Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = seismocardiogram (SCG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1387 KiB  
Article
Continuous Estimation of Blood Pressure by Utilizing Seismocardiogram Signal Features in Relation to Electrocardiogram
by Aleksandra Zienkiewicz, Vesa Korhonen, Vesa Kiviniemi and Teemu Myllylä
Biosensors 2024, 14(12), 621; https://doi.org/10.3390/bios14120621 - 17 Dec 2024
Cited by 1 | Viewed by 1074
Abstract
There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e., chest motion caused by cardiac activity, for this purpose. This research is novel [...] Read more.
There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e., chest motion caused by cardiac activity, for this purpose. This research is novel in examining the temporal relationship between the SCG-measured isovolumic moment and the electrocardiogram (PEPIM). Additionally, we compare these results with the traditionally measured pre-ejection period with the aortic opening marked as an endpoint (PEPAO). The accuracy of the BP estimation was evaluated beat to beat against invasively measured arterial BP. Data were collected on separate days as eighteen sets from nine subjects undergoing a medical procedure with anesthesia. Results for PEPIM showed a correlation of 0.67 ± 0.18 (p < 0.001), 0.66 ± 0.17 (p < 0.001), and 0.67 ± 0.17 (p < 0.001) when compared to systolic BP, diastolic BP, and mean arterial pressure (MAP), respectively. Corresponding results for PEPAO were equal to 0.61 ± 0.22 (p < 0.001), 0.61 ± 0.21 (p < 0.001), and 0.62 ± 0.22 (p < 0.001). Values of PEPIM were used to estimate MAP using two first-degree models, the linear regression model (achieved RMSE of 11.7 ± 4.0 mmHg) and extended model with HR (RMSE of 10.8 ± 4.2 mmHg), and two corresponding second-degree models (RMSE of 10.8 ± 3.7 mmHg and RMSE of 8.5 ± 3.4 mmHg for second-degree polynomial and second-degree extended, respectively). In the intrasubject testing of the second-degree model extended with HR based on PEPIM values, the mean error of MAP estimation in three follow-up measurements was in the range of 7.5 to 10.5 mmHg, without recalibration. This study demonstrates the method’s potential for further research, particularly given that both proximal and distal pulses are measured in close proximity to the heart and cardiac output. This positioning may enhance the method’s capacity to more accurately reflect central blood pressure compared to peripheral measurements. Full article
Show Figures

Graphical abstract

20 pages, 3748 KiB  
Article
Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings
by Salvatore Parlato, Jessica Centracchio, Daniele Esposito, Paolo Bifulco and Emilio Andreozzi
Sensors 2023, 23(13), 6200; https://doi.org/10.3390/s23136200 - 6 Jul 2023
Cited by 15 | Viewed by 3098
Abstract
A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject’s chest. In particular, the local 3D linear accelerations and 3D angular velocities of the [...] Read more.
A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject’s chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardiograms (GCG), respectively. These signals usually exhibit a low signal-to-noise ratio, as well as non-negligible amplitude and morphological changes due to changes in posture and the sensors’ location, respiratory activity, as well as other sources of intra-subject and inter-subject variability. These factors make heartbeat detection a complex task; therefore, a reference electrocardiogram (ECG) lead is usually acquired in SCG and GCG studies to ensure correct localization of heartbeats. Recently, a template matching technique based on cross correlation has proven to be particularly effective in recognizing individual heartbeats in SCG signals. This study aims to verify the performance of this technique when applied on GCG signals. Tests were conducted on a public database consisting of SCG, GCG, and ECG signals recorded synchronously on 100 patients with valvular heart diseases. The results show that the template matching technique identified heartbeats in GCG signals with a sensitivity and positive predictive value (PPV) of 87% and 92%, respectively. Regression, correlation, and Bland–Altman analyses carried out on inter-beat intervals obtained from GCG and ECG (assumed as reference) reported a slope of 0.995, an intercept of 4.06 ms (R2 > 0.99), a Pearson’s correlation coefficient of 0.9993, and limits of agreement of about ±13 ms with a negligible bias. A comparison with the results of a previous study obtained on SCG signals from the same database revealed that GCG enabled effective cardiac monitoring in significantly more patients than SCG (95 vs. 77). This result suggests that GCG could ensure more robust and reliable cardiac monitoring in patients with heart diseases with respect to SCG. Full article
(This article belongs to the Special Issue Sensors for Physiological Parameters Measurement)
Show Figures

