan
Energies 2024, 17(18), 4656; https://doi.org/10.3390/en17184656 - 18 Sep 2024
Cited by 1 | Viewed by 941
Abstract
Due to the insulation saturation effect of a vacuum gap, the series connection is the main method to improve the capability of the triggered vacuum switch (STVS) to withstand voltage. In this paper, a double-gap surface flashover triggered multistage vacuum switch (DMVS) is [...] Read more.
Due to the insulation saturation effect of a vacuum gap, the series connection is the main method to improve the capability of the triggered vacuum switch (STVS) to withstand voltage. In this paper, a double-gap surface flashover triggered multistage vacuum switch (DMVS) is constructed based on a removable vacuum chamber. The DMVS consists of a surface flashover triggered vacuum gap (STG) and a self-breakdown vacuum gap (SBG) in series. The trend in DMVS conduction delay time under different operating parameters and gap distances is firstly measured through experiments, and then the conduction delay time characteristics of DMVS and single-gap STVS compared. The test results show that increasing the trigger current and operating voltage and decreasing the gap distance of each vacuum gap can optimize the conduction delay time of the DMVS, but the voltage division ratio between the STG and the SBG has no obvious influence on the conduction delay time. The comparison result between the DMVS and the STVS shows that increasing the number of series gaps increases the conduction delay time but, for a certain vacuum gap distance, DMVS exhibits superior conduction delay time characteristics compared to STVS. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 2671 KiB  
Article
A Composite-Type MEMS Pirani Gauge for Wide Range and High Accuracy
by Shuo Chen, Liuhaodong Feng, Song Guo, Yucheng Ji, Shuwen Zeng, Xinlin Peng, Yang Xu, Tianbao Hu, Zhenyu Wu and Shinan Wang
Sensors 2023, 23(3), 1276; https://doi.org/10.3390/s23031276 - 22 Jan 2023
Cited by 8 | Viewed by 3704
Abstract
To achieve a wide range and high accuracy detection of the vacuum level, for example, in an encapsulated vacuum microcavity, a composite-type MEMS Pirani gauge has been designed and fabricated. The Pirani gauge consists of two gauges of different sizes connected in series, [...] Read more.
To achieve a wide range and high accuracy detection of the vacuum level, for example, in an encapsulated vacuum microcavity, a composite-type MEMS Pirani gauge has been designed and fabricated. The Pirani gauge consists of two gauges of different sizes connected in series, with one gauge having a larger heat-sensitive area and a larger air gap for extending the lower measurable limit of pressure (i.e., the high vacuum end) and the other gauge having a smaller heat-sensitive area and a smaller air gap for extending the upper measurable limit. The high-resistivity titanium metal was chosen as the thermistor; SiNx was chosen as the dielectric layer, considering the factors relevant to simulation and manufacturing. By simulation using COMSOL Multiphysics and NI Multisim, a range of measurement of 2 × 10−2 to 2 × 105 Pa and a sensitivity of 52.4 mV/lgPa were obtained in an N2 environment. The performance of the fabricated Pirani gauge was evaluated by using an in-house made vacuum test system. In the test, the actual points of measurement range from 6.6 × 10−2 to 1.12 × 105 Pa, and the highest sensitivity is up to 457.6 mV/lgPa. The experimental results are better in the range of measurement, sensitivity, and accuracy than the simulation results. The Pirani gauge proposed in this study is simple in structure, easy to manufacture, and suitable for integration with other MEMS devices in a microcavity to monitor the vacuum level therein. Full article
(This article belongs to the Special Issue Chip-Based MEMS Platforms)
Show Figures

Figure 1

12 pages, 2921 KiB  
Article
Study of Optical and Electrical Properties of RF-Sputtered ZnSe/ZnTe Heterojunctions for Sensing Applications
by Ana-Maria Panaitescu and Vlad-Andrei Antohe
Coatings 2023, 13(1), 208; https://doi.org/10.3390/coatings13010208 - 16 Jan 2023
Cited by 5 | Viewed by 2923
Abstract
Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm gold (Au) thin film was deposited by [...] Read more.
Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm gold (Au) thin film was deposited by Thermal Vacuum Evaporation (TVE) representing the back-contact, followed by the successive RF-MS deposition of ZnTe, ZnSe, Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) thin films, finally resulting in the Au/ZnTe/ZnSe/ZnO/ITO sub-micrometric “substrate”-type configuration. Next, the optical characterization by Ultraviolet-Visible (UV-VIS) spectroscopy was performed on the component thin films, and their optical band gap values were determined. The electrical measurements in the dark and under illumination at different light intensities were subsequently performed. The Current–Voltage (I–V) characteristics in the dark are nonlinear with a relatively high asymmetry, following the modified Shockley–Read equation. From their analysis, the series resistance, shunt resistance, the ideality factor and saturation current were determined with high accuracy. It is worth noting that the action spectrum of the structure is shifted to short wavelengths. A sensibility test for the 420–500 nm range was performed while changing the intensity of the incident light from 100 mW/cm2 down to 10 mW/cm2 and measuring the photocurrent. The obtained results provided sufficient information to consider the present sub-micrometric photodiodes based on n-ZnSe/p-ZnTe heterojunctions to be more suitable for the UV domain, demonstrating their potential for integration within UV photodetectors relying on environmentally-friendly materials. Full article
(This article belongs to the Special Issue New Trends in Functional Materials and Devices)
Show Figures

