Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = sensorial deficit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8826 KiB  
Article
Comparative Analysis of Composition, Texture, and Sensory Attributes of Commercial Forms of Plant-Based Cheese Analogue Products Available on the Irish Market
by Farhan Ali, James A. O’Mahony, Maurice G. O’Sullivan and Joseph P. Kerry
Foods 2025, 14(15), 2701; https://doi.org/10.3390/foods14152701 - 31 Jul 2025
Viewed by 157
Abstract
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing [...] Read more.
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing them against conventional cheddar and processed dairy cheeses. A total of 16 cheese products were selected from Irish retail outlets, comprising five block-style plant-based analogues, seven slice-style analogues, two cheddar samples, and two processed cheese samples. Results showed that plant-based cheese analogues had significantly lower protein content (0.1–1.7 g/100 g) than cheddar (25 g/100 g) and processed cheese (12.9–18.2 g/100 g) and lacked a continuous protein matrix, being instead stabilized largely by solid fats, starch, and hydrocolloids. While cheddar showed the highest hardness, some plant-based cheeses achieved comparable hardness using texturizing agents but still demonstrated lower tan δmax values, indicating inferior melting behaviour. Thermograms of differential scanning calorimetry presented a consistent single peak at ~20 °C across most vegan-based variants, unlike the dual-phase melting transitions observed in dairy cheeses. Sensory analysis further highlighted strong negative associations between PBCAs and consumer-relevant attributes such as flavour, texture, and overall acceptability. By integrating structural, functional, and sensory findings, this study identifies key formulation and performance deficits across cheese formats and provides direction for targeted improvements in next-generation PBCA product development. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

13 pages, 405 KiB  
Review
Insular Cortex—Biology and Its Role in Psychiatric Disorders: A Narrative Review
by Darko Laketić, Nikola M. Stojanović, Isidora Laketić, Milorad Pavlović, Bojan Milosević, Ana Starčević and Slobodan Kapor
Brain Sci. 2025, 15(8), 793; https://doi.org/10.3390/brainsci15080793 - 25 Jul 2025
Viewed by 357
Abstract
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated [...] Read more.
The insular cortex has emerged as a key region implicated in a wide array of cognitive, emotional, and sensory processes. The anterior part of the insula (AIC) is central to emotional awareness, decision-making, and interoception, while the posterior insula (PIC) is more associated with somatosensory processing. The insula acts as a functional hub within the salience network and integrates homeostatic, affective, and cognitive information; thus, its role in different mental disorders seems to be prominent. Altered structure and connectivity of the insular cortex are evident in several psychiatric conditions. In schizophrenia, reductions in insular volume—especially on the left—correlate with hallucinations, emotional dysregulation, and cognitive deficits. Bipolar and major depressive disorders exhibit AIC volume loss and aberrant connectivity patterns linked to impaired affect regulation and interoceptive awareness. Anxiety disorders show functional hyperactivity of the insula, especially in response to fear-inducing stimuli, though findings on structural changes are mixed. Overall, growing evidence underscores the insular cortex’s central role in psychiatric pathophysiology and highlights its potential as a target for future diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

20 pages, 2062 KiB  
Review
Neuroplasticity-Based Approaches to Sensory Processing Alterations in Autism Spectrum Disorder
by Maria Suprunowicz, Julia Bogucka, Natalia Szczerbińska, Stefan Modzelewski, Aleksandra Julia Oracz, Beata Konarzewska and Napoleon Waszkiewicz
Int. J. Mol. Sci. 2025, 26(15), 7102; https://doi.org/10.3390/ijms26157102 - 23 Jul 2025
Viewed by 346
Abstract
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the [...] Read more.
Sensory dysregulation represents a core challenge in autism spectrum disorder (ASD), affecting perception, behavior, and adaptive functioning. The brain’s ability to reorganize, known as neuroplasticity, serves as the basic principle for therapeutic interventions targeting these deficits. Neuroanatomical mechanisms include altered connectivity in the sensory and visual cortices, as well as in the limbic system and amygdala, while imbalances of neurotransmitters, in particular glutamate and gamma-aminobutyric acid (GABA), contribute to atypical sensory processing. Traditional therapies used in sensory integration are based on the principles of neuroplasticity. Increasingly, new treatments use this knowledge, and modern therapies such as neurofeedback, transcranial stimulation, and immersive virtual environments are promising in modulating neuronal circuits. However, further research is needed to optimize interventions and confirm long-term effectiveness. This review discusses the role of neuroplasticity in the etiopathogenesis of sensory integration deficits in autism spectrum disorder. The neuroanatomical and neurotransmitter basis of impaired perception of sensory stimuli is considered, and traditional and recent therapies for sensory integration are discussed. Full article
(This article belongs to the Special Issue Molecular Investigations in Neurodevelopmental Disorders)
Show Figures

