Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = selective PPARα modulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1531 KiB  
Review
Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation
by Ao Liu, Mengting Huang, Yuwen Xi, Xiaoling Deng and Keshu Xu
Biomedicines 2025, 13(6), 1422; https://doi.org/10.3390/biomedicines13061422 - 10 Jun 2025
Viewed by 1064
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular interpreters of systemic crosstalk in MAFLD. We delineate how TF networks integrate metabolic, immune, and gut microbial signals to manage hepatic steatosis, inflammation, and fibrosis. For instance, metabolic TFs such as peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor (FXR) are responsible for regulating lipid oxidation and bile acid homeostasis, while immune-related TFs like signal transducer and activator of transcription 3 (STAT3) modulate inflammatory cascades involving immune cells. Emerging evidence highlights microbiota-responsive TFs, like hypoxia-inducible factor 2α (HIF2α) and aryl hydrocarbon receptor (AHR), linking microbial metabolite signaling to hepatic metabolic reprogramming. Critically, TF-centric therapeutic strategies, including selective TF-agonists, small molecules targeted to degrade TF, and microbiota modulation, hold considerable promise for treating MAFLD. By synthesizing these insights, this review underscores the necessity to dissect TF-mediated interorgan communication and proposes a roadmap for translating mechanism discoveries into precision therapies. Future research should prioritize the use of multi-omics approaches to map TF interactions and validate their clinical relevance to MAFLD. Full article
(This article belongs to the Special Issue New Insights Into Non-Alcoholic Fatty Liver Diseases)
Show Figures

Figure 1

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2436
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

30 pages, 6186 KiB  
Article
Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds
by Arwa Al Subait, Raghad H. Alghamdi, Rizwan Ali, Amani Alsharidah, Sarah Huwaizi, Reem A. Alkhodier, Aljawharah Saud Almogren, Barrak A. Alzomia, Ahmed Alaskar and Mohamed Boudjelal
Int. J. Mol. Sci. 2025, 26(2), 736; https://doi.org/10.3390/ijms26020736 - 16 Jan 2025
Cited by 3 | Viewed by 2189 | Correction
Abstract
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly [...] Read more.
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity. Using this reporter system, we screened 240 compounds representing kinase inhibitors, epigenetic modulators, and stem cell differentiators and identified compounds that inhibit the PPARα-activated PPARE-Luciferase reporter in the KAIMRC1 cell. We selected 11 compounds (five epigenetic modulators, two stem cell differentiators, and four kinase inhibitors) that inhibited the reporter by at least 40% compared to the controls (DMSO-treated cells). We tested them in a dose-dependent manner and measured the KAIMRC1 cell viability after 48 h. All 11 compounds induced the cell killing at different IC50 values. We selected two compounds, PHA665752 and NSC3852, to dissect how they kill KAIMRC1 cells compared to the antagonist GW6741. First, molecular docking and a TR-FRET PPARα binding assay showed that compared to GW6471, these two compounds could not bind to PPARα. This means they inhibit the PPARα pathway independently rather than binding to the receptor. We further confirmed that PHA665752 and NSC3852 induce cell killing depending on the level of PPARα expression, and as such, their potency for killing the SW620 colon cancer cell line that expresses the lowest level of PPARα was less potent than for the KAIMRC1 and MDA-MB-231 cell lines. Further, using an apoptosis array and fatty acid gene expression panel, we found that both compounds regulate the PPARα pathway by controlling the genes involved in the fatty acid oxidation process. Our findings suggest that these two compounds have opposite effects involving fatty acid oxidation in the KAIMRC1 breast cancer cell line. Although we do not fully understand their mechanism of action, our data provide new insights into the potential role of these compounds in targeting breast cancer cells. Full article
(This article belongs to the Special Issue Recombinant Proteins, Protein Folding and Drug Discovery)
Show Figures

