Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = semi-submersible

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4382 KiB  
Article
Effect of Biological Fouling on the Dynamic Responses of Integrated Foundation Structure of Floating Wind Turbine and Net Cage
by Yu Hu, Hao Liu, Yingyao Cheng, Jichao Lei and Junxin Liu
J. Mar. Sci. Eng. 2025, 13(7), 1372; https://doi.org/10.3390/jmse13071372 - 18 Jul 2025
Viewed by 280
Abstract
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of [...] Read more.
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of mooring systems. The study firstly validates the simplified model of net cage through comparing with results of existing scaled experimental models. Then, a hydrodynamic analysis is conducted on the net cage model to obtain the RAOs of motion response of the structure under frequency-domain analysis, and damping correction is also carried out on the structure. Finally, time-domain analyses under irregular wave conditions are conducted to evaluate the effects of biofouling fouling on motion responses of net cage foundation and tensions of mooring lines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 20152 KiB  
Article
Characterization of the Internal and External Flow Field of a Semi-Submersible Aquaculture Platform with Multiple Net Cage Configuration
by Bo Hu, Jiawen Li, Juncheng Ruan, Jiawei Hao and Ji Huang
J. Mar. Sci. Eng. 2025, 13(7), 1373; https://doi.org/10.3390/jmse13071373 - 18 Jul 2025
Viewed by 176
Abstract
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results [...] Read more.
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results indicate that the flow field distribution around the platform exhibits no significant regularity and that low-velocity vortex regions are primarily concentrated near the pillars and nets. After velocity attenuation, the velocity reduction coefficients at the centers of the three cages are 90.26%, 63.65%, and 52.56%, respectively. Furthermore, the velocity attenuation inside the cages is minimally influenced by incoming flow velocity, with a maximum difference of 3.10%. In contrast, differences in net solidity ratio significantly affect velocity attenuation, particularly in downstream regions. The velocity reduction coefficient in the third cage varies by up to 43.25% depending on the net solidity ratio. These findings provide practical insights for the engineering design and application of aquaculture platforms. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

24 pages, 3084 KiB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 379
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

20 pages, 4294 KiB  
Article
Design and Initial Validation of an Infrared Beam-Break Fish Counter (‘Fish Tracker’) for Fish Passage Monitoring
by Juan Francisco Fuentes-Pérez, Marina Martínez-Miguel, Ana García-Vega, Francisco Javier Bravo-Córdoba and Francisco Javier Sanz-Ronda
Sensors 2025, 25(13), 4112; https://doi.org/10.3390/s25134112 - 1 Jul 2025
Viewed by 480
Abstract
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, [...] Read more.
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, but their adoption has been limited by high costs and a lack of flexibility. We developed and tested a novel, low-cost infrared beam-break counter—FishTracker—based on open-source Raspberry Pi and Arduino platforms. The system detects fish passages by analyzing interruptions in an IR curtain and reconstructing fish silhouettes to estimate movement, direction, speed, and morphometrics under a wide range of turbidity conditions. It also offers remote access capabilities for easy management. Field validation involved controlled tests with dummy fish, experiments with small-bodied live specimens (bleak) under varying turbidity conditions, and verification against synchronized video of free-swimming fish (koi carp). This first version of FishTracker achieved detection rates of 95–100% under controlled conditions and approximately 70% in semi-natural conditions, comparable to commercial counters. Most errors were due to surface distortion caused by partial submersion during the experimental setup, which could be avoided by fully submerging the device. Body length estimation based on passage speed and beam-interruption duration proved consistent, aligning with published allometric models for carps. FishTracker offers a promising and affordable solution for non-invasive fish monitoring in multispecies contexts. Its design, based primarily on open technology, allows for flexible adaptation and broad deployment, particularly in locations where commercial technologies are economically unfeasible. Full article
(This article belongs to the Special Issue Optical Sensors for Industry Applications)
Show Figures

