Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Orchard
2.2. Cultural Practices
2.3. Experimental Design
2.4. Climate
2.5. Plant Measurements
2.5.1. Vegetative Development
2.5.2. Development of Fruits
2.5.3. Harvesting, Fruit Collection, and Yield
2.6. Statistical Analysis
3. Results
3.1. Shoot and Trunk Development
3.2. Fruit Growth
3.3. Kernel Yield
3.4. Yield-Related Variables
3.5. Nut and Kernel Morphological Traits
3.6. Correlation Analysis
4. Discussion
4.1. Vegetative Growth
4.2. Fruit Development
4.3. Yield
4.4. Correlation Analysis Between Vegetative Growth and Yield
4.5. Fruit Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Almond Production by Country—World Population Review. 2024. Available online: https://worldpopulationreview.com (accessed on 16 January 2025).
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy, 2024; Available online: https://www.istat.it/statistiche-per-temi/economia/agricoltura/ (accessed on 20 January 2025).
- Iglesias, I.; Torrents, J. Developing high-density training systems in Prunus tree species for an efficient and sustainable production. Acta Hortic. 2022, 1346, 219–228. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting systems for modern olive growing: Strengths and weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Iglesias, I. Costes de producción, sistemas de formación y mecanización en frutales, con especial referencia al melocotonero. Rev. Fruticult. 2019, 69, 50–59. [Google Scholar]
- Cioacă, L.; Stănică, F. The evolution of the almond crop technology-A Review. Sci. Papers. Ser. B. Hortic. 2021, 65, 31. [Google Scholar]
- Iglesias, I.; Foles, P.; Oliveira, C. El cultivo del almendro en España y Portugal: Situación, innovación tecnológica, costes, rentabilidad y perspectivas. Rev. Frutic. 2021, 81, 6–49. [Google Scholar]
- Maldera, F.; Vivaldi, G.A.; Castellarnau, I.I.; Camposeo, S. Two almond cultivars trained in a super-high density ochard show different growth, yield efficiencies and damages by mechanical harvesting. Agronomy 2021, 11, 1406. [Google Scholar] [CrossRef]
- Cabetas, M.J.R.; Felipe, A.J.; Reighard, G.L. Rootstock Development. In Almonds Botany, Production and Uses; CABI: Wallingford, UK, 2017; pp. 209–227. [Google Scholar]
- Di Lorenzo, L. Mandorlo Superintensivo Vincente E Redditizio Se Gestito Correttamente. 2023. Available online: https://rivistafrutticoltura.edagricole.it/colture/mandorlo-superintensivo-gestione-corretta-alte-rese/ (accessed on 22 January 2025).
- Tarantino, A.; Frabboni, L.; Disciglio, G. Vegetative and reproductive responses induced by organo-mineral fertilizers on young trees of almond cv. Tuono grown in a medium-high density plantation. Agriculture 2024, 14, 230. [Google Scholar] [CrossRef]
- Grossman, Y.; DeJong, T. Training and pruning system effects on vegetative growth potential, light interception, and cropping efficiency in peach trees. J. Am. Soc. Hortic. Sci. 1998, 123, 1058–1064. [Google Scholar] [CrossRef]
- Duncan, R. Choosing the Correct Tree Spacing for your Almond Orchard. University of California Agriculture and Natural Resources. 2010. Available online: https://ucanr.edu/county-office/stanislaus-county (accessed on 22 January 2025).