Figure 1

12 pages, 1774 KiB  
Article
Unburned Tobacco Smoke Affects Neuroinflammation-Related Pathways in the Rat Mesolimbic System
by Camilla Morosini, Fabio Vivarelli, Laura Rullo, Emilia Volino, Loredana Maria Losapio, Moreno Paolini, Patrizia Romualdi, Donatella Canistro and Sanzio Candeletti
Int. J. Mol. Sci. 2024, 25(10), 5259; https://doi.org/10.3390/ijms25105259 - 11 May 2024
Cited by 3 | Viewed by 2080
Abstract
Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged [...] Read more.
Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 2383 KiB  
Review
Metabolic-Dysfunction-Associated Steatotic Liver Disease—Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments
by Hidekatsu Yanai, Hiroki Adachi, Mariko Hakoshima, Sakura Iida and Hisayuki Katsuyama
Int. J. Mol. Sci. 2023, 24(20), 15473; https://doi.org/10.3390/ijms242015473 - 23 Oct 2023
Cited by 82 | Viewed by 11698
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease that affects more than a quarter of the global population and whose prevalence is increasing worldwide due to the pandemic of obesity. Obesity, impaired glucose metabolism, high blood pressure and atherogenic dyslipidemia are [...] Read more.
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease that affects more than a quarter of the global population and whose prevalence is increasing worldwide due to the pandemic of obesity. Obesity, impaired glucose metabolism, high blood pressure and atherogenic dyslipidemia are risk factors for MASLD. Therefore, insulin resistance may be closely associated with the development and progression of MASLD. Hepatic entry of increased fatty acids released from adipose tissue, increase in fatty acid synthesis and reduced fatty acid oxidation in the liver and hepatic overproduction of triglyceride-rich lipoproteins may induce the development of MASLD. Since insulin resistance also induces atherosclerosis, the leading cause for death in MASLD patients is cardiovascular disease. Considering that the development of cardiovascular diseases determines the prognosis of MASLD patients, the therapeutic interventions for MASLD should reduce body weight and improve coronary risk factors, in addition to an improving in liver function. Lifestyle modifications, such as improved diet and increased exercise, and surgical interventions, such as bariatric surgery and intragastric balloons, have shown to improve MASLD by reducing body weight. Sodium glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been shown to improve coronary risk factors and to suppress the occurrence of cardiovascular diseases. Both SGLT2i and GLP-1 have been reported to improve liver enzymes, hepatic steatosis and fibrosis. We recently reported that the selective peroxisome proliferator-activated receptor-alpha (PPARα) modulator pemafibrate improved liver function. PPARα agonists have multiple anti-atherogenic properties. Here, we consider the pathophysiology of MASLD and the mechanisms of action of such drugs and whether such drugs and the combination therapy of such drugs could be the treatments for MASLD. Full article
Show Figures

Figure 1

18 pages, 2944 KiB  
Review
Novel Selective PPARα Modulator Pemafibrate for Dyslipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), and Atherosclerosis
by Shizuya Yamashita, Manfredi Rizzo, Ta-Chen Su and Daisaku Masuda
Metabolites 2023, 13(5), 626; https://doi.org/10.3390/metabo13050626 - 2 May 2023
Cited by 23 | Viewed by 5376
Abstract
Statins, the intestinal cholesterol transporter inhibitor (ezetimibe), and PCSK9 inhibitors can reduce serum LDL-C levels, leading to a significant reduction in cardiovascular events. However, these events cannot be fully prevented even when maintaining very low LDL-C levels. Hypertriglyceridemia and reduced HDL-C are known [...] Read more.
Statins, the intestinal cholesterol transporter inhibitor (ezetimibe), and PCSK9 inhibitors can reduce serum LDL-C levels, leading to a significant reduction in cardiovascular events. However, these events cannot be fully prevented even when maintaining very low LDL-C levels. Hypertriglyceridemia and reduced HDL-C are known as residual risk factors for ASCVD. Hypertriglyceridemia and/or low HDL-C can be treated with fibrates, nicotinic acids, and n-3 polyunsaturated fatty acids. Fibrates were demonstrated to be PPARα agonists and can markedly lower serum TG levels, yet were reported to cause some adverse effects, including an increase in the liver enzyme and creatinine levels. Recent megatrials of fibrates have shown negative findings on the prevention of ASCVD, which were supposed to be due to their low selectivity and potency for binding to PPAR α. To overcome the off-target effects of fibrates, the concept of a selective PPARα modulator (SPPARMα) was proposed. Kowa Company, Ltd. (Tokyo, Japan), has developed pemafibrate (K-877). Compared with fenofibrate, pemafibrate showed more favorable effects on the reduction of TG and an increase in HDL-C. Fibrates worsened liver and kidney function test values, although pemafibrate showed a favorable effect on liver function test values and little effect on serum creatinine levels and eGFR. Minimal drug–drug interactions of pemafibrate with statins were observed. While most of the fibrates are mainly excreted from the kidney, pemafibrate is metabolized in the liver and excreted into the bile. It can be used safely even in patients with CKD, without a significant increase in blood concentration. In the megatrial of pemafibrate, PROMINENT, for dyslipidemic patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia, and low HDL-C and LDL-C levels, the incidence of cardiovascular events did not decrease among those receiving pemafibrate compared to those receiving the placebo; however, the incidence of nonalcoholic fatty liver disease was lower. Pemafibrate may be superior to conventional fibrates and applicable to CKD patients. This current review summarizes the recent findings on pemafibrate. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Figure 1