Figure 1

17 pages, 2656 KiB  
Article
A Frequency Estimation Scheme Based on Gaussian Average Filtering Decomposition and Hilbert Transform: With Estimation of Respiratory Rate as an Example
by Yue-Der Lin, Yong-Kok Tan, Tienhsiung Ku and Baofeng Tian
Sensors 2023, 23(8), 3785; https://doi.org/10.3390/s23083785 - 7 Apr 2023
Viewed by 2868
Abstract
Frequency estimation plays a critical role in vital sign monitoring. Methods based on Fourier transform and eigen-analysis are commonly adopted techniques for frequency estimation. Because of the nonstationary and time-varying characteristics of physiological processes, time-frequency analysis (TFA) is a feasible way to perform [...] Read more.
Frequency estimation plays a critical role in vital sign monitoring. Methods based on Fourier transform and eigen-analysis are commonly adopted techniques for frequency estimation. Because of the nonstationary and time-varying characteristics of physiological processes, time-frequency analysis (TFA) is a feasible way to perform biomedical signal analysis. Among miscellaneous approaches, Hilbert–Huang transform (HHT) has been demonstrated to be a potential tool in biomedical applications. However, the problems of mode mixing, unnecessary redundant decomposition and boundary effect are the common deficits that occur during the procedure of empirical mode decomposition (EMD) or ensemble empirical mode decomposition (EEMD). The Gaussian average filtering decomposition (GAFD) technique has been shown to be appropriate in several biomedical scenarios and can be an alternative to EMD and EEMD. This research proposes the combination of GAFD and Hilbert transform that is termed the Hilbert–Gauss transform (HGT) to overcome the conventional drawbacks of HHT in TFA and frequency estimation. This new method is verified to be effective for the estimation of respiratory rate (RR) in finger photoplethysmography (PPG), wrist PPG and seismocardiogram (SCG). Compared with the ground truth values, the estimated RRs are evaluated to be of excellent reliability by intraclass correlation coefficient (ICC) and to be of high agreement by Bland–Altman analysis. Full article
(This article belongs to the Special Issue Sensors and Signal Processing for Biomedical Application)
Show Figures

Figure 1

17 pages, 1449 KiB  
Article
Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms of Healthy Volunteers and Patients with Valvular Heart Diseases
by Szymon Sieciński, Ewaryst Janusz Tkacz and Paweł Stanisław Kostka
Sensors 2023, 23(4), 2152; https://doi.org/10.3390/s23042152 - 14 Feb 2023
Cited by 16 | Viewed by 4557
Abstract
Heart rate variability (HRV) is the physiological variation in the intervals between consecutive heartbeats that reflects the activity of the autonomic nervous system. This parameter is traditionally evaluated based on electrocardiograms (ECG signals). Seismocardiography (SCG) and/or gyrocardiography (GCG) are used to monitor cardiac [...] Read more.
Heart rate variability (HRV) is the physiological variation in the intervals between consecutive heartbeats that reflects the activity of the autonomic nervous system. This parameter is traditionally evaluated based on electrocardiograms (ECG signals). Seismocardiography (SCG) and/or gyrocardiography (GCG) are used to monitor cardiac mechanical activity; therefore, they may be used in HRV analysis and the evaluation of valvular heart diseases (VHDs) simultaneously. The purpose of this study was to compare the time domain, frequency domain and nonlinear HRV indices obtained from electrocardiograms, seismocardiograms (SCG signals) and gyrocardiograms (GCG signals) in healthy volunteers and patients with valvular heart diseases. An analysis of the time domain, frequency domain and nonlinear heart rate variability was conducted on electrocardiograms and gyrocardiograms registered from 29 healthy male volunteers and 30 patients with valvular heart diseases admitted to the Columbia University Medical Center (New York City, NY, USA). The results of the HRV analysis show a strong linear correlation with the HRV indices calculated from the ECG, SCG and GCG signals and prove the feasibility and reliability of HRV analysis despite the influence of VHDs on the SCG and GCG waveforms. Full article
Show Figures

