Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = semiarid fruits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1640 KiB  
Article
Optimizing Citrus aurantifolia (Christm. Swingle) Production Through Integrated Irrigation and Growth Regulation Strategies
by Adriana Celi Soto, Diana Pincay Sánchez, Laura Pincay Sánchez, Luis Alcívar Zambrano, Ángel Sabando Zambrano, Cristhian Vega Ponce, George Cedeño García, Luis Saltos Rezabala, Liliana Corozo Quiñónez, Francisco Arteaga Alcívar, Edisson Cuenca Cuenca, Ramón Jaimez Arellano, Galo Cedeño García and Margarita Delgado Demera
Agronomy 2025, 15(8), 1853; https://doi.org/10.3390/agronomy15081853 - 31 Jul 2025
Viewed by 235
Abstract
Optimizing irrigation and the targeted use of plant growth regulators are key strategies to improve productivity in citrus systems under water-limited conditions. This study evaluated the effects of three irrigation levels (4.44, 5.18, and 7.77 mm day−1) combined with variable doses [...] Read more.
Optimizing irrigation and the targeted use of plant growth regulators are key strategies to improve productivity in citrus systems under water-limited conditions. This study evaluated the effects of three irrigation levels (4.44, 5.18, and 7.77 mm day−1) combined with variable doses of naphthaleneacetic acid (NAA) and gibberellic acid (GA3) on physiological and productive responses in Citrus aurantiifolia. The treatment with 7.77 mm irrigation and moderate doses of NAA (100 mg L−1) and GA3 (80 mg L−1) increased yield by 38% (6.2 kg/plant), and it enhanced photosystem II photochemical efficiency (Fv/Fm = 0.82), chlorophyll index (SPAD = 62), and fruit weight by 15%. In contrast, high hormone doses under water deficit reduced leaf water potential and impaired physiological performance, leading to lower productivity. These findings support the combined use of regulated deficit irrigation and hormonal biostimulation as a sustainable strategy to enhance key lime yield and resource efficiency in semi-arid environments. Full article
Show Figures

Figure 1

20 pages, 5790 KiB  
Article
Irrigation and Planting Density Effects on Apple–Peanut Intercropping System
by Feiyang Yu, Ruoshui Wang, Xueying Zhang, Huiying Zheng, Lisha Wang, Sanzheng Jin, Qingqing Ren, Bohao Zhang and Chaolong Xing
Agronomy 2025, 15(8), 1798; https://doi.org/10.3390/agronomy15081798 - 25 Jul 2025
Viewed by 329
Abstract
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development [...] Read more.
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development in the region. This study took the apple–peanut intercropping system as the research object (apple variety: ‘Yanfu 8’; peanut variety: ‘Huayu 38’), setting three peanut planting densities (D1: 27,500 plants/ha; D2: 18,333 plants/ha; D3: 10,833 plants/ha) and two water regulation measures—W1 (irrigation upper limit at 85% of field capacity, FC) and W2 (65% FC), with non-irrigated controls (CK) at different planting densities for comparison. This study systematically analyzed the synergistic regulation effects of intercropping density and water management on system water use and comprehensive benefits. Results showed that medium planting density combined with medium irrigation (W2D2 treatment) could maximize intercropping advantages, effectively improving the intercropping system’s soil water content (SWC), yield (GY), and water use efficiency (WUE). This research provides a theoretical basis for precision irrigation in fruit–crop intercropping systems in semi-arid regions. However, based on the significant water-saving and yield-increasing effects observed in the current experimental year, follow-up studies should verify its stability through multi-year fixed-position observation data. Full article
Show Figures