Figure 1

18 pages, 493 KiB  
Review
Nerve at Risk: A Narrative Review of Surgical Nerve Injuries in Urological Practice
by Gaia Colalillo, Simona Ippoliti, Vincenzo M. Altieri, Pietro Saldutto, Riccardo Galli and Anastasios D. Asimakopoulos
Surgeries 2025, 6(3), 58; https://doi.org/10.3390/surgeries6030058 - 18 Jul 2025
Viewed by 319
Abstract
Background: Iatrogenic nerve injuries (NIs) are an under-recognized complication of urological surgery. Though less common than vascular or organ damage, they may cause lasting sensory and motor deficits, significantly affecting patients’ quality of life. With increasing complexity in pelvic procedures, a consolidated understanding [...] Read more.
Background: Iatrogenic nerve injuries (NIs) are an under-recognized complication of urological surgery. Though less common than vascular or organ damage, they may cause lasting sensory and motor deficits, significantly affecting patients’ quality of life. With increasing complexity in pelvic procedures, a consolidated understanding of nerve injuries is essential. Purpose: This review aims to synthesize current knowledge regarding peripheral and autonomic NIs in urological surgery, highlighting mechanisms of injury, associated procedures, preventative strategies, and treatment options. Scope: Focused on common urological interventions such as radical prostatectomy, cystectomy, pelvic lymphadenectomy, and reconstructive techniques, the review explores injuries from positional compression, traction, and intraoperative transection to their surgical management. Key Findings: The review categorizes nerve injuries into crush and transection types and details intraoperative signs and repair techniques. Skeletonization of nerves, avoidance of energy devices near neural structures, and prompt end-to-end anastomosis using 7-0 polypropylene are central to management. Adoption of novel sutureless nerve coaptation devices have also been described with promising outcomes. Early repair offers a better prognosis. New intraoperative technologies like NeuroSAFE during robotic-assisted procedures may enhance nerve preservation. Conclusion: Iatrogenic NIs, although rare, are clinically significant and often preventable. Prompt intraoperative recognition and repair are critical. Further research is warranted to develop standardized preventative protocols and enhance intraoperative nerve monitoring. A multidisciplinary approach, extended across surgical specialties, could improve outcomes and guide timely treatment of nerve injuries. Full article
Show Figures

Figure 1

14 pages, 1350 KiB  
Protocol
Study Protocol: Investigating the Effects of Transcranial Pulse Stimulation in Parkinson’s Disease
by Anna Carolyna Gianlorenço, Lucas Camargo, Elayne Borges Fernandes, Elly Pichardo, Huan Jui Yeh, Dilana Hazer-Rau, Rafael Storz and Felipe Fregni
Bioengineering 2025, 12(7), 773; https://doi.org/10.3390/bioengineering12070773 - 17 Jul 2025
Viewed by 502
Abstract
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder marked by motor and non-motor symptoms, including cognitive decline, mood disturbances, and sensory deficits. While dopaminergic treatments remain the gold standard, they present long-term side effects and limited impact on non-motor symptoms. Transcranial Pulse Stimulation [...] Read more.
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder marked by motor and non-motor symptoms, including cognitive decline, mood disturbances, and sensory deficits. While dopaminergic treatments remain the gold standard, they present long-term side effects and limited impact on non-motor symptoms. Transcranial Pulse Stimulation (TPS) has emerged as a promising adjunct therapy in neurological and psychiatric conditions, but its effects in PD remain underexplored. This open-label, single-arm trial protocol involves 14 PD participants and outlines a personalized 12-session treatment approach combined with a homogeneously distributed TPS intervention among patients with PD. The approach addresses the subject’s most prominent symptoms, as identified through validated clinical assessments, encompassing domains related to both motor and non-motor symptoms. Over 2.5 months, besides the intervention sessions, the 14 participants will undergo an MRI brain scan, a baseline assessment, a post-treatment assessment, and a 1-month follow-up assessment. The study aims to determine whether personalized TPS is a feasible and safe intervention and whether it improves PD symptoms across multiple functional domains. This study represents the first structured attempt to evaluate a multimodal, personalized TPS intervention in patients with PD. It addresses gaps in current treatment approaches and may support the development of future strategies for integrated, symptom-targeted neuromodulation. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