Figure 1

17 pages, 3403 KiB  
Article
Changes in Forcecardiography Heartbeat Morphology Induced by Cardio-Respiratory Interactions
by Jessica Centracchio, Daniele Esposito, Gaetano D. Gargiulo and Emilio Andreozzi
Sensors 2022, 22(23), 9339; https://doi.org/10.3390/s22239339 - 30 Nov 2022
Cited by 12 | Viewed by 2505
Abstract
The cardiac function is influenced by respiration. In particular, various parameters such as cardiac time intervals and the stroke volume are modulated by respiratory activity. It has long been recognized that cardio-respiratory interactions modify the morphology of cardio-mechanical signals, e.g., phonocardiogram, seismocardiogram (SCG), [...] Read more.
The cardiac function is influenced by respiration. In particular, various parameters such as cardiac time intervals and the stroke volume are modulated by respiratory activity. It has long been recognized that cardio-respiratory interactions modify the morphology of cardio-mechanical signals, e.g., phonocardiogram, seismocardiogram (SCG), and ballistocardiogram. Forcecardiography (FCG) records the weak forces induced on the chest wall by the mechanical activity of the heart and lungs and relies on specific force sensors that are capable of monitoring respiration, infrasonic cardiac vibrations, and heart sounds, all simultaneously from a single site on the chest. This study addressed the changes in FCG heartbeat morphology caused by respiration. Two respiratory-modulated parameters were considered, namely the left ventricular ejection time (LVET) and a morphological similarity index (MSi) between heartbeats. The time trends of these parameters were extracted from FCG signals and further analyzed to evaluate their consistency within the respiratory cycle in order to assess their relationship with the breathing activity. The respiratory acts were localized in the time trends of the LVET and MSi and compared with a reference respiratory signal by computing the sensitivity and positive predictive value (PPV). In addition, the agreement between the inter-breath intervals estimated from the LVET and MSi and those estimated from the reference respiratory signal was assessed via linear regression and Bland–Altman analyses. The results of this study clearly showed a tight relationship between the respiratory activity and the considered respiratory-modulated parameters. Both the LVET and MSi exhibited cyclic time trends that remarkably matched the reference respiratory signal. In addition, they achieved a very high sensitivity and PPV (LVET: 94.7% and 95.7%, respectively; MSi: 99.3% and 95.3%, respectively). The linear regression analysis reported almost unit slopes for both the LVET (R2 = 0.86) and MSi (R2 = 0.97); the Bland–Altman analysis reported a non-significant bias for both the LVET and MSi as well as limits of agreement of ±1.68 s and ±0.771 s, respectively. In summary, the results obtained were substantially in line with previous findings on SCG signals, adding to the evidence that FCG and SCG signals share a similar information content. Full article
(This article belongs to the Special Issue Human Signal Processing Based on Wearable Non-invasive Device)
Show Figures