21 pages, 4089 KiB  
Article
MPEP Attenuates Intrahepatic Fat Accumulation in Obese Mice
by Andrea Ferrigno, Marta Cagna, Oriana Bosco, Michelangelo Trucchi, Clarissa Berardo, Ferdinando Nicoletti, Mariapia Vairetti and Laura G. Di Pasqua
Int. J. Mol. Sci. 2023, 24(7), 6076; https://doi.org/10.3390/ijms24076076 - 23 Mar 2023
Cited by 5 | Viewed by 2810
Abstract
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with [...] Read more.
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1β and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis. Full article
Show Figures

Figure 1

15 pages, 3925 KiB  
Review
Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Activated Receptors (PPARs)
by Enrico D’Aniello, Pietro Amodeo and Rosa Maria Vitale
Mar. Drugs 2023, 21(2), 89; https://doi.org/10.3390/md21020089 - 26 Jan 2023
Cited by 11 | Viewed by 4709
Abstract
Peroxisome proliferator-activated receptors α, γ and β/δ (PPARα, PPARγ, and PPARβ/δ) are a family of ligand-activated transcriptional factors belonging to the superfamily of nuclear receptors regulating the expression of genes involved in lipid and carbohydrate metabolism, energy homeostasis, inflammation, and the immune response. [...] Read more.
Peroxisome proliferator-activated receptors α, γ and β/δ (PPARα, PPARγ, and PPARβ/δ) are a family of ligand-activated transcriptional factors belonging to the superfamily of nuclear receptors regulating the expression of genes involved in lipid and carbohydrate metabolism, energy homeostasis, inflammation, and the immune response. For this reason, they represent attractive targets for the treatment of a variety of metabolic diseases and, more recently, for neurodegenerative disorders due to their emerging neuroprotective effects. The degree of activation, from partial to full, along with the selectivity toward the different isoforms, greatly affect the therapeutic efficacy and the safety profile of PPAR agonists. Thus, there is a high interest toward novel scaffolds with proper combinations of activity and selectivity. This review intends to provide an overview of the discovery, optimization, and structure–activity relationship studies on PPAR modulators from marine sources, along with the structural and computational studies that led to their identification and/or elucidation, and rationalization of their mechanisms of action. Full article
Show Figures

Figure 1

17 pages, 7046 KiB  
Article
Recombinant Humanized IgG1 Antibody Promotes Reverse Cholesterol Transport through FcRn-ERK1/2-PPARα Pathway in Hepatocytes
by Zhonghao Li, Qi Zhang, Xianyan Liu and Ming Zhao
Int. J. Mol. Sci. 2022, 23(23), 14607; https://doi.org/10.3390/ijms232314607 - 23 Nov 2022
Cited by 3 | Viewed by 2457
Abstract
Hyperlipidemia-associated lipid disorders are considered the cause of atherosclerotic cardiovascular disease. Reverse cholesterol transport (RCT) is a mechanism by which excess peripheral cholesterol is transported to the liver and further converted into bile acid for excretion from the body in feces, which contributes [...] Read more.
Hyperlipidemia-associated lipid disorders are considered the cause of atherosclerotic cardiovascular disease. Reverse cholesterol transport (RCT) is a mechanism by which excess peripheral cholesterol is transported to the liver and further converted into bile acid for excretion from the body in feces, which contributes to reducing hyperlipidemia as well as cardiovascular disease. We previously found that the recombinant humanized IgG1 antibody promotes macrophages to engulf lipids and increases cholesterol efflux to high-density lipoprotein (HDL) through ATP-binding cassette sub-family A1 (ABCA1), one of the key proteins related to RCT. In the present study, we explored other RCT related proteins expression on hepatocytes, including scavenger receptor class B type I (SR-BI), apolipoprotein A-I (ApoA-I), and apolipoprotein A-II (ApoA-II), and its modulation mechanism involved. We confirmed that the recombinant humanized IgG1 antibody selectively activated ERK1/2 to upregulate SR-BI, ApoA-I, and ApoA-II expression in mice liver and human hepatocellular carcinoma cell lines HepG2 cells. The rate-limiting enzymes of bile acid synthesis, including cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), exhibited a significant increase when treated with the recombinant humanized IgG1 antibody, as well as increased excretion of bile acids in feces. Besides, abolishment or mutation of peroxisome proliferator-activated receptor α (PPARα)/RXR binding site on SR-BI promoter eliminated SR-BI reporter gene luciferase activity even in the presence of the recombinant humanized IgG1 antibody. Knock down the neonatal Fc receptor (FcRn) on hepatocytes impaired the effect of recombinant humanized IgG1 antibody on activation of ERK1/2, as well as upregulation of SR-BI, ApoA-I, and ApoA-II expression. In conclusion, one of the mechanisms on the recombinant humanized IgG1 antibody attenuates hyperlipidemia in ApoE−/− mice model fed with high-fat-diet might be through reinforcement of liver RCT function in an FcRn-ERK1/2-PPARα dependent manner. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2465 KiB  
Article
Higher Responsiveness for Women, High Transaminase Levels, and Fat Percentage to Pemafibrate Treatment for NAFLD
by Takanobu Iwadare, Takefumi Kimura, Hideo Kunimoto, Naoki Tanaka, Shun-ichi Wakabayashi, Tomoo Yamazaki, Taiki Okumura, Hiroyuki Kobayashi, Yuki Yamashita, Ayumi Sugiura, Satoru Joshita and Takeji Umemura
Biomedicines 2022, 10(11), 2806; https://doi.org/10.3390/biomedicines10112806 - 4 Nov 2022
Cited by 7 | Viewed by 2666
Abstract
Aim: Pemafibrate (PEM) is a novel selective peroxisome proliferator-activated receptor alpha modulator that is effective for hypertriglyceridemia accompanying non-alcoholic fatty liver disease (HTG-NAFLD). This study aimed to identify the predictors of PEM efficacy for HTG-NAFLD in clinical practice. Methods: We retrospectively enrolled 88 [...] Read more.
Aim: Pemafibrate (PEM) is a novel selective peroxisome proliferator-activated receptor alpha modulator that is effective for hypertriglyceridemia accompanying non-alcoholic fatty liver disease (HTG-NAFLD). This study aimed to identify the predictors of PEM efficacy for HTG-NAFLD in clinical practice. Methods: We retrospectively enrolled 88 HTG-NAFLD patients treated with PEM for 6 months for the analysis of routine blood and body composition testing. A PEM response was defined as a decrease in serum alanine aminotransferase (ALT) of >30% compared with pre-treatment level. The clinical features related to PEM responsiveness were statistically tested between responders and non-responders. Results: All 88 patients completed the 6 month drug regimen without any adverse effects. PEM treatment significantly decreased liver enzymes, triglycerides, and total cholesterol levels, without any detectable impact on body weight or body composition. Comparisons of baseline clinical features revealed female and greater aspartate aminotransferase (AST), ALT, and fat mass % levels to be significantly associated with a PEM response. The optimal cut-off values to predict responders as determined by receiver operating characteristic analysis were AST 45 U/L, ALT 60 U/L, and fat mass 37%. Conclusions: Female HTG-NAFLD patients with higher transaminase and fat mass % levels may be preferentially indicated for PEM treatment. Additional large-scale prospective studies are warranted to verify our results. Full article
Show Figures