Figure 1

10 pages, 2270 KiB  
Article
Explicit and Hybrid Solvent Models for Estimates of Parameters Relevant to the Reduction Potential of Ethylene Carbonate
by Andrzej Eilmes, Piotr Kubisiak and Piotr Wróbel
Int. J. Mol. Sci. 2022, 23(24), 15590; https://doi.org/10.3390/ijms232415590 - 9 Dec 2022
Cited by 3 | Viewed by 1969
Abstract
Using ethylene carbonate as a sample solvent, we investigated two molecular parameters used to estimate the reduction potential of the solvent: electron affinity, and the energy of the lowest unoccupied molecular orbital (LUMO). The results showed that the values of these parameters are [...] Read more.
Using ethylene carbonate as a sample solvent, we investigated two molecular parameters used to estimate the reduction potential of the solvent: electron affinity, and the energy of the lowest unoccupied molecular orbital (LUMO). The results showed that the values of these parameters are inconsistent for a single ethylene carbonate molecule in vacuum calculations and in the continuous effective solvent. We performed a series of calculations employing explicit or hybrid (explicit/continuous) solvent models for aggregates of solvent molecules or solvated salt ions. In the hybrid solvent model, values of the two estimates extrapolated to an infinite system size converged to one common value, whereas the difference of 1 eV was calculated in the purely explicit solvent. The values of the gap between the highest occupied molecular orbital (HOMO) and the LUMO obtained in the hybrid model were significantly larger than those resulting from the explicit solvent calculations. We related these differences to the differences in frontier orbitals and changes of electron density obtained in the two solvent models. In the hybrid solvent model, the location of the additional electron in the reduced system usually corresponds to the LUMO orbital of the oxidized system. The presence of salt ions in the solvent affects the extrapolated values of the electron affinity and LUMO energy. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
Synthesis and Characterization of New Imidazole Phthalocyanine for Photodegradation of Micro-Organic Pollutants from Sea Water
by Bassem Jamoussi, Radhouane Chakroun, Abdelmajid Timoumi and Khaled Essalah
Catalysts 2020, 10(8), 906; https://doi.org/10.3390/catal10080906 - 8 Aug 2020
Cited by 19 | Viewed by 4520
Abstract
In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz) (M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational [...] Read more.
In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz) (M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational frequencies have been determined by DFT method using B3LYP theory level at 6-311G (d, p) and sdd basis set. The gap of energy level between work function (WF) of ITO and LUMO of PdPc(Imdz) was 1.53 eV and represents the highest barrier beneficial to electron injection compared to WF of ZnPc(Imz), HgPc(Imz), and CdPc(Imz). Furthermore, the PdPc(Imdz) thin films on indium tin oxide (ITO) glass were prepared by spin coating and vacuum evaporation technique, and were characterized by X-ray diffraction (XRD), surface electron morphology (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. The photocatalytic activity of the ITO/glass supported thin films and degradation rates of chlorinated phenols in synthetic seawater, under visible light irradiation were optimized to achieve conversions of 80–90%. Experiments on synthetic seawater samples showed that the chloride-specific increase in photodegradation could be attributed to photochemically generated chloride radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet PdPc(Imz) (3PdPc(Imz)*), reactive oxygen species]. The major 2,3,4,5-Tetrachlorophenol degradation intermediates identified by gas chromatography-mass spectrometry (GC/MS) were 2,3,5-Trichlorophenol, 3,5-dichlorophenol, dichlorodihydroxy-benzene and 3,4,5-trichlorocatechol. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