Figure 1

18 pages, 3744 KiB  
Article
Effect of Plant Growth Regulators on the Physiological Response and Yield of Cucumis melo var. inodorus Under Different Salinity Levels in a Controlled Environment
by Dayane Mércia Ribeiro Silva, Francisca Zildélia da Silva, Isabelly Cristina da Silva Marques, Eduardo Santana Aires, Francisco Gilvan Borges Ferreira Freitas Júnior, Fernanda Nery Vargens, Vinicius Alexandre Ávila dos Santos, João Domingos Rodrigues and Elizabeth Orika Ono
Horticulturae 2025, 11(7), 861; https://doi.org/10.3390/horticulturae11070861 - 21 Jul 2025
Viewed by 301
Abstract
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected [...] Read more.
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected environment to simulate Brazil’s semi-arid conditions. The experiment was conducted using a completely randomized block design, in a 4 × 3 factorial scheme, with four salinity levels (0, 2, 4, and 6 dS m−1) and three doses of the bioregulator, Stimulate® (0%, 100%, and 150% of the recommended dose), with six weekly applications. The physiological variables (chlorophyll a fluorescence and gas exchange) and biochemical parameters (antioxidant enzyme activity and lipid peroxidation) were evaluated at 28 and 42 days after transplanting, and the agronomic traits (fresh fruit mass, physical attributes, and post-harvest quality) were evaluated at the end of the experiment. The results indicated that salinity impaired the physiological and productive performance of the plants, especially at higher levels (4 and 6 dS m−1), causing oxidative stress, reduced photosynthesis, and decreased yield. However, the application of the bioregulator at the 100% dose mitigated the effects of salt stress under moderate salinity (2 dS m−1), promoting higher CO2 assimilation rates of up to 31.5%, better water-use efficiency, and reduced lipid peroxidation. In addition, the fruits showed a greater mass of up to 66%, thicker pulp, and higher soluble solids (> 10 °Brix) content, making them suitable for sale in the market. The 150% dose did not provide additional benefits and, in some cases, resulted in inhibitory effects. It is concluded that the application of Stimulate® at the recommended dose is effective in mitigating the effects of moderate salinity, up to ~3 dS m−1, in yellow melon crops; however, its effectiveness is limited under high salinity conditions, requiring the use of complementary strategies. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

18 pages, 3104 KiB  
Article
Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality
by Weslley Bruno Belo de Souza, Geovani Soares de Lima, Lauriane Almeida dos Anjos Soares, Mirandy dos Santos Dias, Brencarla de Medeiros Lima, Larissa Fernanda Souza Santos, Valeska Karolini Nunes Oliveira, Rafaela Aparecida Frazão Torres, Hans Raj Gheyi, Lucyelly Dâmela Araújo Borborema, André Alisson Rodrigues da Silva, Vitor Manoel Bezerra da Silva and Valéria Fernandes de Oliveira Sousa
Plants 2025, 14(14), 2149; https://doi.org/10.3390/plants14142149 - 11 Jul 2025
Viewed by 419
Abstract
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center [...] Read more.
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center of Technology and Natural Resources of the Federal University of Campina Grande (UFCG). Treatments combined five levels of electrical conductivity of brackish irrigation water (Bw: 0.4, 1.2, 2.0, 2.8, and 3.6 dS m−1) and four GSH concentrations (0, 40, 80, and 120 mg L−1), arranged in a randomized block design with three replicates. Salinity levels above 0.4 dS m−1 negatively affected fruit production and post-harvest quality of ‘BRS GA1’ sour passion fruit. Foliar application of 120 mg L−1 GSH increased fruit yield, while 74 mg L−1 GSH mitigated salt stress effects on production and pulp chemical quality. The ‘BRS GA1’ cultivar was highly sensitive to salinity, showing a 26.9% yield reduction per unit increase in Bw electrical conductivity above 0.4 dS m−1. The results suggest that GSH can alleviate salt stress damage, improving crop productivity and fruit quality under semi-arid conditions. Full article
Show Figures

