Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = self-assembled growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4508 KiB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 (registering DOI) - 1 Aug 2025
Viewed by 106
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Figure 1

17 pages, 7162 KiB  
Article
Microbeam X-Ray Investigation of the Structural Transition from Circularly Banded to Ringless Dendritic Assemblies in Poly(Butylene Adipate) Through Dilution with Poly(Ethylene Oxide)
by Selvaraj Nagarajan, Chia-I Chang, I-Chuan Lin, Yu-Syuan Chen, Chean-Cheng Su, Li-Ting Lee and Eamor M. Woo
Polymers 2025, 17(15), 2040; https://doi.org/10.3390/polym17152040 - 26 Jul 2025
Viewed by 291
Abstract
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous [...] Read more.
In this study, growth mechanisms are proposed to understand how banded dendritic crystal aggregates in poly(1,4-butylene adipate) (PBA) transform into straight dendrites upon dilution with a large quantity of poly(ethylene oxide) (PEO) (25–90 wt.%). In growth packing, crystal plates are deformed in numerous ways, such as bending, scrolling, and twisting in self-assembly, into final aggregated morphologies of periodic bands or straight dendrites. Diluting PBA with a significant amount of PEO uncovers intricate periodic banded assemblies, facilitating better structural analysis. Both circularly banded and straight dendritic PBA aggregates have similar basic lamellar patterns. In straight dendritic PBA spherulites, crystal plates can twist from edge-on to flat-on, similar to those in ring-banded spherulites. Therefore, twists—whether continuous or discontinuous—are not limited to the conventional models proposed for classical periodic-banded spherulites. Thus, it would not be universally accurate to claim that the periodic circular bands observed in polymers or small-molecule compounds are caused by continuous lamellar helix twists. Straight dendrites, which do not exhibit optical bands, may also involve alternate crystal twists or scrolls during growth. Iridescence tests are used to compare the differences in crystal assemblies of straight dendrites vs. circularly banded PBA crystals. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

28 pages, 944 KiB  
Review
Amphiregulin in Fibrotic Diseases and Cancer
by Tae Rim Kim, Beomseok Son, Chun Geun Lee and Han-Oh Park
Int. J. Mol. Sci. 2025, 26(14), 6945; https://doi.org/10.3390/ijms26146945 - 19 Jul 2025
Viewed by 407
Abstract
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual [...] Read more.
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual signaling pathways. Unlike high-affinity EGFR ligands, AREG induces sustained signaling that activates downstream effectors and promotes the integrin-mediated activation of transforming growth factor (TGF)-β. This enables both canonical and non-canonical EGFR signaling pathways that contribute to fibrosis. Elevated AREG expression correlates with disease severity across multiple organs, including the lungs, kidneys, liver, and heart. The therapeutic targeting of AREG has shown promising antifibrotic and anticancer effects, suggesting a dual-benefit strategy. The increasing recognition of the shared mechanisms between fibrosis and cancer further supports the development of unified treatment approaches. The inhibition of AREG has been shown to sensitize fibrotic tumor microenvironments to chemotherapy, enhancing combination therapy efficacy. Targeted therapies, such as Self-Assembled-Micelle inhibitory RNA (SAMiRNA)-AREG, have demonstrated enhanced specificity and favorable safety profiles in preclinical studies and early clinical trials. Personalized treatment based on AREG expression may improve clinical outcomes, establishing AREG as a promising precision medicine target for both fibrotic and malignant diseases. This review aims to provide a comprehensive understanding of AREG biology and evaluate its therapeutic potential in fibrosis and cancer. Full article
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 575
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 1171 KiB  
Article
Virus-like Particles Produced in the Baculovirus System Protect Hares from European Brown Hare Syndrome Virus (EBHSV) Infection
by Giulio Severi, Lucia Anzalone, Laura Madeo, Anna Serroni, Claudia Colabella, Antonella Di Paolo, Pier Mario Mangili, Elisabetta Manuali, Andrea Felici, Monica Cagiola, Antonio Lavazza, Lorenzo Capucci, Giovanni Pezzotti and Antonio De Giuseppe
Vaccines 2025, 13(7), 731; https://doi.org/10.3390/vaccines13070731 - 5 Jul 2025
Viewed by 430
Abstract
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied [...] Read more.
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied to prevent EBHS only in captive-reared hares, where vaccination is proposed as an effective strategy. Due to the lack of a cellular substrate for virus growth, commercially available vaccines are autovaccines produced from inactivated liver suspensions of hares dead for EBHS. Therefore, using a recombinant vaccine based on VP60 major capsid protein seems a viable alternative to overcome such a problem. Methods: the 6xHis C-terminal tagged VP60 protein of EBHSV was expressed and produced in baculovirus, purified by affinity chromatography and the self-assembled recombinant (rEVP60-His6) protein. To establish the protective properties of rEVP60-His6-based VLPs, hares were immunised with 50 and 100 µg of VLPs and parenterally challenged with EBHSV. Results: all hares vaccinated with 100 µg of VLPs survived after the experimental infection, demonstrating the excellent protective ability of this prototype VLPs-based vaccine. Conclusions: self-assembled EBHSV rEVP60-His6 protein was successfully produced following a rapid, simple, low-cost protocol. Although the protective efficacy of such VLPs were experimentally demonstrated, some key aspects remain to be clarified, including the duration of protection, the entity of the antibody response, and the ability to stimulate cell-mediated response. Last, an additional aspect to be evaluated is whether the use of an adjuvant can determine whether its presence improves the performance of the recombinant VLPs vaccine. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