Figure 1

24 pages, 3541 KiB  
Article
Substructure Optimization for a Semi-Submersible Floating Wind Turbine Under Extreme Environmental Conditions
by Kevin Fletcher, Edem Tetteh, Eric Loth, Chris Qin and Rick Damiani
Designs 2025, 9(3), 68; https://doi.org/10.3390/designs9030068 - 3 Jun 2025
Viewed by 935
Abstract
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver [...] Read more.
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver of the geometry and size of a floating substructure is the extreme environmental load case of Region 4, where platform loads are the greatest due to the impact of extreme wind and waves. To address this cost issue, a new concept for a floating offshore wind turbine’s substructure, its moorings, and anchors was optimized for a reference 10-MW turbine under extreme load conditions using OpenFAST. The levelized cost of energy was minimized by fixing the above-water turbine design and minimizing the equivalent substructure mass, which is based on the mass of all substructure components (stem, legs, buoyancy cans, mooring, and anchoring system) and associated costs of their materials, manufacturing, and installation. A stepped optimization scheme was used to allow an understanding of their influence on both the system cost and system dynamic responses for the extreme parked load case. The design variables investigated include the length and tautness ratio of the mooring lines, length and draft of the cans, and lengths of the legs and the stem. The dynamic responses investigated include the platform pitch, platform roll, nacelle horizontal acceleration, and can submergence. Some constraints were imposed on the dynamic responses of interest, and the metacentric height of the floating system was used to ensure static stability. The results offer insight into the parametric influence on turbine motion and on the potential savings that can be achieved through optimization of individual substructure components. A 36% reduction in substructure costs was achieved while slightly improving the hydrodynamic stability in pitch and yielding a somewhat large surge motion and slight roll increase. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

28 pages, 9190 KiB  
Article
Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea
by Yiming Zhong, Wenze Liu, Wei Shi, Xin Li, Shuaishuai Wang and Constantine Michailides
J. Mar. Sci. Eng. 2025, 13(6), 1073; https://doi.org/10.3390/jmse13061073 - 28 May 2025
Viewed by 632
Abstract
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW [...] Read more.
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW FOWTs, namely, the V-shaped and Braceless. Frequency domain analysis demonstrates that the NewSemi floater exhibits the most favorable response amplitude operator (RAO) in the pitch direction, along with superior damping characteristics. The result reveals a 16.44% reduction in pitch natural frequency compared to the V-shaped floater. Time-domain analysis under extreme conditions reveals 14.6% and 65.2% reductions in mean surge and pitch motions compared to Braceless FOWT, demonstrating enhanced stability. In addition, compared with the V-shaped FOWT, it exhibits smaller standards and deviations in surge and pitch motion, with reductions of 11.3% and 31.9%, respectively. To accommodate the trend toward larger FOWTs, an optimization procedure for scaling up floater designs is developed in this study. Using a differential evolution algorithm, the optimization process adjusts column diameter and spacing while considering motion response and steel usage constraints. The NewSemi floater is successfully scaled from 5 MW to 10 MW, and the effects of this scaling on motion and structural dynamics are examined. Numerical analysis indicates that as turbine size increases, the motion response under extreme sea conditions decreases, while structural dynamic responses, including blade root torque, rotor thrust, tower-base-bending moment and axial force, significantly increase. The maximum values of blade root torque and tower-base-bending moment increase by 10.4 times and 3.95 times in different load cases, respectively, while the mooring forces remain stable. This study offers practical engineering guidance for the design and optimization of next-generation floating wind turbines, enhancing their performance and scalability in offshore wind energy applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 8912 KiB  
Article
Experimental Study on the Motion Response Characteristics of a Floating Wind Turbine with a Semi-Submersible Foundation
by Zhipeng Zang, Haoming Zong, Zhuo Fang, Jinfeng Zhang and Cun Hu
Water 2025, 17(10), 1501; https://doi.org/10.3390/w17101501 - 16 May 2025
Viewed by 548
Abstract
In this study, a series of physical model tests were conducted in a three-dimensional wave basin to examine the motion response characteristics and stability of a floating wind turbine with a semi-submersible foundation with four columns under various conditions, including waves, combined wind [...] Read more.
In this study, a series of physical model tests were conducted in a three-dimensional wave basin to examine the motion response characteristics and stability of a floating wind turbine with a semi-submersible foundation with four columns under various conditions, including waves, combined wind and waves, and combined wind, current, and waves. The pitch response amplitude of the floating wind turbine was systematically analyzed to assess the performance of the semi-submersible foundation. The results indicate that utilizing three mooring lines affixed to the three surrounding columns, as opposed to a single mooring line attached to the central column, markedly decreases the pitch response amplitude of the floating wind turbine. Under wind-only conditions, the turbine maintains a stable inclination with a minimal degree of deviation, even when subjected to the maximum design wind load. Across the investigated range of wave periods, the pitch response amplitude shows a rising trend without reaching a peak, suggesting that the natural period of the floating wind turbine is designed to differ from the most prevalent wave periods in real ocean environments. When wave and wind loads are combined, the pitch response amplitude of the floating wind turbine is slightly reduced compared to the amplitude induced by wave load alone. This reduction is likely attributable to the increased spring constant of the mooring lines, resulting from the steady drift under wind. When wave, current, and wind loads are combined, the pitch response amplitude of a floating wind turbine closely aligns with that induced by waves only. This phenomenon occurs predominantly because the current load counterbalances the wind load relative to the center of inertia in terms of pitch response. Furthermore, the combined effect of wind and current induces a steady drift, which subsequently increases the tension in the mooring lines. Full article
(This article belongs to the Special Issue Wave–Structure Interaction in Coastal and Ocean Engineering)
Show Figures