Figure 1

23 pages, 2625 KiB  
Article
Quality of Wild Passion Fruit at Different Ripening Stages Under Irrigated and Rainfed Cultivation Systems
by Giuliana Naiara Barros Sales, Marília Hortência Batista Silva Rodrigues, Toshik Iarley da Silva, Rodolfo Rodrigo de Almeida Lacerda, Brencarla Lima Medeiros, Larissa Felix Macedo, Thiago Jardelino Dias, Walter Esfrain Pereira, Fabio Gelape Faleiro, Ivislanne de Sousa Queiroga Lacerda and Franciscleudo Bezerra da Costa
Plants 2025, 14(14), 2147; https://doi.org/10.3390/plants14142147 - 11 Jul 2025
Viewed by 481
Abstract
Passiflora cincinnata (Mast), native to the Brazilian semi-arid region, produces exotic fruits even under low water availability. However, its green coloration at ripening complicates optimal harvesting, impacting post-harvest fruit quality. Therefore, this study aimed to evaluate the influence of cultivation systems (irrigated and [...] Read more.
Passiflora cincinnata (Mast), native to the Brazilian semi-arid region, produces exotic fruits even under low water availability. However, its green coloration at ripening complicates optimal harvesting, impacting post-harvest fruit quality. Therefore, this study aimed to evaluate the influence of cultivation systems (irrigated and rainfed) and different ripening stages on the physical and post-harvest characteristics of wild passion fruit during the second production cycle. The experiment was conducted using a randomized block design in a 2 × 4 factorial scheme, corresponding to two cultivation systems (irrigated and rainfed) and four fruit ripening stages (60, 80, 100, and 120 days after anthesis—DAA), with five replications. The fruit pulps were analyzed for physicochemical characterization and bioactive compounds. The physical and chemical characteristics of wild passion fruit were influenced by ripening stages and the irrigation system. The rainfed system decreased the total fruit mass by 15.50% compared to the irrigated cultivation. Additionally, the rainfed cultivation reduced the fruit color index by 14.82% and altered the respiratory pattern, causing a linear decrease of 73.37% in the respiration rate during ripening, in contrast to the behavior observed in the irrigated system, which reached an estimated minimum rate of 33.74 mg CO2 kg−1 h−1 at 110 days after anthesis. Full article
Show Figures

Figure 1

19 pages, 2426 KiB  
Article
Assessment of the Crop Water Stress Index for Green Pepper Cultivation Under Different Irrigation Levels
by Sedat Boyacı, Joanna Kocięcka, Barbara Kęsicka, Atılgan Atılgan and Daniel Liberacki
Sustainability 2025, 17(13), 5692; https://doi.org/10.3390/su17135692 - 20 Jun 2025
Viewed by 460
Abstract
The objective of this study was to evaluate the effects of different water levels on yield, morphological, and quality parameters, as well as the crop water stress index (CWSI), for pepper plants under a high tunnel greenhouse in a semi-arid region. For this [...] Read more.
The objective of this study was to evaluate the effects of different water levels on yield, morphological, and quality parameters, as well as the crop water stress index (CWSI), for pepper plants under a high tunnel greenhouse in a semi-arid region. For this purpose, the irrigation schedule used in this study includes 120%, 100%, 80%, and 60% (I120, I100, I80, and I60) of evaporation monitored gravimetrically. In this study, increasing irrigation levels (I100 and I120) resulted in increased stem diameter, plant height, fruit number, leaf number, and leaf area values. However, these values decreased as the water level dropped (I60 and I80). At the same time, increased irrigation resulted in improvements in fruit width, length, and weight, as well as a decrease in TSS values. While total yield and marketable yield values increased at the I120 water level, TWUE and MWUE were the highest at the I100 water level. I80 and I120 water levels were statistically in the same group. It was found that the application of I100 water level in the high tunnel greenhouse is the appropriate irrigation level in terms of morphology and quality parameters. However, in places with water scarcity, a moderate water deficit (I80) can be adopted instead of full (I100) or excessive irrigation (I120) in pepper cultivation in terms of water conservation. The experimental results reveal significant correlations between the parameters of green pepper yield and the CWSI. Therefore, a mean CWSI of 0.16 is recommended for irrigation level I100 for higher-quality yields. A mean CWSI of 0.22 is recommended for irrigation level I80 in areas where water is scarce. While increasing the CWSI values decreased the values of crop water consumption, leaf area index, total yield, marketable yield, total water use efficiency, and marketable water use efficiency, decreasing the CWSI increased these values. This study concluded that the CWSI can be effectively utilised in irrigation time planning under semi-arid climate conditions. With the advancement of technology, determining the CWSI using remote sensing-based methods and integrating it into greenhouse automation systems will become increasingly important in determining irrigation times. Full article
(This article belongs to the Special Issue Innovative Sustainable Technology for Irrigation and Water Management)
Show Figures