- Stutte, G.W.; Martin, G.C. Effects of light intensity and carbohydrate reserves on flowering in olive. J. Am. Soc. Hort. Sci. 1986, 111, 27–31. [Google Scholar] [CrossRef]
- Casanova-Gascón, J.; Figueras-Panillo, M.; Iglesias-Castellarnau, I.; Martín-Ramos, P. Comparison of SHD and Open-Center Training Systems in Almond Tree Orchards cv. ‘Soleta’. Agronomy 2019, 9, 874. [Google Scholar] [CrossRef]
- Maldera, F.; Carone, V.; Castellarnau, I.; Vivaldi, G.A.; Camposeo, S. Available PAR, growth and yield of a Super High-Density almond orchard are influenced by different row orientations. Agronomy 2023, 13, 874. [Google Scholar] [CrossRef]
- Gomes-Laranjo, J.; Coutinho, J.P.; Galhano, V.; Cordeiro, V. Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential. Agric. Water Manag. 2006, 83, 261–265. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Li, Z.; Chen, Y.; Khalid, M.H.B.; Du, J.; Liu, W.; Wu, X.; Song, C.; Yu, L.; et al. The Influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 2019, 9, 1952. [Google Scholar] [CrossRef]
- Trentacoste, E.; Connor, D.J.; Gómez-del-Campo, M. Effect of row spacing on vegetative structure, fruit characteristics and oil productivity of N-S and E-W oriented olive hedges. Sci. Hortic. 2015, 193, 240–248. [Google Scholar] [CrossRef]
- Miarnau, X.; Lordan, J.; Torguet, L.; Girabet, R.; Montserrat, R.; Batlle, I.; Vargas, F.; Alegre, S. High-density production systems in almond orchards. Acta Hortic. 2024, 1406, 171–178. [Google Scholar] [CrossRef]
- Iglesias, I. Training Almond in HEDGE/SHD: A New Concept Towards Effiency and Sustainability. Efficient Agriculture, News. 2020. Available online: https://www.agromillora.com/training-almond-in-hedge-shd-a-new-concept-towards-effiency-and-sustainability/ (accessed on 3 March 2025).
- Iglesias, I.; Echeverria, G. Current situation, trends and challenges for efficient and sustainable peach production. Sci. Hortic. 2022, 296, 110899. [Google Scholar] [CrossRef]
- Kumar, D.; Ahmed, N.; Verna, M.K. Studies on high density planting in almond in Kashmir valley. Indian J. Hort. 2012, 69, 328–332. [Google Scholar]
- Ladon, T.; Chandel, J.S.; Sharma, N.C.; Verma, P. Optimizing apple orchard management: Investigating the impact of planting density, training systems and fertigation levels on tree growth, yield and fruit quality. Sci. Hortic. 2024, 334, 113329. [Google Scholar] [CrossRef]
- Yahmed, J.B.; Ghrab, M.; Benmoussa, H.; Mimoun, M.B. Physiological behavior and nutritional status of almond scion-rootstock combinations in a high-density planting system under warm Mediterranean conditions. Sci. Hortic. 2024, 303, 111209. [Google Scholar] [CrossRef]
- Maldera, F.; Garofalo, S.P.; Camposeo, S. Architectural approach to evaluate the design and management of almond cultivars suitable for super high-density orchards. Front. Plant Sci. 2024, 15, 1407862. [Google Scholar] [CrossRef]
- Dias, A.B.; Caeiro, L.; Félix, G.; Falcao, J.M. Evaluation of biometric parameters of ‘Belona’, ‘Guara’ and ‘Lauranne’ cultivars in a superhigh density orchard. Acta Hortic. 2018, 1219, 73–78. [Google Scholar] [CrossRef]
- Iglesias, I.; Torrents, J. Diseño de nuevas plantaciones adaptadas a la mecanización en frutales. Horticulture 2020, 346, 60–67. [Google Scholar]
- USDA. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. In Agriculture Handbook, 2nd ed.; USDA: Washington, DC, USA, 1999; p. 436. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf (accessed on 20 December 2024).
- Bollettino Ufficiale della Regione Puglia-n. 42 del 6-4-2017-Disciplinare di Produzione Integrata Regione Puglia–Anno. 2017. Available online: https://www.agrometeopuglia.it/node/29 (accessed on 30 January 2025).