Figure 1

27 pages, 7559 KiB  
Article
Multi-Column Semi-Submersible Floating Body Hydrodynamic Performance Analysis
by Wei Wang, Jingyi Hu, Cheng Zhao, Yonghe Xie, Xiwu Gong and Dingliang Jiang
Energies 2025, 18(8), 1884; https://doi.org/10.3390/en18081884 - 8 Apr 2025
Viewed by 436
Abstract
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to [...] Read more.
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to significant motion in marine environments. The proper chamfering of the heave plate can effectively enhance its resistance during wave action, thereby improving the stability of the floating platform. The optimal chamfer angle is 35°. Considering the complexity of the floating body’s motion response, this study focuses on the damping characteristics of the heave plate with 35° chamfered perforations. Using the NREL 5 MW three-column semi-submersible floating wind turbine platform as the research model, the hydrodynamic characteristics of the floating body with a perforated heave plate are systematically studied through theoretical analysis, numerical simulation, and physical tests. The amplitude of vertical force under various working conditions is measured. Through theoretical analysis, the additional mass coefficient and additional damping coefficient for different working conditions and models are determined. The study confirms that the heave plate with 35° chamfered perforations significantly reduces heave in the multi-floating body. Full article
(This article belongs to the Special Issue Advancements in Wind Farm Design and Optimization)
Show Figures

