A Frequency Estimation Scheme Based on Gaussian Average Filtering Decomposition and Hilbert Transform: With Estimation of Respiratory Rate as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Data Resources and Conducted Experiments
2.1.2. Computing Resources
2.2. Methods
2.2.1. Hilbert–Gaussian Transform (HGT)
2.2.2. RR Estimation Algorithm
2.2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gravelyn, T.R.; Weg, J.G. Respiratory rate as an indicator of acute respiratory dysfunction. JAMA 1980, 244, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.; Price, R.; Eastwood, H.; Briggs, R. Raised respiratory rate in elderly patients: A valuable physical sign. Br. Med. J. (Clin. Res. Ed.) 1982, 284, 626–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fieselmann, J.F.; Hendryx, M.S.; Helms, C.M.; Wakefield, D.S. Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J. Gen. Intern. Med. 1993, 8, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R. Rate of respiration: The forgotten vital sign. Emerg. Nurse 2011, 19, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Capodilupo, J.V.; Lastella, M.; Sargent, C.; Roach, G.D.; Lee, V.H.; Capodilupo, E.R. Analyzing changes in respiratory rate to predict the risk of COVID-19 infection. PLoS ONE 2020, 15, e0243693. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef]
- Allison, R.D.; Holmes, E.; Nyboer, J. Volumetric dynamics of respiration as measured by electrical impedance plethysmography. J. Appl. Physiol. 1964, 19, 166–173. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G.; Zoccola, A.; Mantero, S. Derivation of respiratory signals from multi-lead ECGs. Comput. Cardiol. 1985, 12, 113–116. [Google Scholar]
- Mirmohamadsadeghi, L.; Vesin, J.-M. Real-time multi-signal frequency tracking with a bank of notch filters to estimate the respiratory rate from the ECG. Physiol. Meas. 2016, 37, 1573. [Google Scholar] [CrossRef]
- Robert Mogue, L.; Rantala, B. Capnometers. J. Clin. Monit. 1988, 4, 115–121. [Google Scholar] [CrossRef]
- Cyna, A.; Kulkarni, V.; Tunstall, M.; Hutchison, J.; Mallard, J. Aura: A new respiratory monitor and apnoea alarm for spontaneously breathing patients. Br. J. Anaesth. 1991, 67, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, A. Human body respiration measurement using digital temperature sensor with I2C interface. Int. J. Electron. Commun. Comput. Eng. 2013, 4, 232–238. [Google Scholar]
- Lin, Y.-D.; Chien, Y.-H.; Chen, Y.-S. Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomed. Signal Process. Control. 2017, 36, 138–145. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-D.; Jhou, Y.-F. Estimation of heart rate and respiratory rate from the seismocardiogram under resting state. Biomed. Signal Process. Control. 2020, 57, 101779. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.; Khan, A.; Bermak, A. Developing conductive fabric threads for human respiratory rate monitoring. IEEE Sens. J. 2021, 21, 4350–4356. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07TR01. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, E.; Igual, R.; Plaza, I. Sensing systems for respiration monitoring: A technical systematic review. Sensors 2020, 20, 5446. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, Y.D. Novel subspace method for frequencies estimation of two sinusoids with applications to vital signals. IET Signal Process. 2017, 11, 1114–1121. [Google Scholar] [CrossRef]
- Candan, Ç. A method for fine resolution frequency estimation from three DFT samples. IEEE Signal Process. Lett. 2011, 18, 351–354. [Google Scholar] [CrossRef]
- Marple, S.L., Jr. Eigenanalysis-Based Frequency Estimation. In Digital Spectral Analysis with Applications; Prentice Hall: Hoboken, NJ, USA, 1987; pp. 361–378. [Google Scholar]
- Sejdic, E.; Djurovic, I.; Stankovic, L. Quantitative performance analysis of scalogram as instantaneous frequency estimator. IEEE Trans. Signal Process. 2008, 56, 3837–3845. [Google Scholar] [CrossRef]
- Stroeer, A.; Cannizzo, J.K.; Camp, J.B.; Gagarin, N. Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transform. Phys. Rev. D 2009, 79, 124022. [Google Scholar] [CrossRef] [Green Version]
- Rangayyan, R.M. Frequency-domain Characterization. In Biomedical Signal Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 349–395. [Google Scholar]
- Hayes, M.H. Spectrum Estimation. In Statistical Digital Signal Processing and Modeling; John Wiley & Sons: New York, NY, USA, 1996; pp. 391–492. [Google Scholar]
- Fleming, S.G.; Tarassenko, L. A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram. Int. J. Biol. Med. Sci. 2007, 2, 232–236. [Google Scholar]
- Chon, K.H.; Dash, S.; Ju, K. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, S.S.P. Hilbert-Huang Transform and Its Applications; World Scientific: Singapore, 2014; Volume 16. [Google Scholar]