17 pages, 5379 KiB  
Article
Experimental Investigation of the Prestrike Characteristics of a Double-Break Vacuum Circuit Breaker under DC Voltages
by Yun Geng, Xiaofei Yao, Jinlong Dong, Xue Liu, Yingsan Geng, Zhiyuan Liu, Jing Peng and Ke Wang
Energies 2020, 13(12), 3217; https://doi.org/10.3390/en13123217 - 20 Jun 2020
Cited by 15 | Viewed by 3498
Abstract
The prestrike phenomenon in vacuum circuit breakers (VCBs) is interesting but complicated. Previous studies mainly focus on the prestrike phenomenon in single-break VCBs. However, experimental work on prestrike characteristics of double-break VCBs cannot be found in literature. This paper aims to experimentally determine [...] Read more.
The prestrike phenomenon in vacuum circuit breakers (VCBs) is interesting but complicated. Previous studies mainly focus on the prestrike phenomenon in single-break VCBs. However, experimental work on prestrike characteristics of double-break VCBs cannot be found in literature. This paper aims to experimentally determine the probabilistic characteristics of prestrike gaps in a double-break VCB consisting of two commercial vacuum interrupters (VIs) in series under direct current (DC) voltages. As a benchmark, single-break prestrike gaps were measured by short-circuiting one of the VIs in a double break. The experimental results show that the 50% prestrike gap d50 of each VI in a double break, which is calculated with the complementary Weibull distribution, was significantly reduced by 25% to 72.7% compared with that in a single break. Due to the voltage-sharing effect in the double-break VCB, scatters in prestrike gaps of each VI in a double break was smaller than that in a single break. However, without the sharing-voltage effect, d50 of the low-voltage side in the double break was 65% higher than that of the same VI in the single break, which could be caused by the asynchronous property of mechanical actuators, the difference of the inherent prestrike characteristics of each VI and the unequal voltage-sharing ratio of VIs. Full article
(This article belongs to the Special Issue Environmental Compatible Circuit Breaker Technologies)
Show Figures

Figure 1

18 pages, 4205 KiB  
Article
Compositional, Optical and Electrical Characteristics of SiOx Thin Films Deposited by Reactive Pulsed DC Magnetron Sputtering
by Joaquim O. Carneiro, Filipe Machado, Luis Rebouta, Mikhail I. Vasilevskiy, Senen Lanceros-Méndez, Vasco Teixeira, Manuel F. Costa and Anura P. Samantilleke
Coatings 2019, 9(8), 468; https://doi.org/10.3390/coatings9080468 - 25 Jul 2019
Cited by 24 | Viewed by 5465
Abstract
The influence of O2 flow rate on the compositional, optical and electrical characteristics of silicon oxide (SiOx) thin films (x < 2) were studied in this work. The SiOx thin films were obtained by pulsed direct current (DC) [...] Read more.
The influence of O2 flow rate on the compositional, optical and electrical characteristics of silicon oxide (SiOx) thin films (x < 2) were studied in this work. The SiOx thin films were obtained by pulsed direct current (DC) magnetron sputtering (PMS) onto n-type Si wafers (and also on glass substrates) at a vacuum of 3 × 10−3 Pa. Rutherford backscattering spectrometry (RBS) was used to check the compositional elements of deposited films and its oxidized states were analysed via Fourier-transform infrared (FTIR) spectroscopy. The optical properties of as-deposited SiOx thin films were investigated from transmittance measurements at room temperature in the wavelength range of 250–800 nm. The obtained data reveal that the Urbach energy (a measure of the band tail extension, Eu) decreased from about 523 to 172 meV as the rate of oxygen gas flow increased. On the contrary, the optical energy band-gap (Eg) increased from 3.9 to 4.2 eV. Conduction and valance band positions (relative to the normal hydrogen electrode) were also evaluated. The observed behavior is probably associated with the degree of disorder and defects presented in the as-deposited SiOx thin films, probably due to the presence of newly inserted oxidized OnSiHy species resulting from some contamination with water vapor desorbed from the walls of the deposition vacuum chamber. After deposition of a gold top electrode, the electrical characteristics of the fabricated Au/SiOx/n-Si system (i.e., a metal/insulator/semiconductor structure—MIS) were studied via characteristic I-V curves and their dependence upon the O2 flow rate are reported. It was observed that the Au/SiOx/n-Si structure behaves like a Schottky-diode exhibiting a very good diode rectifying performance with a rectification ratio of at least 300 and up to 104, which refers to the samples produced with the lower and higher O2 flow rates, respectively. It was also found that the O2 flow rate influences the rectifying performance of the SiOx/n-structures since both the diode ideality factor, n, and the diode series-resistance, RS decreases with the increase of O2 content, possibly reflecting a closer approximation to a full stoichiometric condition. Full article
Show Figures

Figure 1

Back to TopTop