Figure 1

18 pages, 11293 KiB  
Article
An Improved Real-Time LOS-Based Model Predictive Control for the Semi-Submersible Offshore Platform Under Ocean Disturbances
by Shunli Wang, Xiufen Ye, Ronghao Zhang and Meng Luo
J. Mar. Sci. Eng. 2025, 13(4), 725; https://doi.org/10.3390/jmse13040725 - 4 Apr 2025
Viewed by 539
Abstract
To enhance the autonomy of semi-submersibles, a Model Predictive Control (MPC) strategy was proposed based on real-time Line-of-Sight (LOS) to address the issue of thruster saturation. By identifying parameters using experimental data from sea trials, the dynamic model of the semi-submersible was derived [...] Read more.
To enhance the autonomy of semi-submersibles, a Model Predictive Control (MPC) strategy was proposed based on real-time Line-of-Sight (LOS) to address the issue of thruster saturation. By identifying parameters using experimental data from sea trials, the dynamic model of the semi-submersible was derived and established. The kinematic and dynamic models were combined to construct a complete MPC prediction model, and the LOS method was integrated into the MPC strategy to achieve trajectory-tracking functionality. Unlike prior research that was validated exclusively through simulations, this paper further validated the efficacy of the improved LOS-MPC in real path tracking through a series of sea trials. The experimental findings indicate that the improved LOS-MPC approach is capable of rapidly guiding the semi-submersible to precisely follow the reference trajectory. In comparison to conventional PID controllers, the LOS-MPC-based path-tracking controller demonstrates enhanced effectiveness in terms of response speed, tracking accuracy, and robustness. Full article
(This article belongs to the Special Issue Underwater Robots)
Show Figures

Figure 1

24 pages, 6065 KiB  
Article
Numerical Modeling of a Triangle Semi-Submersible Floating Wind Platform Under Wave–Current Flows
by Shuai Li, Jungang Hao, Yajun Ren, Ling Zhu, Jing Yuan and Yiyong Dong
J. Mar. Sci. Eng. 2025, 13(4), 714; https://doi.org/10.3390/jmse13040714 - 3 Apr 2025
Cited by 1 | Viewed by 600
Abstract
The semi-submersible platform is a widely used structure for supporting floating offshore wind turbines (FOWTs) in deep-sea environments where waves and currents interact. Understanding the impact of wave–current interaction (WCI) on hydrodynamic loading and the resulting platform response is essential for effective platform [...] Read more.
The semi-submersible platform is a widely used structure for supporting floating offshore wind turbines (FOWTs) in deep-sea environments where waves and currents interact. Understanding the impact of wave–current interaction (WCI) on hydrodynamic loading and the resulting platform response is essential for effective platform design. However, many existing ocean engineering software packages assume that wave and current loadings can be linearly superimposed. In this study, computational fluid dynamics (CFD) numerical simulations were performed to examine the dynamic response of a newly proposed triangle semi-submersible platform under various wave–current cases. The research underscores the significant influence of WCI on platform motion and loads, introducing nonlinearities that substantially affect both dynamic response and structural stability. Furthermore, the study reveals that WCI can mitigate vortex-induced motion (VIM), thereby enhancing platform stability by altering the force frequency, which no longer aligns with the platform’s natural frequency, thus preventing resonance. Additionally, the presence of current can intensify wave dynamics, leading to increased wave forces acting on the platform. These findings highlight the necessity of integrating WCI considerations into the design and optimization of floating wind turbine platforms to enhance their structural stability and operational performance. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 4843 KiB  
Article
Wind Farm Design with 15 MW Floating Offshore Wind Turbines in Typhoon Regions
by Kai-Tung Ma, Wen-Yu Huang, Kuan-Yi Wu and Glib Ivanov
J. Mar. Sci. Eng. 2025, 13(4), 687; https://doi.org/10.3390/jmse13040687 - 28 Mar 2025
Cited by 2 | Viewed by 2198
Abstract
Floating Offshore Wind Turbines (FOWTs) are gaining traction as a solution for harnessing wind energy in deepwater regions where traditional fixed-bottom turbines may not be viable due to water depth. This paper investigates the feasibility and optimization of a floating wind farm in [...] Read more.
Floating Offshore Wind Turbines (FOWTs) are gaining traction as a solution for harnessing wind energy in deepwater regions where traditional fixed-bottom turbines may not be viable due to water depth. This paper investigates the feasibility and optimization of a floating wind farm in a tropical cyclone (typhoon) region, using the IEA 15 MW turbine and semi-submersible floaters. Because of the extreme environment, the FOWT’s mooring system requires nine catenary chains in a 3 × 3 pattern, which has a large footprint. One challenge in the wind farm design is fitting the FOWTs in a limited area and minimizing wake effects. This research compares a linear layout and an offset grid layout, focusing on the effects of spacing and wake dynamics. The results show that while the linear layout maintains optimal power generation without energy loss, the offset grid layout, although resulting in 2% energy loss, offers greater spatial efficiency for larger-scale projects. The findings highlight the importance of balancing energy efficiency with spatial optimization, particularly for large offshore wind farms. This study explores the use of the Gauss–Curl hybrid model in wake modeling, and the methodology employed provides insights into FOWT placement and mooring system arrangement. The result concludes that a wind farm containing twelve (12) units of 15 MW wind turbines can achieve the 7.0 MW/km2 power generation density required by a regulatory government agency. It proves the technical feasibility of a wind farm congested with large mooring systems in a tropical cyclone region. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

6 pages, 177 KiB  
Editorial
Differentiable Manifolds and Geometric Structures
by Adara M. Blaga
Mathematics 2025, 13(7), 1082; https://doi.org/10.3390/math13071082 - 26 Mar 2025
Viewed by 425
Abstract
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the [...] Read more.
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the latest achievements in different areas of differential geometry, among which is counted: the geometry of differentiable manifolds with curvature restrictions such as Golden space forms, Sasakian space forms; diffeological and affine connection spaces; Weingarten and Delaunay surfaces; Chen-type inequalities for submanifolds; statistical submersions; manifolds endowed with different geometric structures (Sasakian, weak nearly Sasakian, weak nearly cosymplectic, LP-Kenmotsu, paraquaternionic); solitons (almost Ricci solitons, almost Ricci–Bourguignon solitons, gradient r-almost Newton–Ricci–Yamabe solitons, statistical solitons, solitons with semi-symmetric connections); vector fields (projective, conformal, Killing, 2-Killing) [...] Full article
(This article belongs to the Special Issue Differentiable Manifolds and Geometric Structures)
23 pages, 11154 KiB  
Article
Three-Dimensional Numerical Simulation of the Vortex-Induced Motion Response of Semi-Submersible Platforms Under Wave-Current Coupling Effect
by Yankun Yin, Jin Yan, Chushan Deng and Dapeng Zhang
J. Mar. Sci. Eng. 2025, 13(3), 550; https://doi.org/10.3390/jmse13030550 - 12 Mar 2025
Viewed by 549
Abstract
The vortex-induced motion response of semi-submersible platforms can result in fatigue damage to the mooring and riser systems, thereby compromising production safety. Consequently, investigating the characteristics and mechanisms of vortex-induced motion response under complex marine environments holds significant importance in the field of [...] Read more.
The vortex-induced motion response of semi-submersible platforms can result in fatigue damage to the mooring and riser systems, thereby compromising production safety. Consequently, investigating the characteristics and mechanisms of vortex-induced motion response under complex marine environments holds significant importance in the field of offshore engineering. This study utilizes the SA-DES numerical simulation method to establish a fluid-structure coupling model that simulates the vortex-induced motion of semi-submersible platforms under uniform flow and wave-current interactions, with a focus on key parameters such as response amplitude, frequency, and fluid forces. To ensure the accuracy of the simulations, the numerical model aligns with the physical model tests in terms of dimensions and environmental conditions. The numerical results demonstrate a strong correlation with experimental data under both uniform flow and wave-current coupling conditions, confirming the model’s validity. The results reveal a significant “LOCK-IN” phenomenon occurring within reduced velocity (dimensionless velocity, the ratio of velocity to characteristic length) range of 6 to 8 under uniform flow conditions, with the response amplitude at an incoming flow angle of 45° exceeding that at 0°. In wave-current coupling conditions, the response amplitude is generally lower than that observed under uniform flow, indicating that the presence of waves attenuates the vortex-induced motion. Furthermore, the frequency of the vortex-induced motion is found to be similar to the natural frequency of the platform’s transverse motion, suggesting that the vortex-induced motion may be attributed to a resonance phenomenon induced by pulsating lift force from vortex shedding. These findings validate the effectiveness and accuracy of the SA-DES numerical simulation method in predicting the vortex-induced motion of semi-submersible platform. Full article
(This article belongs to the Special Issue Ship Performance in Actual Seas)
Show Figures

Figure 1

17 pages, 452 KiB  
Article
Societal Context of Observed Differences in Perceptions Regarding Climate Change Impacts in the Maldives
by Miko Maekawa, Raheema Abdul Raheem, Adam Khalid, Akiko Sakamoto and Mikiyasu Nakayama
Sustainability 2025, 17(6), 2495; https://doi.org/10.3390/su17062495 - 12 Mar 2025
Viewed by 861
Abstract
The Maldives is one of the few atoll countries in the world, with an average elevation of just 1.5 m above sea level. The country faces the possibility of submersion, without adequate adaptation measures, if the current trends persist. The present study aimed [...] Read more.
The Maldives is one of the few atoll countries in the world, with an average elevation of just 1.5 m above sea level. The country faces the possibility of submersion, without adequate adaptation measures, if the current trends persist. The present study aimed to examine the societal context of observed differences in perceptions regarding climate change impacts in the two locations in atoll islands of the Maldives: Hithadhoo and Kulhudhuffushi, situated in the southernmost and northernmost islands within the country, respectively. A questionnaire survey was conducted at both locations, with follow-up semi-structured interviews. With regard to Hithadhoo, a higher percentage of residents recognize the impacts of climate change and sea level rise (SLR) and are more likely to take individual actions and encourage government action. Residents of Kulhudhuffushi reported fewer observed impacts of climate change and SLR, with a significant majority not taking specific actions or relying more on broader measures. These findings highlight the differences in perceptions regarding and responses to climate change impacts between the two areas, which can be attributed to different environmental conditions, awareness levels, and socioeconomic factors, including culture and values. This also indicates the need for tailor-made strategies and policies for climate change adaptation in different regions of a single nation. Full article
Show Figures

Figure 1

24 pages, 13464 KiB  
Article
The Mooring Optimization and Hydrodynamic Characteristics of the Combined Concept of a 15 MW FOWT with WECs
by Yi Yang, Shi Liu, Xinran Guo, Wen Chen, Tao Tao, Hao Wu and Kai Wang
J. Mar. Sci. Eng. 2025, 13(3), 545; https://doi.org/10.3390/jmse13030545 - 12 Mar 2025
Cited by 1 | Viewed by 824
Abstract
To reduce the cost of offshore wind and wave power, an innovative combined wind–wave energy generation system constituting of a 15 MW semi-submersible floating offshore wind turbine (FOWT) and four torus-type wave energy converters (WECs) is proposed. A wholly coupled numerical model of [...] Read more.
To reduce the cost of offshore wind and wave power, an innovative combined wind–wave energy generation system constituting of a 15 MW semi-submersible floating offshore wind turbine (FOWT) and four torus-type wave energy converters (WECs) is proposed. A wholly coupled numerical model of aero-hydro-elastic-servo-mooring was built to evaluate the mooring line and motion dynamics of this novel combined system. Additionally, a practical mooring optimization framework is proposed with the Latin Hypercube sampling method, Kriging model, and the combined optimization techniques of the Genetic Algorithm and Gradient Algorithm. The optimization results demonstrate that the optimized mooring scheme satisfies all the strict constraints, validating the effectiveness of the optimization method. Moreover, the hydrodynamic characteristics of the combined system and the effects of the WECs on the mooring system under both rated and extreme conditions are discussed, including changes in time-series mooring tension, power spectral density, and statistical characteristics. The research findings provide a reference for the further development and optimization of this novel combined system, contributing to the efficient utilization of offshore renewable energy. Full article
(This article belongs to the Special Issue Floating Wave–Wind Energy Converter Plants)
Show Figures

Figure 1

Back to TopTop