13 pages, 1457 KiB  
Article
A Signal On-Off Ratiometric Molecularly Imprinted Electrochemical Sensor Based on MXene/PEI-MWCNTs Signal Amplification for the Detection of Diuron
by Yi He, Jin Zhu, Libo Li, Tianyan You and Xuegeng Chen
Biosensors 2025, 15(7), 433; https://doi.org/10.3390/bios15070433 - 5 Jul 2025
Viewed by 400
Abstract
Diuron (DU) is a widely used phenylurea herbicide designed to inhibit weed growth, but its high toxicity and prolonged half-life contribute significantly to environmental contamination. The majority of electrochemical (EC) sensors typically rely on a single response signal for the detection of DU, [...] Read more.
Diuron (DU) is a widely used phenylurea herbicide designed to inhibit weed growth, but its high toxicity and prolonged half-life contribute significantly to environmental contamination. The majority of electrochemical (EC) sensors typically rely on a single response signal for the detection of DU, rendering them highly susceptible to interference from variable background noise in complex environments, thereby reducing the selectivity and robustness. By integrating molecularly imprinted polymer (MIP) with a ratiometric strategy, the aforementioned issues could be solved. In this study, a novel signal on-off ratiometric MIP-EC sensor was developed based on the MXene/PEI-MWCNTs nanocomposite for the detection of DU. Positively charged PEI-MWCNTs was used as an interlayer spacer and embedded into negatively charged MXene by a simple electrostatic self-assembly method. This effectively prevented the agglomeration of MXene and enhanced its electrocatalytic performance. The MIP was synthesized via electropolymerization with DU serving as the template molecule and the selectivity was enhanced by leveraging the gate effect of MIP. Subsequently, a ratiometric MIP-EC sensor was designed by introducing [Fe(CN)6]3−/4− into the electrolyte solution as an internal reference. Additionally, the current ratio signal (IDU/I[Fe(CN)6]3−/4−) and DU concentration exhibited a good linear relationship within the range of 0.1 to 100 µM, with a limit of detection (LOD) of 30 nM (S/N = 3). In comparison with conventional single-signal MIP-EC sensing, the developed ratiometric MIP-EC sensing demonstrates superior reproducibility and accuracy. At the same time, the proposed sensor was successfully applied to the quantitative analysis of DU residues in soil samples, yielding highly satisfactory results. Full article
(This article belongs to the Special Issue Advances in Biosensors Based on Framework Materials)
Show Figures