26 pages, 2981 KiB  
Article
Adult-Onset Deletion of CDKL5 in Forebrain Glutamatergic Neurons Impairs Synaptic Integrity and Behavior in Mice
by Nicola Mottolese, Feliciana Iannibelli, Giulia Candini, Federica Trebbi, Manuela Loi, Angelica Marina Bove, Giorgio Medici, Zhi-Qi Xiong, Elisabetta Ciani and Stefania Trazzi
Int. J. Mol. Sci. 2025, 26(14), 6626; https://doi.org/10.3390/ijms26146626 - 10 Jul 2025
Viewed by 266
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental condition characterized by early-onset, intractable epilepsy, motor and cognitive impairment, and autistic-like features. Although constitutive Cdkl5 knockout (KO) models have established the importance of CDKL5 during early brain development, CDKL5’s role [...] Read more.
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental condition characterized by early-onset, intractable epilepsy, motor and cognitive impairment, and autistic-like features. Although constitutive Cdkl5 knockout (KO) models have established the importance of CDKL5 during early brain development, CDKL5’s role in the mature brain remains poorly defined. Here, we employed an inducible, conditional KO model in which Cdkl5 is selectively deleted from forebrain glutamatergic neurons in adult mice to investigate the postdevelopmental functions of CDKL5. Using a total of 48 adult male mice, including Cdkl5flox/Y(Cre+) (n = 30) and Cdkl5flox/Y(Cre) littermate controls (n = 18), we found that tamoxifen-induced Cdkl5 deletion led to prominent behavioral impairments, including deficits in motor coordination, reduced sociability, and impaired hippocampus-dependent spatial memory, while behavioral features such as hyperactivity and stereotypic jumping, typically present in germline KOs, were absent. Sensory functions, including olfaction and pain perception, were also preserved. At the cellular level, the loss of Cdkl5 resulted in a marked reduction in excitatory synapse density in the cortex and hippocampus, accompanied by increased numbers of immature dendritic spines and decreased mature spines. Neuronal loss in the hippocampal CA1 region and selective microglial activation in the cortex were also observed. These alterations closely resemble those seen in constitutive KO models, underscoring the ongoing requirement for CDKL5 expression in excitatory neurons for maintaining synaptic integrity and neuronal homeostasis in the adult brain. This study underscores the importance of temporally controlled models for investigating the mechanisms underlying CDD pathophysiology in the adult brain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 2463 KiB  
Article
Effects of Rope Therapy on Social Attention and Temperament Traits in Autistic Children
by Mi Zhou, Kevin Hung, Marco Chun-Cheong Wong, Tony Keng-Tou Chau, Benny Wai-Lun Lam, Cecilia Yuen-Ching Chu, Jialiang Gu, Jiawen Dai and Daniel Hung-Kay Chow
Children 2025, 12(7), 881; https://doi.org/10.3390/children12070881 - 3 Jul 2025
Viewed by 353
Abstract
Background: Autistic children experience social communication challenges that are often linked to reduced social motivation and attention. However, there is currently no effective intervention to improve social attention in autistic children. Objective: This study compared the effects of rope therapy (RT), a novel [...] Read more.
Background: Autistic children experience social communication challenges that are often linked to reduced social motivation and attention. However, there is currently no effective intervention to improve social attention in autistic children. Objective: This study compared the effects of rope therapy (RT), a novel intervention, with traditional sensory integration therapy (SIT) on social attention and temperament traits in autistic children. Methods: A two-arm randomized controlled trial was conducted in which participants were randomly assigned to RT (n = 14) and SIT (n = 12) groups. Social attention was assessed using eye-tracking parameters, and temperament trait changes were measured using the Taylor–Johnson Temperament Analysis (T-JTA) scale. Results: Both groups showed significant improvements in social attention over time (p < 0.05). Although the RT group demonstrated numerically greater improvements in social attention compared to the transitional SIT group, most of the between-group differences were not statistically significant. Additionally, the RT group showed significant reductions in anxiety and emotional repression temperament traits (p < 0.05). Conclusions: RT exhibits promise as an effective intervention for improving social attention and temperament trait patterns in autistic children. Further research is required to confirm the findings of this study and explore the long-term effects of RT. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Graphical abstract