Figure 1

13 pages, 4425 KiB  
Article
Respiratory-Induced Amplitude Modulation of Forcecardiography Signals
by Jessica Centracchio, Emilio Andreozzi, Daniele Esposito and Gaetano D. Gargiulo
Bioengineering 2022, 9(9), 444; https://doi.org/10.3390/bioengineering9090444 - 7 Sep 2022
Cited by 20 | Viewed by 2601
Abstract
Forcecardiography (FCG) is a novel technique that records the weak forces induced on the chest wall by cardio-respiratory activity, by using specific force sensors. FCG sensors feature a wide frequency band, which allows us to capture respiration, heart wall motion, heart valves opening [...] Read more.
Forcecardiography (FCG) is a novel technique that records the weak forces induced on the chest wall by cardio-respiratory activity, by using specific force sensors. FCG sensors feature a wide frequency band, which allows us to capture respiration, heart wall motion, heart valves opening and closing (similar to the Seismocardiogram, SCG) and heart sounds, all simultaneously from a single contact point on the chest. As a result, the raw FCG sensors signals exhibit a large component related to the respiratory activity, referred to as a Forcerespirogram (FRG), with a much smaller, superimposed component related to the cardiac activity (the actual FCG) that contains both infrasonic vibrations, referred to as LF-FCG and HF-FCG, and heart sounds. Although respiration can be readily monitored by extracting the very low-frequency component of the raw FCG signal (FRG), it has been observed that the respiratory activity also influences other FCG components, particularly causing amplitude modulations (AM). This preliminary study aimed to assess the consistency of the amplitude modulations of the LF-FCG and HF-FCG signals within the respiratory cycle. A retrospective analysis was performed on the FCG signals acquired in a previous study on six healthy subjects at rest, during quiet breathing. To this aim, the AM of LF-FCG and HF-FCG were first extracted via a linear envelope (LE) operation, consisting of rectification followed by low-pass filtering; then, the inspiratory peaks were located both in the LE of LF-FCG and HF-FCG, and in the reference respiratory signal (FRG). Finally, the inter-breath intervals were extracted from the obtained inspiratory peaks, and further analyzed via statistical analyses. The AM of HF-FCG exhibited higher consistency within the respiratory cycle, as compared to the LF-FCG. Indeed, the inspiratory peaks were recognized with a sensitivity and positive predictive value (PPV) in excess of 99% in the LE of HF-FCG, and with a sensitivity and PPV of 96.7% and 92.6%, respectively, in the LE of LF-FCG. In addition, the inter-breath intervals estimated from the HF-FCG scored a higher R2 value (0.95 vs. 0.86) and lower limits of agreement (± 0.710 s vs. ±1.34 s) as compared to LF-FCG, by considering those extracted from the FRG as the reference. The obtained results are consistent with those observed in previous studies on SCG. A possible explanation of these results was discussed. However, the preliminary results obtained in this study must be confirmed on a larger cohort of subjects and in different experimental conditions. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Human Biosignals)
Show Figures

Graphical abstract

17 pages, 3145 KiB  
Article
A Novel Seismocardiogram Mathematical Model for Simplified Adjustment of Adaptive Filter
by Gediminas Uskovas, Algimantas Valinevicius, Mindaugas Zilys, Dangirutis Navikas, Michal Frivaldsky, Michal Prauzek, Jaromir Konecny and Darius Andriukaitis
Electronics 2022, 11(15), 2444; https://doi.org/10.3390/electronics11152444 - 5 Aug 2022
Cited by 6 | Viewed by 2556
Abstract
Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving [...] Read more.
Nonclinical measurements of a seismocardiogram (SCG) can diagnose cardiovascular disease (CVD) at an early stage, when a critical condition has not been reached, and prevents unplanned hospitalization. However, researchers are restricted when it comes to investigating the benefits of SCG signals for moving patients, because the public database does not contain such SCG signals. The analysis of a mathematical model of the seismocardiogram allows the simulation of the heart with cardiovascular disease. Additionally, the developed mathematical model of SCG does not totally replace the real cardio mechanical vibration of the heart. As a result, a seismocardiogram signal of 60 beats per min (bpm) was generated based on the main values of the main artefacts, their duration and acceleration. The resulting signal was processed by finite impulse response (FIR), infinitive impulse response (IRR), and four adaptive filters to obtain optimal signal processing settings. Meanwhile, the optimal filter settings were used to manage the real SCG signals of slowly moving or resting. Therefore, it is possible to validate measured SCG signals and perform advanced scientific research of seismocardiogram. Furthermore, the proposed mathematical model could enable electronic systems to measure the seismocardiogram with more accurate and reliable signal processing, allowing the extraction of more useful artefacts from the SCG signal during any activity. Full article
Show Figures