Figure 1

16 pages, 9859 KiB  
Article
In Vitro Pollen Viability, Fluorescence Microscopy, and Transcriptomic Comparison of Self-Pollinated and Cross-Pollinated Inflorescence of Artemisia annua L. to Analyze Candidate Self-Incompatibility-Associated Genes
by Yimei Zang, Shengrong Cui, Shugen Wei, Limei Pan, Lingyun Wan, Xiaojun Ma, Zuliang Luo, Jine Fu and Chongnan Wang
Horticulturae 2025, 11(7), 790; https://doi.org/10.3390/horticulturae11070790 - 3 Jul 2025
Viewed by 356
Abstract
Artemisia annua L., the primary source of the antimalarial compound artemisinin, is of great importance for malaria treatment. However, its self-incompatibility (SI) restricts selfing breeding and results in unstable artemisinin content which is vulnerable to environmental fluctuations. To address this, our study employed [...] Read more.
Artemisia annua L., the primary source of the antimalarial compound artemisinin, is of great importance for malaria treatment. However, its self-incompatibility (SI) restricts selfing breeding and results in unstable artemisinin content which is vulnerable to environmental fluctuations. To address this, our study employed fluorescence microscopy and transcriptomic analysis on stigmas post self- and cross-pollination to explore the molecular mechanisms of SI in Artemisia annua L. Fluorescence microscopy observations indicate that, three hours after pollination, cross-pollinated pollen tubes mostly exhibit normal filamentous growth, whereas the growth of self-pollinated pollen tubes is significantly inhibited, with most appearing as growth-arrested pollen tubes. Using transcriptome analysis, we generated approximately 25.03 GB of data assembled into 69,498 genes and identified 620 differentially expressed genes (DEGs), including 10 classified as SI response genes. Several specific SI-related candidate genes were identified, such as the S-locus receptor kinase (SRK), Calmodulin-like (CML), modifier (MOD), and exocyst complex component (EXO) genes, between AasB and AahA. These DEGs provide vital information for studying A. annua’s SI molecular mechanisms. The putative DEGs between the two groups provided important information for a further study of the molecular mechanisms of SI in A. annua. Candidate SI-associated genes are essential for the genetic engineering of A. annua to overcome SI and to avoid breeding inbred lines. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

15 pages, 2226 KiB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 572
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 660
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

13 pages, 2453 KiB  
Article
Paramagnetic and Luminescent Properties of Gd(III)/Eu(III) Ascorbate Coordination Polymers
by Marco Ricci and Fabio Carniato
Molecules 2025, 30(13), 2689; https://doi.org/10.3390/molecules30132689 - 21 Jun 2025
Viewed by 324
Abstract
Gadolinium-based contrast agents (GBCAs) are the gold standard as MRI probes but are nowadays facing medical limitations and environmental concerns. To address these issues, novel strategies focus on the optimization of Gd(III)-based probes. One promising approach involves incorporating Gd(III) into nanoparticles, particularly coordination [...] Read more.
Gadolinium-based contrast agents (GBCAs) are the gold standard as MRI probes but are nowadays facing medical limitations and environmental concerns. To address these issues, novel strategies focus on the optimization of Gd(III)-based probes. One promising approach involves incorporating Gd(III) into nanoparticles, particularly coordination polymers, which offer improved relaxivity. In this study, we explore the self-assembly of Gd(III) ions with ascorbate ligand, forming extended coordination polymer architectures. Our investigation focuses on understanding the impact of nanoparticles’ growth and aggregation on their relaxivity properties. Notably, the controlled aggregation process leads to a different distribution of the Gd(III) in the surface and in the bulk of the nanoparticles, mainly responsible for their longitudinal relaxivity. Additionally, the introduction of Eu(III) into the network enables the development of a dual-modal probe with paramagnetic and optical features. Full article
(This article belongs to the Special Issue Metal Complexes for Optical and Electronics Applications)
Show Figures

Graphical abstract

57 pages, 11752 KiB  
Review
Cellulose-Based Hybrid Hydrogels for Tissue Engineering Applications: A Sustainable Approach
by Elizabeth Vázquez-Rivas, Luis Alberto Desales-Guzmán, Juan Horacio Pacheco-Sánchez and Sofia Guillermina Burillo-Amezcua
Gels 2025, 11(6), 438; https://doi.org/10.3390/gels11060438 - 6 Jun 2025
Viewed by 3186
Abstract
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves [...] Read more.
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves into current research focused on creating advanced cellulose-based hydrogels with tailored mechanical, biological, chemical, and surface properties. These hydrogels show promise in healing, regenerating, and even replacing human tissues and organs. The synthesis of these hydrogels employs a range of innovative techniques, including supramolecular chemistry, click chemistry, enzyme-induced crosslinking, ultrasound, photo radiation, high-energy ionizing radiation, 3D printing, and other emerging methods. In the realm of tissue engineering, various types of hydrogels are explored, such as stimuli-responsive, hybrid, injectable, bio-printed, electrospun, self-assembling, self-healing, drug-releasing, biodegradable, and interpenetrating network hydrogels. Moreover, these materials can be further enhanced by incorporating cell growth factors, biological molecules, or by loading them with cells or drugs. Looking ahead, future research aims to engineer and tailor hydrogels to meet specific needs. This includes exploring safer and more sustainable materials and synthesis techniques, identifying less invasive application methods, and translating these studies into practical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Graphical abstract