- Mahmoud, S.S.; Hussain, Z.M.; Cosic, I.; Fang, Q. Time-frequency analysis of normal and abnormal biological signals. Biomed. Signal Process. Control. 2006, 1, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.-C.; Huang, N.E. Biomedical Data Processing Using HHT: A Review. In Advanced Biosignal Processing; Naït-Ali, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 335–352. [Google Scholar]
- Fonseca-Pinto, R. A New Tool for Nonstationary And Nonlinear Signals: The Hilbert-Huang Transform in Biomedical Applications. In Biomedical Engineering, Trends in Electronics, Communications and Software; Laskovski, A., Ed.; IntechOpen: London, UK, 2011; pp. 481–504. [Google Scholar]
- de Souza, U.B.; Escola, J.P.L.; da Cunha Brito, L. A survey on Hilbert-Huang transform: Evolution, challenges and solutions. Digit. Signal Process. 2022, 120, 103292. [Google Scholar] [CrossRef]
- Lin, Y.-D.; Tan, Y.K.; Tian, B. A novel approach for decomposition of biomedical signals in different applications based on data-adaptive Gaussian average filtering. Biomed. Signal Process. Control. 2022, 71, 103104. [Google Scholar] [CrossRef]
- Flenady, T.; Dwyer, T.; Applegarth, J. Accurate respiratory rates count: So should you! Australas. Emerg. Nurs. J. 2017, 20, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R. Intraclass Correlations and the Analysis of Variance. In Statistical Methods for Research Worker; Oliver & Boyd: Edinburgh, UK, 1925; pp. 187–210. [Google Scholar]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. A database to support development and evaluation of intelligent intensive care monitoring. In Proceedings of the Computers in Cardiology 1996, Indianapolis, IN, USA, 8–11 November 1996; pp. 657–660. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PhysioNet LightWAVE. Available online: https://archive.physionet.org/lightwave/ (accessed on 1 February 2023).
- García-González, M.A.; Argelagós-Palau, A.; Fernández-Chimeno, M.; Ramos-Castro, J. A comparison of heartbeat detectors for the seismocardiogram. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 461–464. [Google Scholar]
- Lin, Y.D. Python Code for Gaussian Average Fltering Decomposition (GAFD). Available online: https://github.com/yudlin/GAFD (accessed on 1 February 2023).
- Quinn, A.J.; Lopes-dos-Santos, V.; Dupret, D.; Nobre, A.C.; Woolrich, M.W. EMD: Empirical mode decomposition and Hilbert-Huang spectral analyses in Python. J. Open Source Softw. 2021, 6, 2977. Available online: https://emd.readthedocs.io/en/latest/install.html (accessed on 1 February 2023). [CrossRef]
- Lin, Y.D. Python Code for Bland-Altman’s Agreement Analysis. Available online: https://github.com/yudlin/Agreement_Analysis (accessed on 1 February 2023).
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. Available online: https://pywavelets.readthedocs.io/en/latest/ref/cwt.html (accessed on 1 February 2023). [CrossRef]
- Lin, Y.D. Python Code for Complex Morlet Wavelet. Available online: https://github.com/yudlin/wavePSD (accessed on 1 February 2023).
- Salarian, A.; Intraclass Correlation Coefficient (ICC). MATLAB Central File Exchange. 2016. Available online: https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc (accessed on 1 February 2023).
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Zhou, H. Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 2009, 1, 543–560. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
Subject Number 1 | Age Range 2 | Posture | Record Number 3 | |
---|---|---|---|---|
Finger PPG | 50 (30M, 20F) | 21–92 years | Supine (ICU) | 3000 records |
Wrist PPG | 5 (3M, 2F) | 22–24 years | Sitting | 150 records |
SCG | 13 (6M, 7F) | 19–30 years | Supine | 1500 records |
ICC 1 | 95% C.I. of ICC 2 | Bias 3 | Limit of Agreement 4 | |
---|---|---|---|---|
Finger PPG | ||||
Wrist PPG | ||||
SCG | ||||
Combined 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-D.; Tan, Y.-K.; Ku, T.; Tian, B. A Frequency Estimation Scheme Based on Gaussian Average Filtering Decomposition and Hilbert Transform: With Estimation of Respiratory Rate as an Example. Sensors 2023, 23, 3785. https://doi.org/10.3390/s23083785
Lin Y-D, Tan Y-K, Ku T, Tian B. A Frequency Estimation Scheme Based on Gaussian Average Filtering Decomposition and Hilbert Transform: With Estimation of Respiratory Rate as an Example. Sensors. 2023; 23(8):3785. https://doi.org/10.3390/s23083785
Chicago/Turabian StyleLin, Yue-Der, Yong-Kok Tan, Tienhsiung Ku, and Baofeng Tian. 2023. "A Frequency Estimation Scheme Based on Gaussian Average Filtering Decomposition and Hilbert Transform: With Estimation of Respiratory Rate as an Example" Sensors 23, no. 8: 3785. https://doi.org/10.3390/s23083785