Figure 1

14 pages, 3943 KiB  
Article
Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Forcecardiography Recordings
by Jessica Centracchio, Emilio Andreozzi, Daniele Esposito, Gaetano Dario Gargiulo and Paolo Bifulco
Bioengineering 2022, 9(3), 89; https://doi.org/10.3390/bioengineering9030089 - 22 Feb 2022
Cited by 28 | Viewed by 3587
Abstract
Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal [...] Read more.
Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal can be divided into three components: low-frequency FCG, high-frequency FCG (HF-FCG) and heart sound FCG. HF-FCG has been shown to share a high similarity with the Seismocardiogram (SCG), which is commonly acquired via small accelerometers and is mainly used to locate specific fiducial markers corresponding to essential events of the cardiac cycle (e.g., heart valves opening and closure, peaks of blood flow). However, HF-FCG has not yet been demonstrated to provide the timings of these markers with reasonable accuracy. This study addresses the detection of the aortic valve opening (AO) marker in FCG signals. To this aim, simultaneous recordings from FCG and SCG sensors were acquired, together with Electrocardiogram (ECG) recordings, from a few healthy subjects at rest, both during quiet breathing and apnea. The AO markers were located in both SCG and FCG signals to obtain pre-ejection periods (PEP) estimates, which were compared via statistical analyses. The PEPs estimated from FCG and SCG showed a strong linear relationship (r > 0.95) with a practically unit slope, and 95% of their differences were found to be distributed within ± 4.6 ms around small biases of approximately 1 ms, corresponding to percentage differences lower than 5% of the mean measured PEP. These preliminary results suggest that FCG can provide accurate AO timings and PEP estimates. Full article
Show Figures

Figure 1

15 pages, 1699 KiB  
Article
Classification of Blood Volume Decompensation State via Machine Learning Analysis of Multi-Modal Wearable-Compatible Physiological Signals
by Yekanth Ram Chalumuri, Jacob P. Kimball, Azin Mousavi, Jonathan S. Zia, Christopher Rolfes, Jesse D. Parreira, Omer T. Inan and Jin-Oh Hahn
Sensors 2022, 22(4), 1336; https://doi.org/10.3390/s22041336 - 10 Feb 2022
Cited by 6 | Viewed by 3405
Abstract
This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only [...] Read more.
This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only discriminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a multitude of features from multi-modal physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG), (ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state classification algorithm using the experimental data collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume decompensation state. The analysis of the features embedded in the ML classifiers indicated that many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an important role in achieving good blood volume classification efficacy. Our work may complement existing computational algorithms to estimate blood volume compensatory reserve as a potential decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy. Full article
Show Figures

Figure 1

17 pages, 3543 KiB  
Review
The Latest Progress and Development Trend in the Research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the Field of Health Care
by Xiuping Han, Xiaofei Wu, Jiadong Wang, Hongwen Li, Kaimin Cao, Hui Cao, Kai Zhong and Xiangdong Yang
Appl. Sci. 2021, 11(19), 8896; https://doi.org/10.3390/app11198896 - 24 Sep 2021
Cited by 19 | Viewed by 5138
Abstract
The current status of the research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the field of medical treatment, health care and nursing was analyzed systematically, and the important direction in the research was explored, to provide reference for the relevant researches. This study, [...] Read more.
The current status of the research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the field of medical treatment, health care and nursing was analyzed systematically, and the important direction in the research was explored, to provide reference for the relevant researches. This study, based on two large databases, CNKI and PubMed, used the bibliometric analysis method to review the existing documents in the past 20 years, and made analyses on the literature of BCG and SCG for their annual changes, main countries/regions, types of research, frequently-used subject words, and important research subjects. The results show that the developed countries have taken a leading position in the researches in this field, and have made breakthroughs in some subjects, but their research results have been mainly gained in the area of research and development of the technologies, and very few have been actually industrialized into commodities. This means that in the future the researchers should focus on the transformation of BCG and SCG technologies into commercialized products, and set up quantitative health assessment models, so as to become the daily tools for people to monitor their health status and manage their own health, and as the main approaches of improving the quality of life and preventing diseases for individuals. Full article
Show Figures