- UNESCO/FAO. Bioclimatic Map of the Mediterranean Zone; Explanatory Notes, Arid Zone Research; UNESCO/FAO: Rome, Italy, 1963; Volume 2217, p. 26. [Google Scholar]
- Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Chang. 2012, 12, 407–412. [Google Scholar] [CrossRef]
- Syngenta. Center for Experimentation and Valorization of Mediterranean Crops—Foggia. Available online: https://www.syngenta.it/agrometeo (accessed on 28 February 2025).
- Sakar, E.H.; El Yamani, M.; Boussakouran, A.; Rharrabti, Y. Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Sci. Hortic. 2019, 247, 224–234. [Google Scholar] [CrossRef]
- Zheng, D.K.; Fielke, J.M. Some physical properties of Australian Nonpareil almonds related to bulk storage. Int. J. Agric. Biol. Eng. 2014, 7, 116–122. [Google Scholar]
- Kester, D.E.; Martin, G.C.; Labavitch, J.M. Growth and Development. In Almond Production Manual; Micke, W.C., Ed.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; pp. 90–97. [Google Scholar]
- Losciale, P. Il Mandorlo. In Coltivazione E Innovazione; Edagricole: Milano, Italy, 2016; p. 119. [Google Scholar]
- Felipe, A.J. El Almendro: El Material Vegetal; Integrum: Lérida, Spain, 2000; p. 464. ISBN 84-8465-047-2. [Google Scholar]
- Martinez-Gomez, P.; Sánchez-Pérez, R.; Dicenta, F. Fruit development in almond. Acta Hortic. 2006, 726, 241–246. [Google Scholar] [CrossRef]
- Losciale, P. Almond orchard management according to plant eco-physiology. Italus Hortus 2018, 25, 41–50. [Google Scholar] [CrossRef]
- Pica, A.L.; Silvestri, C.; Cristofori, V. Evaluation of phenological and agronomical traits of different almond grafting combinations under testing in central Italy. Agriculture 2021, 11, 1252. [Google Scholar] [CrossRef]
- Costa, G.; Beltrame, E.; Zerbini, P.; Pianezzola, A. High density planted apple orchards: Effects on yield, performance and fruit quality. Acta Hortic. 1997, 451, 505–512. [Google Scholar] [CrossRef]
- Mahajan, A.R.; Lal, S.; Tiwari, J.P. Effect of different planting systems on plant growth, flowering, fruiting and yield in guava. Prog. Hort. 2005, 37, 27. [Google Scholar]
- Hill, S.J.; Stephenson, D.W.; Taylor, K. Almond yield in relation to tree size. Sci. Hort. 1987, 33, 97–111. [Google Scholar] [CrossRef]
- Mosie, T.; Seleshi, G.; Setu, H. Evaluation of Vegetative Growth Parameters of Almond Varieties (Prunus amygdalus L.) at Holleta, Central Highlands of Ethiopia. Adv. Life Sci. Technol. 2022, 91, 1–8. [Google Scholar] [CrossRef]
- Spiegel-Roy, P.; Kochba, J. The inheritance of bitter and double kernel characters in the almond. Z. Pflanz. 1974, 71, 319–329. [Google Scholar]
- Egea, J.; Burgos, L. Double kerneled fruits in almond (Prunus dulcis Mill.) as related to pre-blossom temperatures. Ann. Appl. Biol. 1995, 126, 163–168. [Google Scholar] [CrossRef]
- Arteaga, N.; Socias, I.; Company, R. Heritability of fruit and kernel traits in almond. Acta Hortic. 2002, 591, 269–274. [Google Scholar] [CrossRef]
- Erogul, D.D.; Karabiyik, H.; Çantal, D. Effect of foliar treatments of seaweed on fruit quality and yield in almond cultivation. Ege Univ. Ziraat Fak. Derg. 2022, 59, 591–600. [Google Scholar]
- EPA (Environmental Protection Agency). Emissions Factors & AP 42. In Chapter 9: Food and Agricultural Industries, 5th ed.; Environmental Protection Agency: Washington, DC, USA, 1995; Volume 1. Available online: https://www3.epa.gov/ttn/chief/ap42/ch09/index.html (accessed on 10 March 2025).