Figure 1

17 pages, 1484 KiB  
Article
Genotypic Variation in Drought-Season Stress Responses Among Traditional Fig (Ficus carica L.) Varieties from Mediterranean Transition Zones of Northern Morocco
by Mohammed Elmeknassia, Abdelali Boussakouran, Rachid Boulfia and Yahia Rharrabti
Plants 2025, 14(12), 1879; https://doi.org/10.3390/plants14121879 - 19 Jun 2025
Viewed by 513
Abstract
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly [...] Read more.
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly affects fruit quality and production. Selecting and preserving resilient varieties among traditional varieties, representing centuries of local adaptation, is a vital strategy for addressing the challenges driven by climate change. In this context, this study assessed the physiological and biochemical parameters of the leaves of four fig landrace varieties (Fassi, Ghouddane, Nabout, and Ounq Hmam) grown in three different Mediterranean transitional zones of northern Morocco (Chefchaouen, Taounate, and Taza), during a single timepoint assessment conducted in late August 2023. The combined effects of location, variety, and their interactions on chlorophyll fluorescence (Fv/Fm), Soil Plant Analysis Development (SPAD) index, total chlorophyll content (ChlT), canopy temperature depression (CTD), proline content, protein content, total soluble sugar (TSS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were determined. Significant variation was observed among varieties and locations, with the location effect being observed for proline content, protein content, TSS, CTD, and ChlT, while variety had a stronger influence on SPAD, Fv/Fm, H2O2, and MDA. The results showed that Nabout and Ounq Hmam varieties had the greatest photosynthetic efficiency, as indicated by their elevated SPAD index, ChlT, and Fv/Fm values, and showed lower sensitivity to oxidative stress (low proline content, H2O2, and MDA levels). In contrast, Ghouddane and Fassi displayed better stress tolerance, presenting higher levels of oxidative stress markers. Among locations, Chefchaouen showed the highest protein, TSS, H2O2, and MDA levels, reflecting active stress tolerance mechanisms. These variations were confirmed by principal component analysis, which revealed a clear separation between photosynthetically efficient varieties (Nabout and Ounq Hmam) and stress-tolerant varieties (Ghouddane and Fassi). More than a conventional crop physiology study, this work highlights the adaptive strategies in traditional Mediterranean fig germplasm that could be crucial for climate change adaptation. While our findings are limited to a single season, they offer valuable, practical insights that can inform grower decision-making in the near term, especially when considered alongside local knowledge and additional research. Full article
(This article belongs to the Special Issue Ecophysiology and Quality of Crops)
Show Figures

Figure 1

24 pages, 9889 KiB  
Article
An Intelligent Management System and Advanced Analytics for Boosting Date Production
by Shaymaa E. Sorour, Munira Alsayyari, Norah Alqahtani, Kaznah Aldosery, Anfal Altaweel and Shahad Alzhrani
Sustainability 2025, 17(12), 5636; https://doi.org/10.3390/su17125636 - 19 Jun 2025
Viewed by 689
Abstract
The date palm industry is a vital pillar of agricultural economies in arid and semi-arid regions; however, it remains vulnerable to challenges such as pest infestations, post-harvest diseases, and limited access to real-time monitoring tools. This study applied the baseline YOLOv11 model and [...] Read more.
The date palm industry is a vital pillar of agricultural economies in arid and semi-arid regions; however, it remains vulnerable to challenges such as pest infestations, post-harvest diseases, and limited access to real-time monitoring tools. This study applied the baseline YOLOv11 model and its optimized variant, YOLOv11-Opt, to automate the detection, classification, and monitoring of date fruit varieties and disease-related defects. The models were trained on a curated dataset of real-world images collected in Saudi Arabia and enhanced through advanced data augmentation techniques, dynamic label assignment (SimOTA++), and extensive hyperparameter optimization. The experimental results demonstrated that YOLOv11-Opt significantly outperformed the baseline YOLOv11, achieving an overall classification accuracy of 99.04% for date types and 99.69% for disease detection, with ROC-AUC scores exceeding 99% in most cases. The optimized model effectively distinguished visually complex diseases, such as scale insert and dry date skin, across multiple date types, enabling high-resolution, real-time inference. Furthermore, a visual analytics dashboard was developed to support strategic decision-making by providing insights into production trends, disease prevalence, and varietal distribution. These findings underscore the value of integrating optimized deep learning architectures and visual analytics for intelligent, scalable, and sustainable precision agriculture. Full article
(This article belongs to the Special Issue Sustainable Food Processing and Food Packaging Technologies)
Show Figures