13 pages, 542 KiB  
Review
Physical Therapy Interventions for Gait and Balance in Charcot-Marie-Tooth Disease: A Scoping Review
by Roberto Tedeschi, Danilo Donati and Federica Giorgi
Life 2025, 15(7), 1036; https://doi.org/10.3390/life15071036 - 29 Jun 2025
Viewed by 505
Abstract
Background: This scoping review aims to map and summarise physical therapy interventions specifically targeting gait and balance in individuals with Charcot-Marie-Tooth disease (CMT), highlighting commonly applied strategies, methodological limitations, and clinical implications. Charcot-Marie-Tooth disease (CMT) is a hereditary neuropathy characterised by progressive [...] Read more.
Background: This scoping review aims to map and summarise physical therapy interventions specifically targeting gait and balance in individuals with Charcot-Marie-Tooth disease (CMT), highlighting commonly applied strategies, methodological limitations, and clinical implications. Charcot-Marie-Tooth disease (CMT) is a hereditary neuropathy characterised by progressive motor and sensory impairment, often resulting in reduced mobility, muscle weakness, balance deficits, and fatigue. Although pharmacological options remain limited, rehabilitation is increasingly recognised as a key component of disease management. However, the scope, type, and effectiveness of rehabilitative interventions in CMT remain poorly mapped. Methods: This scoping review was conducted in accordance with the Joanna Briggs Institute (JBI) methodology and the PRISMA-ScR guidelines. Five databases (PubMed, Cochrane, PEDro, Scopus, and Web of Science) were systematically searched up to March 2024. Studies were eligible if they involved participants with CMT undergoing rehabilitation interventions aimed at improving functional outcomes. Data extraction focused on study characteristics, methods, outcome measures, and results. Results: Eleven studies met inclusion criteria, comprising case reports, cohort studies, and two randomised controlled trials. Interventions included aerobic training, strength and balance exercises, videogame-based home programmes, and multidisciplinary rehabilitation. Most studies reported improvements in walking capacity (e.g., 6MWT, 10MWT), postural balance (e.g., BBS), and lower limb strength (e.g., MRC, dynamometry). Some also showed positive changes in fatigue and quality of life, though data were limited. Methodological heterogeneity and small sample sizes limited comparability and generalisability. Conclusions: Rehabilitation appears to yield meaningful improvements in key functional domains in people with CMT. Tailored, multimodal interventions show promise, though long-term benefits remain underexplored. Future research should adopt standardised protocols and outcome measures to better define best practices and optimise patient care. Full article
(This article belongs to the Special Issue Physical Rehabilitation for Musculoskeletal Disorders)
Show Figures