- Sottile, F.; Barone, E.; Barbera, G.; Palasciano, M. The Italian almond industry: New perspectives and ancient tradition. Acta Hortic. 2014, 1028, 401–406. [Google Scholar] [CrossRef]
- Barbera, G.; La Mantia, T.; Monastra, F.; de Palma, L.; Schirra, M. Response of ferragnes and tuono almond cultivars to different environmental conditions in southern Italy. Acta Hortic. 1994, 373, 125–128. [Google Scholar] [CrossRef]
- Lovicu, G.; Pala, M.; De Pau, L.; Satta, D.; Farci, M. Bioagronomical Behaviour of Some Almond Cultivars in Sardinia. Acta Hortic. 2002, 591, 487–491. [Google Scholar] [CrossRef]
- Palasciano, M.; Godini, A.; de Palma, L. Optimized self-pollination and production of double kernel in almond. Acta Hortic. 1993, 373, 215–218. [Google Scholar] [CrossRef]
- Mougioun, N.; Maletsika, P.; Konstantinidis, A. Morphological and molecular characterization of a new self-compatible almond variety. Agriculture 2023, 13, 1362. [Google Scholar] [CrossRef]
- Rapposelli, E.; Rigoldi, M.P.; Satta, D.; Delpiano, D.; Secci, S.; Porceddu, A. Genetic, Phenotypic, and Commercial Characterization of an Almond Collection from Sardinia. Plants 2018, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Razouk, R.; Kajji, A.; Hamdani, A.; Charafi, J.; Hssaini, L.; Bouda, S. Yield and fruit quality of almond, peach and plum under regulated deficit irrigation. Front. Agric. Sci. Eng. 2021, 8, 583–593. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Sakar, E. Some physical properties in nut and kernel of two almon d varieties (‘Marcona’ and ‘Tuono’) grown in Northern Morocco. In XVI GREMPA Meeting on Almonds and Pistachios; Options Méditerranéennes; Series A: Mediterranean Seminars; No. 119; CIHEAM: Zaragoza, Spain, 2016; Volume 338, pp. 297–301. [Google Scholar]
Month | YEAR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | 2023 | |||||||||||
Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | |
(°C) | (°C) | (mm) | (°C) | (°C) | (mm) | (°C) | (°C) | (mm) | (°C) | (°C) | (mm) | (°C) | (°C) | (mm) | |
Jan | 10.6 | 1.6 | 61.0 | 10.5 | 1.6 | 3.6 | 12.2 | 2.4 | 58.2 | 13.3 | 1.7 | 23.8 | 12.7 | 3.4 | 112.8 |
Feb | 14.6 | 2.6 | 21.2 | 14.6 | 2.9 | 51.0 | 15.5 | 3.4 | 35.2 | 15.5 | 3.0 | 60.2 | 13.7 | 1.8 | 12.0 |
Mar | 18.6 | 4.5 | 32.0 | 15.6 | 2.1 | 83.0 | 15.4 | 3.4 | 57.8 | 17.2 | 4.1 | 28.2 | 19.1 | 4.6 | 75.2 |