Figure 1

16 pages, 1804 KiB  
Article
GABA and Octopamine Receptors as Potential Targets for Fumigant Actions of Bursera graveolens Essential Oil Against Callosobruchus maculatus and Callosobruchus chinensis
by Luis O. Viteri, Maria José González, Pedro B. Silva, Jonatas M. Gomes, Thiago Svacina, Lara T. M. Costa, Eduardo Valarezo, Javier G. Mantilla-Afanador, Osmany M. Herrera, Raimundo W. S. Aguiar, Gil R. Santos and Eugênio E. Oliveira
J. Xenobiot. 2025, 15(3), 91; https://doi.org/10.3390/jox15030091 - 12 Jun 2025
Viewed by 1284
Abstract
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these [...] Read more.
Cowpea, Vigna sp., is an important, low-cost protein source in subtropical and semi-arid regions, where seasonal rainfall makes storage necessary. However, the weevils Callosobruchus maculatus and C. chinensis cause significant grain losses during storage. While synthetic fumigants are commonly used to control these pests, their risks to mammals have prompted the search for safer alternatives. In this context, we tested palo santo, Bursera graveolens, essential oil with limonene, α-phellandrene, o-cymene and β-phellandrene, menthofuran, and germacrene-D as a sustainable approach. This plant is readily accessible, produces high fruit yields, and is used in households for various purposes. We evaluated the fumigant toxicity, repellency, and ovicidal effects of B. graveolens essential oil on both Callosobruchus species. Our results showed that B. graveolens oil was toxic to C. maculatus (LC50 = 80.90 [76.91–85.10] µL) and C. chinensis (LC50 = 63.9 [60.95–66.99] µL), with C. chinensis being more susceptible (SR = 1.27). Molecular docking analyses revealed that all the oil’s compounds bind to both the GABA and octopamine receptors, exhibiting high energy affinities; however, germacrene shows the strongest affinity in these receptors. C. chinensis was strongly repelled at all concentrations, while C. maculatus was repelled only at lethal concentrations. No ovicidal effect was observed in either species. In conclusion, our findings suggest that B. graveolens essential oil is a promising and sustainable protectant for stored cowpeas in small-scale storage units. Full article
Show Figures

Figure 1

24 pages, 5633 KiB  
Article
Architectural Analysis for Novel Olive Crop Management
by Khouloud Annabi, Faouzi Haouala, AbdelKarim Hamrita, Rania Kouki, Foued Laabidi, Mokhtar Rejili, Samra Akef Bziouech and Mouna Mezghani Aïachi
Plants 2025, 14(11), 1707; https://doi.org/10.3390/plants14111707 - 3 Jun 2025
Viewed by 515
Abstract
Efficient fruit production, quality improvement, and timely harvesting are essential in olive cultivation, which requires optimised distribution and management of fruiting sites. This study aimed to support sustainable olive crop management by analysing the morphological characteristics of five cultivars (Chemlali, Chetoui [...] Read more.
Efficient fruit production, quality improvement, and timely harvesting are essential in olive cultivation, which requires optimised distribution and management of fruiting sites. This study aimed to support sustainable olive crop management by analysing the morphological characteristics of five cultivars (Chemlali, Chetoui, Koroneiki, Meski, and Picholine) under semi-arid Tunisian conditions. Through a detailed architectural analysis, we investigated the relationships between branching patterns, density, distribution of inflorescence and fruit sites, biometric traits (shoot length, internode number, and shoot dimensions), and geometric variability within each cultivar. Three trees per cultivar were analysed across three architectural units. The results showed marked architectural differences, highlighting the need for cultivar-specific strategies in planting, pruning, and orchard management. The distribution of shoots across botanical orders revealed unique branching patterns: Chemlali and Koroneiki showed thinner shoots and higher shoot density, reflecting strong apical dominance and their suitability for hyper-intensive systems. In addition, nonsignificant differences in long shoots’ insertion angles between Meski, Chetoui, and Koroneiki suggest compatibility for co-cultivation, facilitating mechanised maintenance and harvesting. Emphasis on inter-cultivar compatibility and architectural coherence is crucial for orchard design. These findings provide important insights for optimising orchard management practices to improve productivity, fruit quality, and operational efficiency. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Graphical abstract

15 pages, 1610 KiB  
Article
Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings
by Annalisa Tarantino, Laura Frabboni and Grazia Disciglio
Agriculture 2025, 15(10), 1095; https://doi.org/10.3390/agriculture15101095 - 19 May 2025
Viewed by 549
Abstract
One of the key techniques for successful almond tree cultivation in newly irrigated areas is increasing planting density. To investigate this, field experiments were carried out over five consecutive growing seasons (2019–2023) to evaluate the effects of two different tree densities on the [...] Read more.
One of the key techniques for successful almond tree cultivation in newly irrigated areas is increasing planting density. To investigate this, field experiments were carried out over five consecutive growing seasons (2019–2023) to evaluate the effects of two different tree densities on the vegetative growth and productivity of almond trees (Prunus dulcis, cv. Tuono) in a semi-arid climate in Southern Italy. The two planting densities tested were 1660 trees per hectare (achieved with 1.5 m intra-row spacing × 4.0 m inter-row spacing) and 833 trees per hectare (3.0 m × 4.0 m spacing). The results showed that significantly lower values of annual shoot length were recorded in both 2020 and 2021, years characterized by late frosts in March and April. However, with the exception of the first year (2019), when the plants had not yet been influenced by the different planting densities, the annual shoot length was significantly higher in the lowest planting density compared to the highest one in the following years. Additionally, higher annual trunk growth values were recorded at the lower planting density compared to the higher density. By the end of the five seasons, trees at the lower density showed a cumulative trunk growth of 177 mm, whereas those at the higher density reached only 137 mm. No significant effect of the two different tree planting densities on overall fruit development, specifically length, width, and thickness, was observed. As the trees matured, kernel yield per tree increased under both planting densities. However, significantly higher individual tree yields were recorded in the lower-density configuration, reaching 2.70 kg per tree by the end of five seasons, compared to 1.68 kg per tree in the high-density arrangement. In contrast, kernel yield per hectare was greater in the densely planted configuration, achieving 2.81 t ha−1, whereas the lower-density planting resulted in a yield of 2.25 t ha−1 by the end of the same period. Furthermore, no significant differences were observed between the two tree planting densities in terms of the percentage of hull per fruit, kernel per nut, or the occurrence of double seeds. Similarly, morphological traits of the nuts and kernels, such as weight, length, width, and thickness, remained unaffected. However, slightly higher kernel weights were noted at the lower planting density. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

18 pages, 4284 KiB  
Article
Effectiveness of Grafting in Enhancing Salinity Tolerance of Tomato (Solanum lycopersicum L.) Using Novel and Commercial Rootstocks in Soilless Systems
by Thabit Alqardaeai, Abdulaziz Alharbi, Mekhled Alenazi, Abdulrasoul Alomran, Abdulaziz Alghamdi, Abdullah Obadi, Ahmed Elfeky and Mohamed Osman
Sustainability 2025, 17(10), 4333; https://doi.org/10.3390/su17104333 - 10 May 2025
Cited by 1 | Viewed by 796
Abstract
The scarcity of high-quality water in arid regions like Saudi Arabia necessitates saline water use in irrigation. Sustainable techniques, such as grafting and soilless cultivation, enhance crop resilience and optimize resource use, ensuring long-term agricultural and water sustainability to meet rising food demand. [...] Read more.
The scarcity of high-quality water in arid regions like Saudi Arabia necessitates saline water use in irrigation. Sustainable techniques, such as grafting and soilless cultivation, enhance crop resilience and optimize resource use, ensuring long-term agricultural and water sustainability to meet rising food demand. So, this study evaluated grafting’s effectiveness in enhancing the salt tolerance of tomato (Solanum lycopersicum L.) under soilless culture. The experiment tested two salinity levels, two growing media (volcanic rock and sand), and six grafting treatments: the scion ‘Tone Guitar F1’ was cultivated through non-grafting (G1), self-grafted onto itself (G2), and grafted onto the commercial rootstock ‘Maxifort F1’ (G3), which was grafted onto three newly developed rootstocks, namely X-218 (G4), X-238 (G5), and Alawamiya365 (G6). The results indicated that plants performed better at 2 dS m−1, while higher salinity (4 dS m−1) negatively impacted growth. However, grafting under saline stress improved most of the measured traits, excluding fruit quality (vitamin C, titratable acidity, and total soluble sugars). Grafted plants (G2–G6), particularly those grown in volcanic rock at 2 dS m−1, exhibited superior fruit characteristics, yield, water productivity, and leaf calcium (Ca2+) and potassium (K+) content compared to the non-grafted controls (G1). The sand medium generally produced lower values for all the traits, regardless of salinity or grafting. Moreover, grafting under 2 and 4 dS m−1 reduced leaf sodium (Na+) and chloride (Cl). The best overall performance was provided by the rootstocks X-218 and X-238. Grafting onto salt-tolerant rootstocks is a promising strategy for improving tomato yield and water productivity under saline irrigation in arid and semi-arid regions. Full article
Show Figures

Figure 1

15 pages, 2353 KiB  
Article
Mycoviral Diversity of Fusarium oxysporum f. sp. niveum in Three Major Watermelon-Production Areas in China
by Jiawang Yang, Yajiao Wang, Zihao Li, Sen Han, Bo Li and Yuxing Wu
Microorganisms 2025, 13(4), 906; https://doi.org/10.3390/microorganisms13040906 - 14 Apr 2025
Viewed by 486
Abstract
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world’s total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum [...] Read more.
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world’s total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum f. sp. niveum (FoN), which has caused serious damage to the watermelon-planting industry. Some mycoviruses can reduce the pathogenicity of host pathogens and have the potential for biocontrol, so their application potential in the biological control of plant fungal diseases has attracted much attention. In this study, high-throughput sequencing was performed on 150 FoN strains isolated from three major watermelon-production areas (northern semi-arid area, northwestern arid area, and southern humid area) to detect the diversity of mycoviruses and to uncover new mycoviruses. The analysis identified 25 partial or complete genome segments representing eight previously undescribed mycoviruses. The existence of six mycoviruses was verified via RT-PCR. The southern humid area had the highest diversity of mycoviruses, with 15 species identified. Among these, 40% are dsRNA viruses and 33.3% belong to the family Chrysoviridae, representing the predominant viral type and family. In the northern semi-arid area, a total of 12 viral species were identified, among these 41.7% were +ssRNA viruses and 25% belonged to the family Mymonaviridae, constituting the main viral types and family. The northwestern arid area showed relatively low viral diversity, only containing three species. Two of these were +ssRNA viruses classified under the Mitoviridae and Potyviridae families. Notably, only one virus, Fusarium oxysporum f. sp. niveum Potyvirus 1 (FoNPTV1), was shared across all three areas. These findings reveal significant regional differences in the mycoviral species composition and distribution, highlighting the complex interactions between mycoviruses and FoN in different environments. By uncovering new mycoviruses associated with FoN, this study provides valuable resources for the potential biocontrol of Fusarium wilt in watermelon, contributing to sustainable disease management and improving the quality and safety of watermelon production in China. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 443 KiB  
Article
Agronomic and Metabolic Responses of Citrus clementina to Long-Term Irrigation with Saline Reclaimed Water as Abiotic Factor
by David Auñón-Calles, María Pinciroli, Emilio Nicolás, Angel Gil-Izquierdo, José Antonio Gabaldón, María Puerto Sánchez-Iglesias, Angel Antonio Carbonell-Barrachina, Federico Ferreres, Carlos J. García and Cristina Romero-Trigueros
Int. J. Mol. Sci. 2025, 26(7), 3450; https://doi.org/10.3390/ijms26073450 - 7 Apr 2025
Cited by 1 | Viewed by 439
Abstract
The Panel on Climate Change has predicted an intensification of drought and heat waves. The aim of this study was to determine the physiological response of mandarin trees in a semi-arid area to the effects of a long period of irrigation with saline [...] Read more.
The Panel on Climate Change has predicted an intensification of drought and heat waves. The aim of this study was to determine the physiological response of mandarin trees in a semi-arid area to the effects of a long period of irrigation with saline reclaimed water (RW) and freshwater (FW) in terms of leaf mineral constitution, free amino acids and phytohormone balance, and their influence on yield and fruit quality. Results showed that higher foliar levels of Cl, B, Li+, and Br were found in the RW treatment. In addition, fruit quality (juice content, soluble solid content, titratable acid, and maturity index) and yield (fruit weight and diameter) parameters and growth canopy were negatively affected by irrigation with RW. Regardless of the treatments, L-alanine (Ala) and proline were the most abundant amino acids, with Ala being described as a majority for the first time in the literature. Concretely, in FW, the total amino acid content was twice as high as the concentration in RW (51,359.46 and 23,833.31 ng g−1, respectively). The most abundant hormones were 1-Aminocyclopropane-1-carboxylic acid and trans-zeatin in both treatments. The saline stress response would be reflected in the higher concentration of salicylic and abscisic acids in the leaves of RW trees. In view of the high correlations found in a simplified correlation matrix of (i) Ala with the canopy growth and (ii) the salicylic acid (SA) with most of the evaluated agrometabolic parameters, it can be concluded that the exogenous application of the Ala and SA would increase tree size and could mitigate the effects of salt stress, respectively. However, these treatments could be completed with the external application of ACC since this phytohormone presents the lowest parameter during treatment with RW. Full article
Show Figures