Figure 1

14 pages, 2327 KiB  
Article
Safety and Efficacy Evaluation of Ultrasound Aspirators in Intramedullary Spinal Cord Tumors Surgery: An Experimental Study on a Swine Model
by Mauro Palmieri, Alessandro Pesce, Mattia Capobianco, Massimo Corsini, Giorgia Iovannitti, Fulvio Aloj, Giuseppa Zancana, Vincenzo Esposito, Maurizio Salvati, Antonio Santoro, Gianpaolo Cantore and Alessandro Frati
Brain Sci. 2025, 15(7), 670; https://doi.org/10.3390/brainsci15070670 - 21 Jun 2025
Viewed by 395
Abstract
Introduction: Intradural extramedullary and intramedullary spinal tumors are rare, complex to treat, and require advanced surgical techniques. Ultrasonic aspirators, commonly used for tumor removal, can cause sensory and motor deficits, including loss of motor evoked potentials (MEPs). This study aims to evaluate [...] Read more.
Introduction: Intradural extramedullary and intramedullary spinal tumors are rare, complex to treat, and require advanced surgical techniques. Ultrasonic aspirators, commonly used for tumor removal, can cause sensory and motor deficits, including loss of motor evoked potentials (MEPs). This study aims to evaluate the safety and efficacy of ultrasonic aspirators in intramedullary tumor surgery using a swine model, comparing different systems and techniques. Methods: Ten pigs underwent D1-D3 laminectomy and myelotomy, with adipose tissue simulating a tumor. The ultrasonic aspirators were tested under varying conditions (fragmentation power, suction, application time, and vibration mode). The primary endpoint is to evaluate the impact of the chosen variables on motor function damage. The secondary endpoints are histological evaluation of the type of damage caused by ultrasound aspirators and the effect of steroid drugs on MEPs’ impairment recovery. Results: Ultrasound aspirators can cause a significant MEP signal reduction when used in continuous mode, with fragmentation power >30 for more than 2 min (p < 0.001). Suction does not affect MEPs. When used in alternating/pulsatile mode, fragmentation power and application time do not affect MEPs. The two-way ANOVA analysis on the interaction between fragmentation power and application time in continuous mode did not demonstrate a significant interaction (p = 0.155). Time alone does not affect motor damage (p = 0.873). Betamethasone can restore MEPs’ signal after damage if administered immediately. Conclusions: Using ultrasonic aspirators in an animal model of intramedullary tumor surgery is safe. The main factor that resulted in the responsibility of motor function impairment is the fragmentation power. Full article
Show Figures

Figure 1

25 pages, 2023 KiB  
Article
Recovery and Protective Effect of Direct Transcutaneous Electrical Nerve Stimulation in the Treatment of Acute and Subacute Fibular Tunnel Syndrome
by Mustafa Al-Zamil, Inessa A. Minenko, Natalia A. Shnayder, Marina M. Petrova, Zarina M. Babochkina, Darya S. Kaskaeva, Vladimir G. Lim, Olga V. Khripunova, Irina P. Shurygina and Natalia P. Garganeeva
J. Clin. Med. 2025, 14(12), 4247; https://doi.org/10.3390/jcm14124247 - 14 Jun 2025
Viewed by 823
Abstract
Background: Previous studies have indicated that transcutaneous electrical nerve stimulation (TENS) is highly effective in improving the treatment of neuropathy and achieving maximum recovery in the shortest time. However, its effectiveness in the early stages of the disease has not been studied, and [...] Read more.
Background: Previous studies have indicated that transcutaneous electrical nerve stimulation (TENS) is highly effective in improving the treatment of neuropathy and achieving maximum recovery in the shortest time. However, its effectiveness in the early stages of the disease has not been studied, and no comparative analysis has been conducted between different modalities of TENS. Materials and Methods: This study included 82 patients with acute and subacute fibular tunnel (FT) syndrome lasting no more than 15 days. Patients were randomized into the following four groups depending on the modality of TENS used: sham TENS (20 patients), HF TENS (20 patients), LF TENS (21 patients), and a combined HF/LF TENS group (21 patients). Before treatment, immediately after treatment, and 3 months after the end of treatment patients were examined to determine the severity of hypoesthesia, motor deficit, and gait disturbance. Results: The reduction in hypoesthesia averaged after HF TENS, LF TENS, and sham TENS was 50.7% (p ≤ 0.01), 37.8 (p ≤ 0.01), and 11.4% (p > 0.05), respectively. The regression of motor deficit and gate disorders reached 61% after LF TENS (p ≤ 0.01), 6% after HF TENS (p > 0.05), and 6% (p > 0.05) after sham TENS. The combination of HF and LF TENS resulted in a 54.8% (p ≤ 0.01) reduction in hypoesthesia and 61.3% (p ≤ 0.01) regression of motor deficit, with a superior 30% (p ≤ 0.05) improvement in quality of life compared to separate use of HF and LF TENS. Conclusions: Early use of TENS in the treatment of FT syndrome turned out to be highly effective compared to sham TENS in reducing hypoesthesia, motor deficit, and gait disturbance. The analgesic effect and sensory recovery were higher after HF TENS. Motor and gait disturbances were reduced only after LF TENS, with evidence of prolonged regenerative and protective effect for at least 3 months after the end of treatment. The combination of HF TENS and LF TENS increases the therapeutic range of TENS with the achievement of the maximum positive effect of HF TENS and LF TENS after treatment and during the long-term period, which leads to a more pronounced improvement in the quality of life of patients with this pathology. Full article
Show Figures