Graphical abstract

15 pages, 1695 KiB  
Article
The Effects of Nettle Extract Consumption on Liver PPARs, SIRT1, ACOX1 and Blood Lipid Levels in Male and Female C57Bl6 Mice
by Sandra Domjanić Drozdek, Dyana Odeh, Domagoj Đikić, Romana Gračan, Nada Oršolić, Verica Dragović-Uzelac, Lana Feher-Turković, Petar Dragičević and Irena Landeka Jurčević
Nutrients 2022, 14(21), 4469; https://doi.org/10.3390/nu14214469 - 25 Oct 2022
Cited by 6 | Viewed by 2701
Abstract
The aim of this study was to evaluate how nettle (Urtica dioica L.) water extract consumption would interact with regulators of peroxysomal lipid oxidation, histone deacetylase, and markers of oxidative stress in the liver and blood lipid levels in male and female [...] Read more.
The aim of this study was to evaluate how nettle (Urtica dioica L.) water extract consumption would interact with regulators of peroxysomal lipid oxidation, histone deacetylase, and markers of oxidative stress in the liver and blood lipid levels in male and female C57Bl6 mice. Metabolically unchallenged (healthy) mice (n = 5 per sex) were treated with a nettle extract in a dose of 40 mg of total polyphenols in the extract per kg mice body weight. The nettle extract was applied daily along with normal diet for 15 days. The serum triglycerides, cholesterol, HDL, LDL, and liver PPAR-α, PPAR-γ, PGC-1-α, ACOX1, SIRT1, MDA, SOD, CAT, and GSH were compared between exposed and unexposed (control) animals. In males, the PPAR-α, PGC1-α, and ACOX1 levels together with systemic HDL cholesterol were significantly (p ≤ 0.05) increased while the LDL cholesterol decreased (p ≤ 0.05). In females, no changes in PPAR-α and PGC1-α or serum lipids were noted, but the ACOX1 content in the liver was significantly (p ≤ 0.05) increased. The SIRT1 activity increased (p ≤ 0.05) only in females. In both sexes, the PPAR-γ levels were not significantly (p ≤ 0.05) affected in either sex. The results indicate that nettle plant extract has the potential to modulate selected transcriptional factors and histone deacetylase in vivo, with certain sex differences, which should be studied further in similar models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 4791 KiB  
Article
Clinically Relevant Dose of Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα), Lowers Serum Triglyceride Levels by Targeting Hepatic PPARα in Mice
by Zhe Zhang, Pan Diao, Xuguang Zhang, Takero Nakajima, Takefumi Kimura and Naoki Tanaka
Biomedicines 2022, 10(7), 1667; https://doi.org/10.3390/biomedicines10071667 - 11 Jul 2022
Cited by 13 | Viewed by 3659
Abstract
Pemafibrate (PEM) is a novel lipid-lowering drug classified as a selective peroxisome proliferator-activated receptor α (PPARα) modulator whose binding efficiency to PPARα is superior to that of fibrates. This agent is also useful for non-alcoholic fatty liver disease and primary biliary cholangitis with [...] Read more.
Pemafibrate (PEM) is a novel lipid-lowering drug classified as a selective peroxisome proliferator-activated receptor α (PPARα) modulator whose binding efficiency to PPARα is superior to that of fibrates. This agent is also useful for non-alcoholic fatty liver disease and primary biliary cholangitis with dyslipidemia. The dose of PEM used in some previous mouse experiments is often much higher than the clinical dose in humans; however, the precise mechanism of reduced serum triglyceride (TG) for the clinical dose of PEM has not been fully evaluated. To address this issue, PEM at a clinically relevant dose (0.1 mg/kg/day) or relatively high dose (0.3 mg/kg/day) was administered to male C57BL/6J mice for 14 days. Clinical dose PEM sufficiently lowered circulating TG levels without apparent hepatotoxicity in mice, likely due to hepatic PPARα stimulation and the enhancement of fatty acid uptake and β-oxidation. Interestingly, PPARα was activated only in the liver by PEM and not in other tissues. The clinical dose of PEM also increased serum/hepatic fibroblast growth factor 21 (FGF21) without enhancing hepatic lipid peroxide 4-hydroxynonenal or inflammatory signaling. In conclusion, a clinically relevant dose of PEM in mice efficiently and safely reduced serum TG and increased FGF21 targeting hepatic PPARα. These findings may help explain the multiple beneficial effects of PEM observed in the clinical setting. Full article
Show Figures

Figure 1

19 pages, 3756 KiB  
Article
Fatty Acid Fingerprints and Hyaluronic Acid in Extracellular Vesicles from Proliferating Human Fibroblast-like Synoviocytes
by Anne-Mari Mustonen, Tommi Paakkonen, Johanna Matilainen, Kirsi Rilla, Reijo Käkelä, Marjo Malinen, Piia Takabe, Sanna Oikari, Janne Capra, Sanna P. Sihvo, Pauliina Ryökäs and Petteri Nieminen
Int. J. Mol. Sci. 2022, 23(10), 5613; https://doi.org/10.3390/ijms23105613 - 17 May 2022
Cited by 7 | Viewed by 3188
Abstract
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator [...] Read more.
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1–3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases. Full article
(This article belongs to the Special Issue Musculoskeletal Development and Skeletal Pathophysiologies)
Show Figures