28 pages, 6876 KiB  
Article
Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification
by Wei Wang, Ge Chen, Jin Yan, Gaoyong Zhang, Zihao Weng, Xianzhang Wang, Hongchen Pang, Lijun Wang and Dapeng Zhang
Nanomaterials 2025, 15(11), 872; https://doi.org/10.3390/nano15110872 - 5 Jun 2025
Viewed by 611
Abstract
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature [...] Read more.
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature interaction, energy harvesting, data sensing, and enhancing living conditions. Presently, doping composite dielectric materials and surface modification techniques are the predominant methods for improving the power generation capacity of TENGs, particularly L-S TENGs. However, studies exploring the combined effects of these two approaches to enhance the power generation capacity of TENGs remain relatively scarce. Following a review of existing literature on the use of composite material doping and surface modification to improve the power generation performance of L-S TENGs, this paper proposes an experimental framework termed “self-assembled surface TENG@carbonyl iron particle doping (SAS-TENG@CIP)” to investigate the integrated power generation effects of L-S TENGs when combining these two methods. Research cases and data results indicate that, for TENGs exhibiting capacitor-like properties, the enhancement of power generation performance through composite material doping and superhydrophobic surface modification is not limitless. Each process possesses its own inherent threshold. When these thresholds are surpassed, the percolation of current induced by material doping and electrostatic breakdown (EB) triggered by surface modification can lead to a notable decline in the power output capacity of L-S TENGs. Consequently, in practical applications moving forward, fully realizing the synergistic potential of these methods necessitates a profound understanding of the underlying scientific mechanisms. The conclusions and insights presented in this paper may facilitate their complex integration and contribute to enhancing power generation efficiency in future research. Full article
(This article belongs to the Special Issue Advanced Technology in Nanogenerators and Self-Powered Sensors)
Show Figures

Figure 1

36 pages, 13837 KiB  
Review
MXene/MOF-Derived Composites with Multidimensional Nanostructures: Synthesis Methods, Performance, and Applications in the Field of Energy Storage
by Shufan Feng, Shilong Wen, Rutao Wang, Xiaokun Yang, Xiangsen Yuan, Yuxuan Liu, Jingyun Ma and Zhaoqiang Li
Nanomaterials 2025, 15(11), 841; https://doi.org/10.3390/nano15110841 - 30 May 2025
Viewed by 713
Abstract
Metal–organic frameworks (MOFs), formed by the self-assembly of metal ions/clusters and organic linkers, have attracted considerable attention due to their well-exposed active sites, exceptionally high porosity, and diversified pore architectures. MOF-derived materials obtained through high-temperature pyrolysis or composite structural design not only inherit [...] Read more.
Metal–organic frameworks (MOFs), formed by the self-assembly of metal ions/clusters and organic linkers, have attracted considerable attention due to their well-exposed active sites, exceptionally high porosity, and diversified pore architectures. MOF-derived materials obtained through high-temperature pyrolysis or composite structural design not only inherit the porous framework advantages of their precursors but also demonstrate significantly enhanced electrical conductivity and structural stability via the formation of carbon-based frameworks and in situ transformation of metallic species. However, conventional MOF-derived materials struggle to address persistent technical challenges in contemporary energy storage systems, particularly those requiring ultralong cycling stability and ultrahigh-rate capability under practical operating conditions. The integration of MXene, characterized by its abundant surface functional groups (-O, -OH, -F) and exceptional electrical conductivity, with MOF-derived materials presents a viable strategy to address these challenges. Multidimensional nanocomposites constructed through in situ growth and self-assembly techniques synergistically integrate MXene’s conductive network scaffolding effect with the structural tunability of MOF-derived frameworks. This unique architecture enables the following: (i) enhanced exposure of electroactive sites, (ii) optimized ion diffusion kinetics, (iii) mechanical integrity maintenance, collectively boosting the applicability of MXene/MOF hybrids in advanced energy storage systems. This review summarizes the synthesis methods, energy storage performance, and applications of multidimensional nanostructured MXene/MOF-derived composites. Finally, it discusses the opportunities and challenges for MXene/MOF-derived composites in future energy storage applications. Full article
Show Figures