Figure 1

20 pages, 1160 KiB  
Article
Linking Almond Yield and Quality to the Production System and Irrigation Strategy Considering the Plantation Age in a Mediterranean Semiarid Environment
by Abel Calderón-Pavón, Iván Francisco García-Tejero, Luis Noguera-Artiaga, Leontina Lipan, Esther Sendra, Francisca Hernández, Juan Francisco Herencia-Galán, Ángel Antonio Carbonell-Barrachina and Víctor Hugo Durán Zuazo
Agronomy 2025, 15(6), 1448; https://doi.org/10.3390/agronomy15061448 - 13 Jun 2025
Viewed by 449
Abstract
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and [...] Read more.
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and quality vary across different water regimes and production systems, or how tree age modulates crop responses to deficit irrigation and organic practices. This study examines the effects of regulated deficit irrigation (RDI) under organic (OPS) and conventional (CPS) production systems, analyzing the impact on nut quality (physical and chemical parameters) and its sensorial properties in an almond orchard during seasons in 2019 and 2023, when the trees were 3-years old and when they were close to their yield potential at 7-years old, respectively. The PS and irrigation strategy affected the nut quality, yield, and tree growth. The OPS and RDI methods accumulated season-dependent yield losses in both studied periods. The kernel weight under OPS was lower than CPS in 2019, with these differences being less evident in 2023. The highest antioxidant activity and total phenolic compound values were obtained with the OPS and RDI methods in 2019, whereas the sugar and organic acid contents showed improvements under the OPS and the RDI strategy during 2019 and 2023, respectively. Finally, significant improvements were observed in relation to the fatty acids profile for nuts harvested under OPS in both seasons, especially in the latter season with RDI. Thus, almond quality can be enhanced by the integration of both OPSs and RDI strategies, although these improvements are dependent on tree age. Full article
Show Figures

Figure 1

13 pages, 1912 KiB  
Article
Postural Balance in Italian Air Force Pilots: Development of Specific Normative Values
by Vincenzo Fiorillo, Barbara Martino, Valeria Castelli, Eliana Filipponi, Leonardo Braga, Alessandro Randolfi, Emanuele Garzia and Federica Di Berardino
Audiol. Res. 2025, 15(3), 70; https://doi.org/10.3390/audiolres15030070 - 12 Jun 2025
Viewed by 441
Abstract
Objectives: Assessing balance in highly trained individuals, such as military pilots, poses challenges, as deficits may be underestimated when compared to general population norms. To address this, several studies have proposed tailored databases providing reference values for specific populations. This study retrospectively [...] Read more.
Objectives: Assessing balance in highly trained individuals, such as military pilots, poses challenges, as deficits may be underestimated when compared to general population norms. To address this, several studies have proposed tailored databases providing reference values for specific populations. This study retrospectively analyzed balance characteristics in active-duty military pilots of the Italian Air Force. Methods: We enrolled 106 subjects split into two groups: 53 military pilots from the Italian Air Force and 53 civilians without flight experience or exposure to specific vestibular stimuli. All participants underwent ENT examinations with audiometric testing to exclude related pathologies, followed by a personal history collection. Subsequently, they completed the EquiTest protocol across six standard conditions. Results: Significant differences were observed between Army Aviators and Non-Aviators. The PREF variable showed the most consistent distinction, with military pilots demonstrating a superior performance (p < 0.01). Additionally, borderline differences were noted in Condition 6 of the equilibrium scores (p = 0.056), and in the Centre of Gravity (COG) analysis along the X-axis for Conditions 1 and 5 (p = 0.090), and for Condition 2 (p = 0.050). These findings suggest enhanced postural control strategies among Army Aviators under conditions of sensory conflict. Conclusions: These findings suggest that normative balance values specific to military pilots should be used when evaluating aviators recovering from balance deficits. Such tailored benchmarks can help determine the need for rehabilitation before returning to duty, ensuring optimal performance under demanding conditions. Further research is necessary to explore the underlying mechanisms responsible for these adaptations and to identify the specific stimuli that contribute to the enhanced balance capabilities observed in this highly trained population. Full article
Show Figures

Figure 1

14 pages, 559 KiB  
Review
Significance of Oral Care for Children with Autism Spectrum Disorder—A Narrative Literature Review
by Sirma Angelova, Desislava Konstantinova, Anna Nenova-Nogalcheva and Rouzha Pancheva
Children 2025, 12(6), 750; https://doi.org/10.3390/children12060750 - 9 Jun 2025
Viewed by 631
Abstract
Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition in children that typically involves challenges in cognition, behavior, and communication. While many children with ASD exhibit significant impairments in both verbal and non-verbal communication, the severity and nature of these difficulties can vary [...] Read more.
Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition in children that typically involves challenges in cognition, behavior, and communication. While many children with ASD exhibit significant impairments in both verbal and non-verbal communication, the severity and nature of these difficulties can vary widely. In addition to its impact on overall health, ASD also affects oral health, leading to increased vulnerability to dental disease. Aim: This narrative review aims to summarize key oral health challenges and care strategies for children with ASD, focusing on clinical risks, behavioral barriers, caregiver roles, and effective interventions. Materials and Methods: A comprehensive literature search was conducted using four databases—PubMed, Scopus, Web of Science, and Google Scholar—as well as relevant study registries where applicable. Peer-reviewed articles published in English between 2010 and 2024 were identified using keywords and their synonyms, such as autism spectrum disorder, children, oral care, dental practitioners, and parents. Studies were included based on relevance to oral health challenges and interventions in children diagnosed with ASD. Results: Children with ASD experience a range of sensory sensitivities, attention deficits, hyperactivity, and behavioral resistance, which significantly hinder the performance of adequate oral hygiene practices. These challenges contribute to a lack of effective dental prophylaxis and limited access to regular preventive care, ultimately resulting in poorer oral health outcomes and reduced oral health-related quality of life. Conclusion: Due to the multifaceted characteristics of ASD, children with this condition face significant barriers in accessing appropriate and individualized oral care. This increases their risks of developing oral health disorders, underscoring the need for coordinated efforts between caregivers and dental professionals to improve oral health outcomes in this vulnerable population. Full article
(This article belongs to the Section Pediatric Dentistry & Oral Medicine)
Show Figures