Apr | 20.6 | 8.2 | 40.3 | 18.8 | 6.1 | 48.9 | 19.9 | 4.7 | 40.4 | 19.6 | 6.3 | 20.8 | 19.6 | 6.6 | 66.2 |
May | 21.3 | 10.2 | 86.7 | 27.5 | 14.7 | 25.8 | 26.5 | 10.8 | 26.0 | 28.5 | 12.7 | 22.2 | 24.0 | 11.9 | 73.6 |
Jun | 33.2 | 17.5 | 9.2 | 28.8 | 17.7 | 19.7 | 33.2 | 15.9 | 8.6 | 33.9 | 18.6 | 51.3 | 31.1 | 16.0 | 84.0 |
Jul | 33.7 | 19.5 | 30.0 | 31.0 | 21.2 | 20.4 | 35.4 | 19.3 | 100.8 | 34.7 | 19.0 | 49.8 | 37.9 | 19,9 | 3.2 |
Aug | 34.8 | 20.3 | 5.7 | 31.5 | 21.8 | 40.0 | 34.9 | 19.4 | 29.2 | 32.3 | 19.1 | 20.0 | 34.9 | 18.4 | 28.4 |
Sept | 29.5 | 16.8 | 3.8 | 22.2 | 17.4 | 38.5 | 29.5 | 15.4 | 19.4 | 28.0 | 15.5 | 84.8 | 30.6 | 17.4 | 17.6 |
Oct | 25.5 | 11.5 | 29.2 | 25.5 | 9.7 | 44.6 | 21.2 | 10.9 | 70.2 | 25.0 | 12.2 | 27.2 | 27.4 | 14.3 | 25.6 |
Nov | 19.3 | 9.4 | 112.6 | 19.3 | 7.7 | 68.6 | 17.2 | 10.8 | 135.4 | 17.9 | 8.6 | 91.2 | 19.6 | 7.8 | 72.0 |
Dec | 14.7 | 5.0 | 30.0 | 14.7 | 5.2 | 83.0 | 13.7 | 4.8 | 46.6 | 15.9 | 5.6 | 44.6 | 16.1 | 5.0 | 21.0 |
Mean | 23.4 | 10.6 | 21.7 | 10.9 | 22.9 | 10.1 | 23.5 | 10.5 | 23.9 | 12.2 | |||||
Total | 461.7 | 527.1 | 627.8 | 524.1 | 566.0 |
Year | |||
---|---|---|---|
2020 | 2021 | ||
Date | Tmin (°C) | Date | Tmin (°C) |
March 24 | −0.2 | April 8 | −0.6 |
March 25 | −1.4 | April 9 | −2.6 |
April 10 | −0.9 | ||
Mean | −0.8 | Mean | −1.4 |
Parameter | Planting Density | Year | ||||
---|---|---|---|---|---|---|
(tree ha−1) | 2019 | 2020 | 2021 | 2022 | 2023 | |
Hull per fruit (% of total fresh weight) | 1660 | 48.9 ± 3.4 | 47.8± 3.0 | 46.7 ± 3.0 | 48.9 ± 2.9 | 50.1 ± 3.0 |
833 | 50.3 ± 3.0 | 47.6 ± 4.1 | 49.1 ± 3.3 | 47.9 ± 2.2 | 48.4 ± 3.4 | |
Shelling: kernel per nut dry (%) | 1660 | 30.1 ± 0.9 | 31.3 ± 0.8 | 30.7 ± 0.9 | 31.3 ± 0.8 | 30.3 ± 0.8 |
833 | 31.0 ± 0.8 | 32.1 ± 0.7 | 30. 2 ± 0.8 | 31.4 ± 0.9 | 31.3 ± 0.7 | |
Double seeds (%) | 1660 | 6.9 ± 3.5 | 8.1 ± 2.9 | 10.3 ± 2.5 | 10.1 ± 2.9 | 9.8 ± 2.9 |
833 | 6.8 ± 2.9 | 9.0 ± 3.2 | 10.0 ± 2.9 | 9.3 ± 3.0 | 9.7 ± 2.7 |
Parameter | Planting Density | Year | ||||
---|---|---|---|---|---|---|
(tree ha−1) | 2019 | 2020 | 2021 | 2022 | 2023 | |
Nut dry weight (g nut−1) | 1660 | 6.8 ± 0.8 | 5.4 ± 0.7 | 5.8 ± 0.6 | 7.0 ± 0.6 | 6.8 ± 0.8 |
833 | 6.7 ± 0.6 | 5.7 ± 0.6 | 6.0 ± 0.7 | 7.4 ± 0.8 | 6.9 ± 0.8 | |
Nut length (mm) | 1660 | 41.6 ± 2.0 | 33.1 ± 2.3 | 34.0 ± 2.3 | 42.0 ± 2.2 | 43.1 ± 2.0 |