Figure 1

20 pages, 1130 KiB  
Article
Advanced Fusion and Empirical Mode Decomposition-Based Filtering Methods for Breathing Rate Estimation from Seismocardiogram Signals
by Christina Kozia and Randa Herzallah
Information 2021, 12(9), 368; https://doi.org/10.3390/info12090368 - 11 Sep 2021
Cited by 8 | Viewed by 3441
Abstract
Breathing Rate (BR), an important deterioration indicator, has been widely neglected in hospitals due to the requirement of invasive procedures and the need for skilled nurses to be measured. On the other hand, biomedical signals such as Seismocardiography (SCG), which measures heart vibrations [...] Read more.
Breathing Rate (BR), an important deterioration indicator, has been widely neglected in hospitals due to the requirement of invasive procedures and the need for skilled nurses to be measured. On the other hand, biomedical signals such as Seismocardiography (SCG), which measures heart vibrations transmitted to the chest-wall, can be used as a non-invasive technique to estimate the BR. This makes SCG signals a highly appealing way for estimating the BR. As such, this work proposes three novel methods for extracting the BR from SCG signals. The first method is based on extracting respiration-dependent features such as the fundamental heart sound components, S1 and S2 from the SCG signal. The second novel method investigates for the first time the use of data driven methods such as the Empirical Mode Decomposition (EMD) method to identify the respiratory component from an SCG signal. Finally, the third advanced method is based on fusing frequency information from the respiration signals that result from the aforementioned proposed methods and other standard methods. The developed methods in this paper are then evaluated on adult recordings from the combined measurement of ECG, the Breathing and Seismocardiograms database. Both fusion and EMD filter-based methods outperformed the individual methods, giving a mean absolute error of 1.5 breaths per minute, using a one-minute window of data. Full article
(This article belongs to the Special Issue Biomedical Signal Processing and Data Analytics in Healthcare Systems)
Show Figures

Figure 1

20 pages, 14316 KiB  
Review
Recent Research for Unobtrusive Atrial Fibrillation Detection Methods Based on Cardiac Dynamics Signals: A Survey
by Fangfang Jiang, Yihan Zhou, Tianyi Ling, Yanbing Zhang and Ziyu Zhu
Sensors 2021, 21(11), 3814; https://doi.org/10.3390/s21113814 - 31 May 2021
Cited by 16 | Viewed by 4671
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It tends to cause multiple cardiac conditions, such as cerebral artery blockage, stroke, and heart failure. The morbidity and mortality of AF have been progressively increasing over the past few decades, which has raised [...] Read more.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It tends to cause multiple cardiac conditions, such as cerebral artery blockage, stroke, and heart failure. The morbidity and mortality of AF have been progressively increasing over the past few decades, which has raised widespread concern about unobtrusive AF detection in routine life. The up-to-date non-invasive AF detection methods include electrocardiogram (ECG) signals and cardiac dynamics signals, such as the ballistocardiogram (BCG) signal, the seismocardiogram (SCG) signal and the photoplethysmogram (PPG) signal. Cardiac dynamics signals can be collected by cushions, mattresses, fabrics, or even cameras, which is more suitable for long-term monitoring. Therefore, methods for AF detection by cardiac dynamics signals bring about extensive attention for recent research. This paper reviews the current unobtrusive AF detection methods based on the three cardiac dynamics signals, summarized as data acquisition and preprocessing, feature extraction and selection, classification and diagnosis. In addition, the drawbacks and limitations of the existing methods are analyzed, and the challenges in future work are discussed. Full article
(This article belongs to the Special Issue Wearable and Unobtrusive Technologies for Healthcare Monitoring)
Show Figures