Figure 1

20 pages, 368 KiB  
Article
Sensory–Cognitive Profiles in Children with ADHD: Exploring Perceptual–Motor, Auditory, and Oculomotor Function
by Danjela Ibrahimi, Marcos Aviles, Rafael Rojas-Galván and Juvenal Rodríguez Reséndiz
Bioengineering 2025, 12(6), 621; https://doi.org/10.3390/bioengineering12060621 - 7 Jun 2025
Viewed by 1999
Abstract
Objective: This observational cross-sectional study aimed to comprehensively evaluate sensory–cognitive performance in children diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD), with a focus on auditory processing, visual–perceptual abilities, visual–motor integration, and oculomotor function. The study further examined how hyperactivity, age, and gender may influence these [...] Read more.
Objective: This observational cross-sectional study aimed to comprehensively evaluate sensory–cognitive performance in children diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD), with a focus on auditory processing, visual–perceptual abilities, visual–motor integration, and oculomotor function. The study further examined how hyperactivity, age, and gender may influence these domains. Methods: A total of 70 non-medicated children with clinically diagnosed ADHD (mean age = 9.1±2.4 years; 67.1% male), all with normal visual acuity, were assessed using four standardized instruments: the Test of Auditory Processing Skills, Third Edition (TAPS-3), the Test of Visual Perceptual Skills, Fourth Edition (TVPS-4), the Beery–Buktenica Developmental Test of Visual–Motor Integration, Sixth Edition (VMI-6), and the Developmental Eye Movement (DEM) Test. Statistical analyses included one sample and independent samples t-tests, one-way ANOVA, and Pearson correlation coefficients. Results: Participants demonstrated significantly above-average performance in auditory processing (TAPS-3: μ=108.4, std=7.8), average visual–perceptual abilities (TVPS-4: μ=100.9, std=7.2), slightly below-average visual–motor integration (VMI-6: μ=97.1, std=9.0), and marked deficits in oculomotor efficiency (DEM ratio: μ=87.3, std=18.1). Statistically significant differences were observed across these domains (t-values ranging from 2.9 to 7.2, p<0.01). Children with hyperactive-impulsive presentations exhibited lower horizontal DEM scores (μ=73.4, std=12.3) compared to inattentive counterparts (μ=82.9, std=16.2; p=0.009). Age and sex influenced specific subtest scores, with boys and children aged 8–9 years achieving higher outcomes in word memory (p=0.042) and visual discrimination (p=0.034), respectively. Moderate correlations were identified between auditory and visual–perceptual skills (r=0.32, p=0.007), and between visual–perceptual and oculomotor performance (r=0.25, p=0.035). Conclusions: The findings from this sample reveal a distinct sensory–cognitive profile in children with ADHD, characterized by relatively preserved auditory processing and pronounced oculomotor deficits. These results underscore the value of a multimodal assessment protocol that includes oculomotor and visual efficiency evaluations. The conclusions pertain specifically to the cohort studied and should not be generalized to all populations with ADHD without further validation. Full article
(This article belongs to the Special Issue Adaptive Neurostimulation: Innovative Strategies for Stimulation)
Show Figures

Figure 1

15 pages, 2154 KiB  
Article
Static and Dynamic Changes in Local Brain Connectivity in Unilateral Sudden Sensorineural Hearing Loss
by Junchao Zeng, Jing Li, Bo Liu, Qun Yu, Ziqiao Lei, Fan Yang, Mingyue Ding and Wenliang Fan
Bioengineering 2025, 12(6), 619; https://doi.org/10.3390/bioengineering12060619 - 5 Jun 2025
Viewed by 650
Abstract
Unilateral sudden sensorineural hearing loss (SSHL) presents substantial clinical challenges owing to its abrupt onset and multifactorial, poorly understood etiology. This study investigates the static and dynamic changes in local brain connectivity using regional homogeneity (ReHo) analyses in 102 SSHL patients and 73 [...] Read more.
Unilateral sudden sensorineural hearing loss (SSHL) presents substantial clinical challenges owing to its abrupt onset and multifactorial, poorly understood etiology. This study investigates the static and dynamic changes in local brain connectivity using regional homogeneity (ReHo) analyses in 102 SSHL patients and 73 healthy controls. A static ReHo analysis reveals pronounced disruptions in local synchronization within motor and cognitive-related brain regions in SSHL patients compared to controls. A dynamic ReHo analysis uncovers increased temporal variability, particularly in frontal regions, indicating potential adaptive neural plasticity to auditory deficits through enhanced neural plasticity. The correlation analyses further associate these neural changes with clinical parameters, highlighting the significant positive correlations between static ReHo in the left precentral gyrus and tinnitus severity (R = 0.39, p < 0.001), as well as the negative correlations between dynamic ReHo in the middle frontal gyrus and the duration of hearing loss (R = −0.35, p < 0.001). These findings underscore the complex interplay between static neural dysregulation and dynamic adaptive mechanisms in the pathophysiology of SSHL. Emphasizing dynamic metrics, our study provides a novel temporal perspective on how the brain reorganizes in response to acute sensory loss. Full article
Show Figures

Figure 1

Back to TopTop