833 | 42.5 ± 2.0 | 42.5 ± 2.0 | 34.5 ± 2.2 | 43.1 ± 2.0 | 43.9 ± 1.9 | |
Nut width (mm) | 1660 | 32.0 ± 1.4 | 27.1 ± 1.4 | 28.2 ± 2.3 | 33.1 ± 1.4 | 33.7 ± 1.5 |
833 | 32.3 ± 1.4 | 27.9 ± 1.5 | 29.0 ± 1.4 | 33.9 ± 1.5 | 34.1 ± 1.4 | |
Nut thickness (mm) | 1660 | 22.5 ± 0.8 | 18.4 ± 0.5 | 18.0 ± 0.9 | 23.9 ± 0.7 | 23.2 ± 0.8 |
833 | 22.7 ± 0.7 | 18.5 ± 0.8 | 18.2 ± 0.8 | 23.8 ± 0.8 | 23.6 ± 0.9 |
Parameter | Planting Density | Year | ||||
---|---|---|---|---|---|---|
(tree ha−1) | 2019 | 2020 | 2021 | 2022 | 2023 | |
Kernel dry weight (g kernel−1) | 1660 | 1.6 ± 0.3 | 1.7 ± 0.3 | 1.5 ± 0.2 | 1.8 ± 0.3 | 1.9 ± 0.4 |
833 | 1.6 ± 0.2 | 1.8 ± 0.3 | 1.8 ± 0.3 | 2.0 ± 0.2 | 2.1 ± 0.3 | |
Kernel length (mm) | 1660 | 26.6 ± 2.4 | 26.3 ± 1.9 | 24.3 ± 2.3 | 29.7 ± 1.9 | 30.0 ± 2.0 |
833 | 26.5 ± 2.4 | 25.9 ± 1.9 | 25.7 ± 1.7 | 29.9 ± 1.8 | 30.7 ± 1.9 | |
Kernel width (mm) | 1660 | 15.9 ± 1.5 | 16.6 ± 1.2 | 15.9 ± 1.1 | 17.1 ± 1.2 | 16.9 ± 1.2 |
833 | 15.9 ± 1.3 | 16.5 ± 1.5 | 16.0 ± 1.3 | 18.1 ± 1.4 | 17.7 ± 1.5 | |
Kernel thickness (mm) | 1660 | 7.3 ± 1.5 | 8.1 ± 0.6 | 8.5 ± 0.6 | 8.7 ± 0.6 | 8.4 ± 0.5 |
833 | 7.3 ± 1.0 | 7.3 ± 1.5 | 8.5 ± 0.6 | 9.3 ± 0.7 | 8.9 ± 0.6 |
Parameter | Annual Shoot Length | Cumulative Trunk Diameter | Annual Trunk Growth | Kernel Yield per Hectare | Kernel Yield per Tree |
---|---|---|---|---|---|
Annual shoot length | 1.00 | ||||
Cumulative trunk diameter | 0.25 ns | 1.00 | |||
Annual trunk growth | 0.49 * | 0.23 ns | 1.00 | ||
Kernel yield per hectare | 0.20 ns | 0.54 * | 0.26 ns | 1.00 | |
Kernel yield per tree | 0.32 ns | 0.69 * | 0.35 ns | 0.89 ** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, A.; Frabboni, L.; Disciglio, G. Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings. Agriculture 2025, 15, 1095. https://doi.org/10.3390/agriculture15101095
Tarantino A, Frabboni L, Disciglio G. Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings. Agriculture. 2025; 15(10):1095. https://doi.org/10.3390/agriculture15101095
Chicago/Turabian StyleTarantino, Annalisa, Laura Frabboni, and Grazia Disciglio. 2025. "Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings" Agriculture 15, no. 10: 1095. https://doi.org/10.3390/agriculture15101095
APA StyleTarantino, A., Frabboni, L., & Disciglio, G. (2025). Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings. Agriculture, 15(10), 1095. https://doi.org/10.3390/agriculture15101095