Figure 1

16 pages, 336 KiB  
Article
Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers
by Szymon Sieciński, Paweł S. Kostka and Ewaryst J. Tkacz
Sensors 2020, 20(16), 4522; https://doi.org/10.3390/s20164522 - 13 Aug 2020
Cited by 59 | Viewed by 5957
Abstract
Physiological variation of the interval between consecutive heartbeats is known as the heart rate variability (HRV). HRV analysis is traditionally performed on electrocardiograms (ECG signals) and has become a useful tool in the diagnosis of different clinical and functional conditions. The progress in [...] Read more.
Physiological variation of the interval between consecutive heartbeats is known as the heart rate variability (HRV). HRV analysis is traditionally performed on electrocardiograms (ECG signals) and has become a useful tool in the diagnosis of different clinical and functional conditions. The progress in the sensor technique encouraged the development of alternative methods of analyzing cardiac activity: Seismocardiography and gyrocardiography. In our study we performed HRV analysis on ECG, seismocardiograms (SCG signals) and gyrocardiograms (GCG signals) using the PhysioNet Cardiovascular Toolbox. The heartbeats in ECG were detected using the Pan–Tompkins algorithm and the heartbeats in SCG and GCG signals were detected as peaks within 100 ms from the occurrence of the ECG R waves. The results of time domain, frequency domain and nonlinear HRV analysis on ECG, SCG and GCG signals are similar and this phenomenon is confirmed by very strong linear correlation of HRV indices. The differences between HRV indices obtained on ECG and SCG and on ECG and GCG were statistically insignificant and encourage using SCG or GCG for HRV estimation. Our results of HRV analysis confirm stronger correlation of HRV indices computed on ECG and GCG signals than on ECG and SCG signals because of greater tolerance to inter-subject variability and disturbances. Full article
(This article belongs to the Special Issue Advances in Inertial Sensors)
Show Figures

Figure 1

20 pages, 2796 KiB  
Article
A Unified Methodology for Heartbeats Detection in Seismocardiogram and Ballistocardiogram Signals
by Niccolò Mora, Federico Cocconcelli, Guido Matrella and Paolo Ciampolini
Computers 2020, 9(2), 41; https://doi.org/10.3390/computers9020041 - 22 May 2020
Cited by 10 | Viewed by 4733
Abstract
This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance [...] Read more.
This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is tested on four independent datasets, covering different measurement setups and time resolutions. A wide application range is therefore explored, which better characterizes the robustness and generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are uniform across all datasets ( p > 0.05 from the Kruskal–Wallis test): the average sensitivity among datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE and MAE scores was found ( p < 0.01 ) in favor of datasets with higher sampling frequency. The best RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3 and 3.6 ms. The results were compared to relevant recent literature and are found to improve both detection performance and temporal annotation errors. Full article
Show Figures

Figure 1

16 pages, 660 KiB  
Article
Detection and Analysis of Heartbeats in Seismocardiogram Signals
by Niccolò Mora, Federico Cocconcelli, Guido Matrella and Paolo Ciampolini
Sensors 2020, 20(6), 1670; https://doi.org/10.3390/s20061670 - 17 Mar 2020
Cited by 21 | Viewed by 5034
Abstract
This paper presents an unsupervised methodology to analyze SeismoCardioGram (SCG) signals. Starting from raw accelerometric data, heartbeat complexes are extracted and annotated, using a two-step procedure. An unsupervised calibration procedure is added to better adapt to different user patterns. Results show that the [...] Read more.
This paper presents an unsupervised methodology to analyze SeismoCardioGram (SCG) signals. Starting from raw accelerometric data, heartbeat complexes are extracted and annotated, using a two-step procedure. An unsupervised calibration procedure is added to better adapt to different user patterns. Results show that the performance scores achieved by the proposed methodology improve over related literature: on average, 98.5% sensitivity and 98.6% precision are achieved in beat detection, whereas RMS (Root Mean Square) error in heartbeat interval estimation is as low as 4.6 ms. This allows SCG heartbeat complexes to be reliably extracted. Then, the morphological information of such waveforms is further processed by means of a modular Convolutional Variational AutoEncoder network, aiming at extracting compressed, meaningful representation. After unsupervised training, the VAE network is able to recognize different signal morphologies, associating each user to its specific patterns with high accuracy, as indicated by specific performance metrics (including adjusted random and mutual information score, completeness, and homogeneity). Finally, a Linear Model is used to interpret the results of clustering in the learned latent space, highlighting the impact of different VAE architectural parameters (i.e., number of stacked convolutional units and dimension of latent space). Full article
(This article belongs to the Special Issue Sensing Technologies for Ambient Assisted Living and Smart Homes)
Show Figures

Figure 1

Back to TopTop