Figure 1

14 pages, 1227 KiB  
Article
Bromatological Composition and In Vitro Ruminal Digestibility of Vaines of Neltuma spp. in Three Regions of the State of Zacatecas, México
by Eduardo Valdez-Romero, Lucía Delgadillo-Ruiz, Rómulo Bañuelos-Valenzuela, Eladio Delgadillo-Ruiz, Carlos Meza-López, Marisa Mercado-Reyes, Leticia Adriana Ramírez-Hernández, Francisco G. Echavarría-Chairez, Luz Adriana Arias-Hernández, Benjamín Valladares-Carranza, Rodrigo Flores-Garivay and Héctor Emmanuel Valtierra-Marín
Vet. Sci. 2025, 12(2), 142; https://doi.org/10.3390/vetsci12020142 - 8 Feb 2025
Viewed by 1198
Abstract
Neltuma spp. are an important resource in arid and semiarid ecosystems of the country and serve, among other purposes, as an economic source of food for livestock. By analyzing the bromatological composition and in vitro fermentation of pods in three regions of the [...] Read more.
Neltuma spp. are an important resource in arid and semiarid ecosystems of the country and serve, among other purposes, as an economic source of food for livestock. By analyzing the bromatological composition and in vitro fermentation of pods in three regions of the state of Zacatecas, Mexico, the viability as a food alternative in sheep is sought. Twenty-seven pod samples were collected from nine points in each region of the state. The samples were obtained when the pods were in the immature stage. The bromatological analysis of the pods was conducted and mathematical equations were used to calculate the megacalories per kilogram provided by these fruits. Statistical analysis was performed using Spearman’s correlation coefficient. Bromatological analysis showed that crude protein averaged 20.86 ± 1.37% in the central region, while non-fiber carbohydrates averaged 26.78 ± 1.32% in the southern region. Neltuma spp. pods demonstrate potential as an alternative feed for sheep, provided that an adequate diet is formulated, since they present acceptable levels of protein, carbohydrates and fiber. It is recommended to consider the state of maturity of the pods when incorporating them into the diet of sheep. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

Back to TopTop