Figure 1

17 pages, 1987 KiB  
Article
Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis
by Kentaro Murakami, Yusuke Sasaki, Masato Asahiyama, Wataru Yano, Toshiaki Takizawa, Wakana Kamiya, Yoshihiro Matsumura, Motonobu Anai, Tsuyoshi Osawa, Jean-Charles Fruchart, Jamila Fruchart-Najib, Hiroyuki Aburatani, Juro Sakai, Tatsuhiko Kodama and Toshiya Tanaka
Cells 2022, 11(4), 720; https://doi.org/10.3390/cells11040720 - 18 Feb 2022
Cited by 23 | Viewed by 8890
Abstract
Ballooning degeneration of hepatocytes is a major distinguishing histological feature of non-alcoholic steatosis (NASH) progression that can lead to cirrhosis and hepatocellular carcinoma (HCC). In this study, we evaluated the effect of the selective PPARα modulator (SPPARMα) pemafibrate (Pema) and sodium-glucose cotransporter 2 [...] Read more.
Ballooning degeneration of hepatocytes is a major distinguishing histological feature of non-alcoholic steatosis (NASH) progression that can lead to cirrhosis and hepatocellular carcinoma (HCC). In this study, we evaluated the effect of the selective PPARα modulator (SPPARMα) pemafibrate (Pema) and sodium-glucose cotransporter 2 (SGLT2) inhibitor tofogliflozin (Tofo) combination treatment on pathological progression in the liver of a mouse model of NASH (STAM) at two time points (onset of NASH progression and HCC survival). At both time points, the Pema and Tofo combination treatment significantly alleviated hyperglycemia and hypertriglyceridemia. The combination treatment significantly reduced ballooning degeneration of hepatocytes. RNA-seq analysis suggested that Pema and Tofo combination treatment resulted in an increase in glyceroneogenesis, triglyceride (TG) uptake, lipolysis and liberated fatty acids re-esterification into TG, lipid droplet (LD) formation, and Cidea/Cidec ratio along with an increased number and reduced size and area of LDs. In addition, combination treatment reduced expression levels of endoplasmic reticulum stress-related genes (Ire1a, Grp78, Xbp1, and Phlda3). Pema and Tofo treatment significantly improved survival rates and reduced the number of tumors in the liver compared to the NASH control group. These results suggest that SPPARMα and SGLT2 inhibitor combination therapy has therapeutic potential to prevent NASH-HCC progression. Full article
(This article belongs to the Special Issue The Role of PPARs in Disease II)
Show Figures

Graphical abstract

14 pages, 2102 KiB  
Article
Effects of a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator, Pemafibrate, on Metabolic Parameters: A Retrospective Longitudinal Study
by Hidekatsu Yanai, Hisayuki Katsuyama and Mariko Hakoshima
Biomedicines 2022, 10(2), 401; https://doi.org/10.3390/biomedicines10020401 - 8 Feb 2022
Cited by 12 | Viewed by 2992
Abstract
The modulation of peroxisome proliferator-activated receptors (PPARs), the superfamily of steroid–thyroid–retinoid nuclear receptors, is expected to induce an amazing crosstalk between energy-demanding organs. Here, we aimed to study the effects of the novel selective PPARα modulator, pemafibrate, on metabolic parameters in patients with [...] Read more.
The modulation of peroxisome proliferator-activated receptors (PPARs), the superfamily of steroid–thyroid–retinoid nuclear receptors, is expected to induce an amazing crosstalk between energy-demanding organs. Here, we aimed to study the effects of the novel selective PPARα modulator, pemafibrate, on metabolic parameters in patients with dyslipidemia. We retrospectively studied patients who had taken pemafibrate and compared metabolic parameters at baseline with the data at 3, 6 and 12 months after the start of pemafibrate. Serum triglyceride significantly decreased and high-density lipoprotein-cholesterol significantly increased at 3, 6 and 12 months after the start of pemafibrate. Serum aspartate aminotransferase levels significantly decreased at 3 and 6 after the start of pemafibrate as compared with baseline. Serum alanine aminotransferase and gamma-glutamyl transferase significantly decreased and albumin significantly increased after 3, 6 and 12 months. HbA1c levels significantly decreased after 3 months. Further, serum uric acid significantly decreased after 12 months. Such metabolic favorable changes due to pemafibrate were significantly correlated with changes in serum lipids. In conclusion, we observed a significant improvement of liver function, HbA1c and serum uric acid along with an amelioration of dyslipidemia after the start of pemafibrate. Full article
Show Figures

Figure 1

Back to TopTop