Graphical abstract

27 pages, 12372 KiB  
Article
A Self-Adhesive Ginsenoside Rk3/Metformin-Loaded Hydrogel Microneedle for Management of Systemic Sclerosis
by Yuanyuan Wang, Caiyun Zhong, Kexin Wang, Shihong Shen and Daidi Fan
Gels 2025, 11(6), 384; https://doi.org/10.3390/gels11060384 - 23 May 2025
Viewed by 615
Abstract
Microcirculation damage, dermal thickening, and difficulty in the spatiotemporal coordination of key platelet factor 4 (CXCL4) and transforming growth factor-β (TGF-β) contribute to the lack of effective treatments for systemic sclerosis (scleroderma, SSc). To address these challenges, we proposed a novel synergistic drug [...] Read more.
Microcirculation damage, dermal thickening, and difficulty in the spatiotemporal coordination of key platelet factor 4 (CXCL4) and transforming growth factor-β (TGF-β) contribute to the lack of effective treatments for systemic sclerosis (scleroderma, SSc). To address these challenges, we proposed a novel synergistic drug combination of ginsenoside Rk3 (CXCL4 regulator) and metformin (Met, TGF-β regulator) based on molecular docking and developed an ultra-long release, dual-target regulation hydrogel microneedle system (Rk3/Met URS MN). The rapidly dissolving tips of this hydrogel microneedle consisted of polyvinyl alcohol and polyvinylpyrrolidone, and were loaded with polydopamine-coated, coordination-induced self-assembled Rk3/Met nanomedicines. These micro-tips could spatiotemporally synchronize transdermal delivery of the hydrophobic Rk3 and hydrophilic Met, providing ultra-long release for up to 10 days with a single administration. The recombinant collagen CF-1552/oxidized pullulan-based (CAOP) hydrogel backing exhibited skin self-adhesiveness and excellent mechanical properties and could perform localized moisture retention and free radical scavenging at the lesion site. In vitro and in vivo efficacy studies, along with bioinformatics analysis of RNA sequencing, demonstrated that the Rk3/Met URS MN achieved immune modulation, anti-inflammatory effects, angiogenesis promotion, and antifibrosis in SSc through synergistic CXCL4/TGF-β dual-target regulation. Notably, on the 10th day, the dermal thickness decreased from 248.97 ± 21.3 μm to 152.7 ± 18.1 μm, with no significant difference from the normal group, indicating its significant potential in clinical applications in SSc. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 6642 KiB  
Article
Synergistic Effects of Paenibacillus polymyxa NBmelon-1 Inoculation and Grafting Restructure of Rhizosphere Microbiome and Enhanced Disease Resistance in Melon Self-Rootstocks
by Wenjie Dong, Quanyu Zang, Yuhong Wang, Erlei Ma, Weihong Ding, Leiyan Yan and Fangmin Hao
Microorganisms 2025, 13(6), 1172; https://doi.org/10.3390/microorganisms13061172 - 22 May 2025
Viewed by 532
Abstract
Rhizosphere microorganisms play pivotal roles in mitigating the challenges associated with continuous cropping in melon cultivation. While grafting and plant growth-promoting rhizobacteria (PGPR) independently influence rhizosphere microbial communities, their combined effects remain largely unexplored. This study investigates the synergistic regulation of Paenibacillus polymyxa [...] Read more.
Rhizosphere microorganisms play pivotal roles in mitigating the challenges associated with continuous cropping in melon cultivation. While grafting and plant growth-promoting rhizobacteria (PGPR) independently influence rhizosphere microbial communities, their combined effects remain largely unexplored. This study investigates the synergistic regulation of Paenibacillus polymyxa NBmelon-1 inoculation and grafting on rhizosphere microbiome assembly, plant performance, and disease resistance in melon self-rootstocks. Field experiments demonstrated that NBmelon-1 inoculation significantly enhanced rootstock stem diameter (95.3% increase in spring) and root development, achieving a graft survival rate exceeding 95%. The combined treatment (NB+GJ) increased scion fruit yield by 29.8% in autumn and 36.5% in spring, as well as the single-fruit weight by 22.5% in autumn and 37.3% in spring, while maintaining fruit morphology. Integrated 16S rRNA and ITS sequencing revealed that the NB+GJ treatment selectively enriched antagonistic bacterial phyla (e.g., Firmicutes and Actinobacteriota) and suppressed pathogenic fungi (e.g., Fusarium and Melanconiella). Seasonal shifts in microbial diversity and functional gene profiles underscored the dynamic interplay between treatments and environmental factors. These findings establish a novel strategy for optimizing melon self-rootstock grafting systems and sustainably managing soil-borne diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop