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Abstract: Frequency estimation plays a critical role in vital sign monitoring. Methods based on
Fourier transform and eigen-analysis are commonly adopted techniques for frequency estimation. Be-
cause of the nonstationary and time-varying characteristics of physiological processes, time-frequency
analysis (TFA) is a feasible way to perform biomedical signal analysis. Among miscellaneous ap-
proaches, Hilbert–Huang transform (HHT) has been demonstrated to be a potential tool in biomedical
applications. However, the problems of mode mixing, unnecessary redundant decomposition and
boundary effect are the common deficits that occur during the procedure of empirical mode decom-
position (EMD) or ensemble empirical mode decomposition (EEMD). The Gaussian average filtering
decomposition (GAFD) technique has been shown to be appropriate in several biomedical scenarios
and can be an alternative to EMD and EEMD. This research proposes the combination of GAFD and
Hilbert transform that is termed the Hilbert–Gauss transform (HGT) to overcome the conventional
drawbacks of HHT in TFA and frequency estimation. This new method is verified to be effective
for the estimation of respiratory rate (RR) in finger photoplethysmography (PPG), wrist PPG and
seismocardiogram (SCG). Compared with the ground truth values, the estimated RRs are evaluated
to be of excellent reliability by intraclass correlation coefficient (ICC) and to be of high agreement by
Bland–Altman analysis.

Keywords: empirical mode decomposition (EMD); ensemble empirical mode decomposition (EEMD);
Gaussian average filtering decomposition (GAFD); Hilbert–Gauss transform (HGT); Hilbert–Huang
transform (HHT); photoplethysmography (PPG); respiratory rate (RR); seismocardiogram (SCG);
time-frequency analysis (TFA)

1. Introduction

Abnormal respiratory rate (RR) has been shown to be a sensitive indicator of acute res-
piratory dysfunction [1]. Increased RR is also an index for the elderly patients of consecutive
acute admissions to a geriatric unit before clinical diagnosis [2]. Using elevated RR as a sign
for therapeutic interventions in internal medicine and emergency departments is reported
to be effective in reducing the incidence of subsequent cardiopulmonary arrest and the asso-
ciated morbidity and mortality [3,4]. The changes in RR can also serve as a leading marker
of SARS-CoV-2 infections [5]. In addition, the variation in RR is also implicated in breathing
disorders (such as sleep apnea, pneumonia, and dyspnea), emotional stress, pain-induced
psycho-behavioral changes, cognitive tasks, environment stress and physical effort during
sport [6]. All observations indicate that the rate of respiration is a critical vital sign, not
only in clinical medicine, but also in exercise. In practical settings, respiration signal can be
acquired by transthoracic impedance plethysmography [7], electrocardiogram (ECG) [8,9],
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capnometry [10], temperature sensors [11,12], photoplethysmography (PPG) [13], wearable
strain sensor [14], seismocardiogram (SCG) [15] and stretchable conductive fabric [16].
In addition to sensing technologies [17,18], the signal processing algorithm is another
important issue for the estimation of RR [17].

Frequency estimation technique plays a crucial role in RR estimation [19]. The method
of frequency estimation can be implemented by discrete Fourier transform (DFT) [20],
eigen-analysis approach [21], wavelet-based scalogram [22] and Hilbert–Huang transform
(HHT) [23,24]. Among these methods, the conventional Fourier-based techniques are
constrained by a limited frequency resolution [24]. Modern parametric spectral estimation,
such as autoregressive (AR) modeling, has the advantages of shorter data length required
in computation and has a higher frequency resolution when compared with Fourier-based
methods [25]. However, high signal-to-noise ratio (SNR) and proper selection on model
order are required for AR modeling. The signal usually needs preprocessing, and the
optimal order selection method, such as Akaike information criterion (AIC), criterion
autoregressive transfer function (CAT) or final prediction error (FPE), is generally needed in
AR spectral estimation [25]. Taking these issues into consideration, Fleming and Tarassenko
proposed an algorithm based on AR modeling that can estimate RR from a PPG signal,
with a mean error of 0.04 breaths per minute (bpm) [26]. Because respiration is a time-
varying signal, analysis of time-frequency domain is a feasible approach for RR estimation.
To attain this goal, Chon, et al. developed an algorithm termed the variable-frequency
complex demodulation (VFCDM) to estimate RR from PPG signals [27]. VFCDM can
provide superior performance when compared with AR modeling and continuous wavelet
transform (CWT) for RR estimation. However, the VFCDM algorithm requires at least
one-minute length of signal for the estimation, and this may lead to a heavier computation
load and a constraint on real-time tracking the time-varying changes of RR. To reduce the
computational complexity, a one wavelet-based embedded algorithm has been proposed to
estimate RR from a PPG signal, and the mean square error (MSE) is shown to be as small
as 0.2534 bpm (compared with the ground truth derived from a respiration signal) [13].
Another algorithm based on wavelet decomposition (by db6 wavelet) and complex Morlet
wavelet has been developed to estimate RR from SCG under resting state [15]. Although
RR can be estimated in PPG or in SCG by wavelet-based algorithms, there is still a lack
of one unified approach for RR estimation in different scenarios, since the wavelet kernel
adopted in [13,15] are different in essence.

The strict request on biomedical signal analysis arises from the nonstationary char-
acteristics and the nonlinearity underlying the physiological process. HHT is a two-step
procedure for data analysis. Its first step is to derive the so-called intrinsic mode function
(IMF) by empirical mode decomposition (EMD) [28] or ensemble empirical mode decom-
position (EEMD) [29]. Their common advantage is that the bases are data adaptive, which
means the decomposition can be conducted without the need for any a priori knowledge on
the data. This property makes such approaches very feasible for nonstationary and nonlin-
ear signal analysis. The second step of HHT is to take Hilbert transform on the decomposed
IMFs. Because IMFs are separated in nearly pure mode, their corresponding instantaneous
frequencies can be highlighted in the Hilbert spectrum with high frequency resolution.
Because of the fascinating characteristics mentioned above, HHT has been demonstrated to
be powerful and effective in engineering, financial and geophysical data [30]. To date, HHT
has also been widely adopted in biomedical signal analysis [31–33]. However, drawbacks
still exist for EMD or EEMD. The widely mentioned ones include mode mixing, unnec-
essary redundant decomposition and boundary effect [34]. There is still room for further
improvement of EMD-like methods.

To overcome the inherent deficits of EMD and EEMD, Lin et al. proposed one algorithm
that is termed the Gaussian average filtering decomposition (GAFD) and has demonstrated
that the respiration component can be separated reliably from finger PPG, wrist PPG and
SCG, even in the case of changed breathing rate during signal measurement [35]. This
novel algorithm adopts a procedure that is similar to EMD [28], but the IMFs are sifted
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iteratively by Gaussian average filters. In the performance comparison, GAFD has been
verified to be superior to EMD and EEMD in the mentioned scenarios [35]. GAFD can
sift the respiration component from PPG or SCG, but only a signal pattern is acquired in
the result. In addition, the respiration pattern may appear at the distinct IMF in different
scenarios. To estimate RR, this paper further applies Hilbert transform on the decomposed
IMFs that are separated by GAFD to overcome the conventional deficits of EMD and EEMD,
and in the meantime, can maintain the advantage of high-frequency resolution in frequency
estimation. With the combination of GAFD and Hilbert transform, we hereafter name this
novel method the Hilbert–Gauss transform (HGT). The advantage of Hilbert spectrum from
the decomposed IMFs is the estimation precision on instantaneous frequency, even under
the nonstationary cases. Because a tiny difference exists between the respiratory waveforms
of inhalation and exhalation, this may cause the estimated instantaneous frequency varying
with respiration, even when the subject is kept at a controlled breathing pace. Because
the human respiration frequency is within a specified range [36], the proposed method
firstly screens the potential respiratory IMF from the mean instantaneous frequency of the
derived Hilbert spectrum. The mean instantaneous frequency is then used to estimate RR.
This new method is shown to be effective for RR estimation in finger PPG, wrist PPG and
SCG. Taking the comparison with the ground truth RR estimated from respiration signal,
the estimated RR by the proposed method has been verified to be of excellent reliability by
intraclass correlation coefficient (ICC) and be of high agreement by Bland–Altman analysis.

The rest of this paper is organized as follows. Section 2 primarily contains the data
resources utilized in this study and the proposed method for RR estimation. The experi-
mental results and the related discussion are shown in Section 3. Finally, the conclusions
are given in Section 4.

2. Materials and Methods

This section primarily contains two parts, one presents the materials adopted in this
study and the other presents the introduction for the proposed method. In the Materials
section, the databases and conducted experiments for signal collection are covered firstly,
and the computing resources (including software and computing environment) utilized
in this research are subsequently introduced. The proposed method is composed of HGT
and RR estimation algorithms. They are introduced separately in their specific subsections.
To verify the feasibility of the proposed algorithm, the derived results are compared with
those acquired from the respiration signal and are tested by intraclass correlation coefficient
(ICC) [37,38] and Bland–Altman agreement analysis [39], respectively, which are introduced
in the last part of Methods section.

2.1. Materials
2.1.1. Data Resources and Conducted Experiments

In this study, finger PPG, wrist PPG and SCG with synchronously recorded respiration
signal are used to verify the feasibility of the proposed algorithm. In which, the finger
PPG signals are selected from the MIMIC (Multi-parameter Intelligent Monitoring for
Intensive Care) database [40] of PhysioNet [41]. In this database, all signals were sampled
at 500 Hz and the data were collected in the intensive care unit (ICU) of Boston’s Beth Israel
Hospital. As shown on the website of the MIMIC database (https://physionet.org/content/
mimicdb/1.0.0/ (accessed on 1 February 2023)), there are a total of 72 records, but only
52 records contain both respiration and PPG signals. Because the PPG signals in records
418 and 427 are almost flat for the entire duration of their measurement, only 50 records
are utilized in this research. Due to the limited linear range of bedside monitor, the signals
recorded in the ICU may contain pattern saturation. The interruption or abrupt change may
also appear in the signals because of sensor detachment, medical manipulation or patient
movement. The online data viewing tool LightWAVE was utilized to sift the qualified
segments from the 50 records [42]. Only segments of good quality (no saturation, no signal
interruption and no interference in the signals) are selected for computer experiments.

https://physionet.org/content/mimicdb/1.0.0/
https://physionet.org/content/mimicdb/1.0.0/
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Finally, a total amount of 1000 data is included in the finger PPG database. Each data point
consists of synchronous respiration and PPG signals with a fixed length of 60 s.

In this research, the wrist PPG signals were measured by the green light PPG module of
ASUS VivoWatch™ through the toolkit provided by ASUSTek Computer Inc., Taiwan. The
wrist PPG acquired through the toolkit was connected to the signal processing breadboard
SS39L (BIOPAC® Systems, Inc., Goleta, CA, USA). A dedicated cable SS60L (BIOPAC®

Systems, Inc., Goleta, CA, USA) for SS39L was used to convey the signals to the multifunc-
tion physiological data acquisition (DAQ) system MP30 (BIOPAC® Systems, Inc., Goleta,
CA, USA). The respiration signal was measured synchronously by the respiration belt
transducer SS5LB (BIOPAC® Systems, Inc., Goleta, CA, USA). Both signals were simulta-
neously acquired by Biopac Student Lab Pro analysis software with band-pass filtering of
0.05 to 35 Hz and the sampling frequency was 100 Hz for each signal. Five healthy subjects
(3 males and 2 females, aged 23 ± 1 years) without a history of cardiopulmonary diseases
were recruited from Feng Chia university. The conducted experiments were approved
by the Institutional Review Board of Changhua Christian Hospital, Taiwan. The wrist
PPG signal has been shown to be easily modulated by respiration [35]. To investigate the
influence of respiration on the PPG pattern, the two-minute experiments were conducted
five times for each subject. During the experiments, the subjects were requested to control
their breathing speed at one fixed frequency in the first minute and change to another speed
in the second minute. The controlled respiration frequencies range from 0.1 Hz (6 bpm)
to 0.25 Hz (15 bpm), which were randomly selected in each experiment. In summary,
there are a total of 25 data points collected in the wrist PPG database, and each signal is of
2 min length.

In this paper, the SCG signals are selected from the CEBS (Combined measurement of
ECG, Breathing and Seismocardiograms) database [43] of PhysioNet [41]. This database was
established by the Electronic and Biomedical Instrumentation research group of Polytechnic
University of Catalonia (UPC, Barcelona, Catalonia, Spain) with ECG, breathing signal
and SCG being measured simultaneously. Twenty healthy volunteers (twelve males and
eight females, aged between 19 and 30) were recruited for the experiments. Each subject
was requested to keep quiet and awake in supine position on the bed and the data were
recorded from the basal state (5 min), period of listening to the classic music (50 min) till
the post-resting state (5 min). There are four channels of signals for each record. Channels
1 and 2 are ECG signals (lead I and II, bandwidth of 0.05 Hz to 150 Hz), channel 3 is the
respiration signal (bandwidth between 0.05 Hz and 10 Hz, by SS5LB piezoresistive sensor,
BIOPAC® Systems, Inc., Goleta, CA, USA) and channel 4 is SCG (bandwidth of 0.5 Hz to
100 Hz, by LIS344ALH, STMicroelectronics). The data were collected by the multifunction
physiological data acquisition (DAQ) system MP36 (BIOPAC® Systems, Inc., Goleta, CA,
USA) and the sampling frequency is 5000 Hz for each signal in the original database. With
the help of online data viewing tool LightWAVE [42], it can be observed that the respiration
signals in some records (such as 006, 007, 009, 010, 015, 016 and 018) are not qualified
enough. The signals may contain artefacts (perhaps due to motion or other unknown
reasons) or very irregular patterns, rendering the rate of respiration difficult to identify,
even by visual inspection. The criterion for data selection is that the respiration signal must
be regular for a one-minute duration and the rate of respiration must be able to be clearly
determined by visual inspection during this interval. Finally, 500 segments of one-minute
length screened from 13 subjects were collected in the SCG database.

The signal selection and the experiments were conducted under the supervision of a
clinical expert on our team to assure the quality of signals collected. As this research uses a
database composed of three different types of datasets, Table 1 provides an overview of
important database details, such as the number of participants, age range of the subjects,
experimental conditions and the number of records in each dataset.
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Table 1. Summary of the datasets used in this research.

Subject Number 1 Age Range 2 Posture Record Number 3

Finger PPG 50 (30M, 20F) 21–92 years Supine (ICU) 3000 records

Wrist PPG 5 (3M, 2F) 22–24 years Sitting 150 records

SCG 13 (6M, 7F) 19–30 years Supine 1500 records
1 Subject Number indicates the total number of subjects included in the dataset, with ‘M’ representing male and F
representing female. 2 Age Range refers to the range of age range for the participated subjects. 3 Record Number
is the number of records of 20 s length in the dataset.

The sampling frequency may influence the computation speed and the frequency reso-
lution in frequency estimation. Because the sampling frequencies in the above-mentioned
databases are different, the sampling frequencies for finger PPG, wrist PPG and SCG
have been unified to be 100 Hz by resampling (using the resample function of MATLAB,
MathWorks Inc., Natick, MA, USA) before further analysis.

2.1.2. Computing Resources

In this study, the computer experiments are conducted on the MacBook Pro (Apple M1
Max, with 64 GB memory size, Apple Inc., Cupertino, CA, USA). The codes for GAFD and
Bland–Altman analysis are developed by Python (version 3.9.12), with installed libraries
NumPy (version 1.21.5), SciPy (version 1.7.3) and Matplotlib (3.5.3). The Python code of
GAFD can be found on GitHub [44]. In the estimation of RR, the EMD toolbox in Python [45]
is required for Hilbert transform. The code for Bland–Altman analysis in Python version
can be downloaded from GitHub [46]. In addition, PyWavelets package [47] is utilized to
estimate RR from respiration signal by complex Morlet wavelet, where the sample code
can be found on GitHub [48]. The MATLAB code shared by Salarian [49] is utilized for the
computation of ICC.

2.2. Methods
2.2.1. Hilbert–Gaussian Transform (HGT)

Similar to HHT, HGT is also a two-step computing procedure. Its first step is GAFD,
which is, in its essence, a low-pass filtering procedure conducted by using the Gaussian
window. Let the signal to be analyzed be denoted as s[n], for 0 ≤ n ≤ N − 1. The discrete
Gaussian window of length (2M + 1) is given by:

w[m] = e−(α·m/M)2/2, for −M ≤ m ≤ M, (1)

where α is the parameter inversely proportional to the standard deviation of the Gaussian
distribution. The value of α is suggested to be at least 2.45, such that values at the end points
of the window are less than 5% of the maximal window value [35]. In this study, α is selected
to be 4.0728, which makes the end values as small as 0.025% of the maximal window value.
In this situation, the characteristics of continuous Gaussian function can be approximately
preserved in its discrete version. One useful characteristic is its corresponding spectrum is
also of Gaussian shape [50]. In practical application, the normalized Gaussian window is
utilized for computation, such that the energy can be kept unchanged during the average
filtering procedure. The normalized Gaussian window can be obtained as follows:

wG[m] = w[m]/
(
∑M

l=−M w[l]
)

, for −M ≤ m ≤ M. (2)

Because signal s[n] is only defined in the interval 0 ≤ n ≤ N − 1, the signal needs
to be extended outside the boundaries before the filtering operation with wG[·]. There
are four types of extension style in the developed Python code [44], they are “constant”,
“periodical”, “reflection” and “double-symmetrical reflection”, respectively. The detailed
description may refer to [35]. This paper adopts “double-symmetrical reflection” for all
computer experiments because this extension style can effectively eliminate the boundary
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effect during the decomposition procedure based on the experimental findings. Let the
extended result of signal s[·] over both boundary points be represented by se[n], and the
interval of n now becomes −M ≤ n ≤ N + M − 1 after the extension. In GAFD, the
instantaneous mean is acquired by the following moving-average operation

mi[n] = ∑M
m=−M wG[m] · se[m + n], for 0 ≤ n ≤ N − 1. (3)

Because the Gaussian window wG[·] is of symmetrical shape, the computation of
instantaneous mean in Equation (3) is, in its essence, the convolution sum of wG[·] and
se[·]. In frequency domain, it is the direct multiplication between the spectra of wG[·] and
se[·]. As the spectrum of Gaussian window is symmetric Gaussian shape centered at 0, this
implies that the moving-average operation of Equation (3) is inherently a low-pass filtering
on se[·]. After the instantaneous mean mi[·] has been acquired, the decomposed IMF can be
derived by:

r[n] = s[n]−mi[n], for 0 ≤ n ≤ N − 1. (4)

The decomposition procedure is then conducted on r[·] until any stop criterion has
been reached, which is similar to EMD [28]. There are three stop criteria in in the developed
Python code [44]. The first one is the energy ratio of the original signal to the residual after
the i-th IMF decomposition. The decomposition will terminate if the energy ratio is greater
than the threshold. Another criterion is the energy difference between the neighboring
IMF. If the energy difference is less than the dedicated threshold, the decomposition will
also be stopped. The last criterion will be introduced later, which is related to the length of
Gaussian window.

One important issue for the filtering operation is the selection of window length for
wG[·]. As mentioned in [35], there are several approaches can be selected to attain the goal.
In this research, the method proposed by Lin et al. [51] is adopted and the value of M is
obtained by:

M = 2 · bε · N/Nec, (5)

in which ε is a scalar within the range 1.1 to 3 [51], N is the length of signal to be analyzed,
Ne denotes the number of local extremes (including both local maxima and local minima)
in the analyzed signal, and the symbol b·c represents the floor operator that rounds the
value to the nearest integer toward the direction of minus infinity. We have evaluated the
performance on RR estimation at different values of ε and found that 1.8 provided a reliable
RR estimation for the signals that we analyzed in this research. For this reason, the value of
ε is selected to be 1.8 for all of the computer experiments in this study. As mentioned in [35],
there are several ways to find the local extremes in the signals. The second derivative test is
adopted in the developed Python code [44]. If the value of Ne is too small, it is possible to
derive a Gaussian window that is longer than the signal length. In this situation, it is not
necessary to continue the decomposition procedure. Therefore, one simple criterion that
allows for further decomposition procedure is given by:

M < N/2− 1. (6)

With the above background, the procedure of GAFD can be summarized as follows.
Step 1: From the number of extremes in the signal to be decomposed, determine

the value of M according to Equation (5), and then check the value of M according to
Equation (6). If it is satisfied, then start or continue the decomposition procedure and
generate the Gaussian window wG[·] of length (2M + 1) based on Equations (1) and (2).
Otherwise, terminate the procedure.

Step 2: Extend the signal over both boundary points and derive the instantaneous
mean mi[·] by conducting the moving-average operation according to Equation (3).

Step 3: Obtain the prototype IMF r[·] according to Equation (4) and check whether
any stop criterion has been reached. If not, repeat computing steps 1 to 3. Otherwise, stop
the whole procedure.
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The second step for HGT is taking the Hilbert transform on the IMFs decomposed
by GAFD. Let the i-th IMF be denoted as xi[·], its corresponding Hilbert transform is
represented by yi[·]. From xi[·] and yi[·], the analytic signal can be formulated as follows:

zi[n] = xi[n] + j · yi[n] = ai[n] · ej·θi [n], for 0 ≤ n ≤ N − 1, (7)

where ai[·] =
(

x2
i [·] + y2

i [·]
)1/2 and θi[·] = tan−1(yi[·]/xi[·]). The instantaneous frequency

ωi[·] is then derived from the gradient of unwrapped phase θi[·], both are in unit radian.
The instantaneous frequency in unit Hz can be converted by the following equation:

fi[n] = fs ·ωi[n]/(2π), for 0 ≤ n ≤ N − 1, (8)

in which fs is the sampling frequency (also in unit Hz) of the discrete-time signal.
With the representation of the analytical signal as shown in Equation (7) and the

conversion to unit Hz for instantaneous frequency according to Equation (8), each time
index n now has its corresponding instantaneous frequency fi[n] and its corresponding
amplitude ai[n] (or energy a2

i [n]). Let Hi(n, f i[n]) denote the time-frequency-amplitude (or
time-frequency-energy) representation acquired from the i-th IMF and assume that there
are, in total, P IMFs derived by GAFD, the final HGT is summarized to be:

H(n, f ) = ∑P
i=1 Hi(n, f i[n]), for 0 ≤ n ≤ N − 1. (9)

That is, the result of HGT is the sum of time-frequency-amplitude (or time-frequency-
energy) representation from each IMF. As with the terminology used in HHT, such repre-
sentation is called the Hilbert spectrum.

2.2.2. RR Estimation Algorithm

The result of HGT is a mixture of Hilbert spectrum contributed from each IMF. To
estimate RR from the mixed spectrum, the mean and the standard deviation of the instanta-
neous frequency are adopted in the estimation.

For instantaneous frequency fi[·] of the i-th IMF, the mean frequency (denoted as fi

)
and the corresponding standard deviation (denoted as fi_std) can be derived as follows:

fi =
(

∑N−1
n=0 fi[n])/N

fi_std =

√[
∑N−1

n=0 ( f i[n]− fi

)2
]

/(N − 1)
. (10)

Because the rate of respiration for human beings is located within a specified range [36],
the attention can be focused on this range for the derived Hilbert spectrum. Let the lower
bound and upper bound of respiration frequency be denoted as frL and frU , respectively.
Assume there are, in total, P IMFs after GAFD, and there are Q possible candidates for
respiration component in these IMFs. The procedure of the RR estimation algorithm is
briefly summarized as follows:

Step 1: Find the possible candidates of respiration component in P IMFs by screening
from the derived fis that are within the range between frL and frU . That is,

{Q IMFs} =
{

frL ≤ fi ≤ frU : i = 1, 2, · · · · · · P
}

, (11)

where {·} represents the symbol of a set. If Q = 1 (i.e., only one IMF satisfies the require-
ment), then the rate of respiration RR = 60 · fi (unit: bpm). If there is more than one IMF in
the set, then go to Step 2.
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Step 2: The respiration frequency is the mean frequency fi with the smallest standard
deviation among Q IMFs. That is,

fi = argmin
i
( f i_std in {Q IMFs}

)
. (12)

After respiration frequency fi is determined, the rate of respiration can be estimated
by RR = 60 · fi (unit: bpm).

In this research, the lower bound and upper bound for respiration frequency are
defined to be 0.09 Hz (i.e., 5.4 bpm) and 0.35 Hz (i.e., 21 bpm), respectively. Since no
RR value in the datasets of this study exceed 21 bpm (i.e., 0.35 Hz), we selected 0.35 Hz
as the upper bound for the estimation. In practical applications, the range of respiration
frequency can be adjusted to meet the requirements for RR estimation. Another issue for RR
estimation by the proposed method is the required signal length. It is necessary to receive
the signal covered at least one cycle of respiration even under the slowest respiration
frequency. For example, as the lower bound of respiration frequency is 0.09 Hz, the length
of signal should be 11.11 s at least. To make the analysis more stable, a length of more than
20 s is suggested.

To evaluate the effectiveness of the proposed method, the results derived by power
spectrum analysis based on complex Morlet wavelet for respiration signal are adopted for
performance comparison. The detailed description on the wavelet-based spectrum analysis
method may refer to [13]. In brief, let the derived spectrogram (or termed as scalogram,
which is the time-frequency-energy representation acquired from wavelet transform) be
denoted as Sc(n, f ), for 0 ≤ n ≤ N − 1 and frL ≤ f ≤ frU , then the time-averaged
spectrum is given as follows:

ŝc( f ) =
[
∑N−1

n=0 Sc(n, f )
]
/N. (13)

The respiration frequency is the local maximum of ŝc( f ) in the interested frequency
range, and RR can be computed by:

RR = 60 · arg max
frL≤ f≤ frU

{ŝc( f )}. (14)

In this research, the frequency resolution used for the computation of spectrogram is
0.01 Hz.

2.2.3. Statistical Analysis

Two statistical tests were conducted in this study. The first one is the intraclass correla-
tion coefficient (ICC) [37,38], and the other is the Bland–Altman agreement analysis [39].
ICC is used to evaluate the degree of consistency between RRs from PPG or SCG signals
and RRs from respiration signal. In this research, the MATLAB code [49] that is developed
based on McGraw and Wong’s article [38] is adopted in the statistical test. The two-way
mixed and single score (“A-1” type in the code [49]) under 0.05 level of significance is
adopted to estimate ICC. Bland–Altman analysis is utilized to evaluate whether the RRs
derived by the proposed method agree well with the RRs acquired by the conventional
standard approach. The limits of agreement with 95% confidence interval are used to check
the scattering characteristics between the results.

3. Results and Discussion

There are three kinds of datasets used in the computer experiments, which are finger
PPG (selected from MIMIC database [40] of PhysioNet [41]), wrist PPG (collected in Feng
Chia University) and SCG (selected from CEBS database [43] of PhysioNet [41]) datasets. A
detailed description of these datasets is provided in Section 2.1.1.
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In this study, we propose GAFD as a signal decomposition method. To evaluate its
performance, we compare it with two conventional methods, EMD and EEMD. We also test
the robustness of each method under noise-corrupted conditions, with a signal-to-noise
ratio (SNR) of 5 dB. Figure 1 demonstrates the results for six cases: (a) finger PPG, (b) wrist
PPG, (c) SCG, (d) finger PPG with an SNR of 5 dB, (e) wrist PPG with an SNR of 5 dB and
(f) SCG with an SNR of 5 dB.
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Figure 1. Decomposition results for (a) finger PPG, (b) wrist PPG, (c) SCG, (d) finger PPG with an
SNR of 5 dB, (e) wrist PPG with an SNR of 5 dB and (f) SCG with an SNR of 5 dB. The illustrations
are arranged in order of signal type (PPG or SCG), respiration signal and the respiration-related IMF
decomposed by EMD, EEMD and GAFD (from top to bottom).

The data numbered 03900006 from the MIMIC database [40] of PhysioNet [41] are
adopted for the illustration in Figure 1a. From the results, the respiration component
decomposed by GAFD (the 4th IMF) agrees well with respiration signal; both are evaluated
to be 13 bpm by visual inspection (which has been checked and verified by the clinical
expert). The values are 10 and 13 bpm for EMD (the 5th IMF) and EEMD (the 6th IMF),
respectively, which were found as well from visual inspection (which has been checked
and verified by the clinical expert). In addition, the boundary effect is apparent in EMD
(at left end point). Such an effect still exists in EEMD (at right end point), but is not so
obvious as in EMD. Figure 1b is the result of wrist PPG from one male subject aged 23,
measured in the sitting posture and with a paced respiration of 6 bpm in the first minute,
and changed to 10 bpm in the second minute during the experiment. It can be observed
that the result decomposed by GAFD for the respiration component (in the 4th IMF) also
matches well with the pattern shown in the respiration signal. The performance is relatively
poorer for both EMD (the 6th IMF) and EEMD (the 6th IMF), especially at the first 10 s
(where the respiration pattern is not obvious but the rugged shape may overestimate the
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respiration frequency). Figure 1c shows the results for the data numbered b017 from the
CEBS database [43] of PhysioNet [41]. As with the other cases, the respiration component
decomposed by GAFD (the 5th IMF) agrees very well with the practical respiration signal;
both are nine breaths in the 30 s period. However, the results are underestimated by
both EMD (the 7th IMF) and EEMD (the 7th IMF), where only eight breaths are observed
in the same period. The boundary effect at the right end points looks apparent in both
EMD and EEMD, and this effect influences the estimated RR. Subfigures (d)–(f) of Figure 1
illustrate the results of noise-corrupted tests on the signals presented in subfigures (a)–(c),
respectively. To conduct these tests, additive white Gaussian noise (AWGN) was added to
the raw signals, while maintaining a 5 dB SNR. The resulting noise-corrupted signals were
then used to produce subfigures (d)–(f). The differences between subfigures (a) versus (d),
(b) versus (e) and (c) versus (f) in Figure 1 can be examined to assess the noise robustness of
the three methods (i.e., EMD, EEMD and GAFD). The results show that even at a low SNR
of 5 dB, the proposed GAFD method is more robust to noise than the traditional methods
EMD and EEMD. This finding suggests that GAFD may be a promising method for future
applications in noise-robust signal processing. Figure 1 demonstrates the feasibility of
GAFD in extracting the respiration component from PPG and SCG signals, even under the
noise-corrupted conditions.

In the proposed method, the Hilbert transform is conducted after the IMF’s decom-
position (refer to Section 2.2.1). The rate of respiration is then estimated according to
the evaluation on mean and standard deviation of the instantaneous frequency from the
acquired Hilbert spectrum (refer to Section 2.2.2). Figures 2–4 shows the Hilbert spectrum
for the analysis of finger PPG, wrist PPG and SCG, respectively. The results for the speci-
fied signal based on EMD, EEMD and GAFD are arranged in the same figure so that the
comparison could be clearer and easier. In addition, the right subfigures in Figures 2–4 are
the Hilbert spectra sifted from the respiration-related IMF according to the proposed rule
presented in Section 2.2.2.

Figure 2 is the corresponding Hilbert spectrum for the finger PPG signal shown in
Figure 1a. The results based on EMD, EEMD and GAFD are shown in (a)–(c), respectively,
in which the ground truth respiration frequency (dash-dotted line) and the estimated
respiration frequency (dotted) are also depicted in each right subfigure. The results verify
that the proposed mean and standard deviation rule (refer to Section 2.2.2) can sift the
respiration-related Hilbert spectrum from the original Hilbert spectrum for all decomposi-
tion approaches. However, the error based on EMD is the largest among three approaches,
which underestimates the respiration frequency just like the situation in the time domain
(refer to Figure 1a).

Figure 3 depicts the corresponding Hilbert spectrum of the wrist PPG signal shown in
Figure 1b. Subfigures (a)–(c) are the results by EMD, EEMD and GAFD, respectively, in
which the ground truth respiration frequency (dash-dotted line) and the estimated respira-
tion frequency (dotted) are also demonstrated in each right subfigure. From the results, it
can be observed that the proposed rule (refer to Section 2.2.2) can sift the respiration-related
Hilbert spectrum from the Hilbert spectrum of all IMFs in the 10-bpm cases, no matter
which decomposition approach is adopted. However, the error based on EMD and EEMD
overestimate the respiration frequency due to the bumpy pattern at the first 10 s (refer to
Figure 1b). It can be distinguished that the estimation performance based on GAFD is still
the best one.

Figure 4 is the corresponding Hilbert spectrum of the SCG signal shown in Figure 1c.
The results based on EMD, EEMD and GAFD are demonstrated in (a)–(c), respectively,
in which the ground truth respiration frequency (dash-dotted line) and the estimated
respiration frequency (dotted) are also illustrated in each right subfigure. The results show
that the proposed mean and standard deviation rule (refer to Section 2.2.2) can sift the
respiration-related Hilbert spectrum from the original Hilbert spectrum for all methods. It
can be appreciated that the deviation from the ground truth that is based on GAFD is the
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smallest one among three approaches. In this case, the error of RR is 0.37 bpm (multiply
the frequency deviation by 60).
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Figure 2. Hilbert spectrum of finger PPG (data numbered 03900006 from MIMIC database) by
(a) EMD, (b) EEMD and (c) GAFD. The illustrations in each subfigure are the Hilbert spectrum for all
IMFs on the left, whereas the Hilbert spectrum for the respiration-related IMF is on the right. In the
Hilbert spectrum of respiration (right subfigure), the dash-dotted line (blue) denotes the respiration
frequency estimated by wavelet transform from respiration signal (ground truth), whereas the dotted
line (dark red) represents the respiration frequency estimated from the Hilbert spectrum according to
the rule introduced in Section 2.2.2.

To verify the feasibility of the proposed method for RR estimation, two statistical tests
were conducted in this study. There are 1000 finger PPG datasets of 60 s length (from
50 records of MIMIC database [40]), 25 wrist PPG datasets of 120 s length (from 5 healthy
subjects recruited from Feng Chia University) and 500 SCG datasets of 60 s length (from
13 subjects of CEBS database [43]) covered in the test database. The RRs estimated by
wavelet transform on the synchronous respiration signals are taken as the ground truth
values for statistical tests. A data length of 20 s is selected for each RR estimation by the
proposed method. There is no overlap for the signal segmentation of each dataset; therefore,
there are a total of 4650 pairs of data for statistical tests.

The two-way mixed and single score ICC under 0.05 level of significance is conducted
to check the degree of consistency between the proposed and the traditional methods.
The estimated ICC is equal to 0.9688, the lower and upper bounds of ICC at 0.05 level of
significance are 0.9669 and 0.9706, respectively. According to the guideline proposed by
Koo and Li [52], such ICC value represents the “excellent” agreement for the RR estimation
between the proposed method and the conventional approach.
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Figure 3. Hilbert spectrum of wrist PPG (measured from a male subject aged 23 in the sitting posture
with a controlled respiration of 6 bpm in the first minute and changed to 10 bpm in the second
minute) by (a) EMD, (b) EEMD and (c) GAFD. The illustrations in each subfigure are the Hilbert
spectrum for all IMFs on the left, whereas the Hilbert spectrum for the respiration-related IMF is on
the right. In the Hilbert spectrum of respiration (right subfigure), the dash-dotted line (blue) denotes
the respiration frequency estimated by wavelet transform from respiration signal (ground truth),
whereas the dotted line (dark red) represents the respiration frequency estimated from the Hilbert
spectrum according to the rule introduced in Section 2.2.2.

Another statistical test is the Bland–Altman agreement analysis [39]. The limits of
agreement with 95% confidence interval are also utilized to evaluate the scattering charac-
teristics between the results. The result of the Bland–Altman plot is shown in Figure 5. The
Pearson’s correlation coefficient (CC) is 0.9689, which is very close to the derived ICC. In
addition, the mean of the bias and the limits of agreement (95% confidence interval) are
also depicted in Figure 5, which is nearly 0 and around ±1 bpm, respectively. The values
are low enough to show that the RRs derived by the proposed method agree well with the
RRs acquired by the conventional approach.

To assess whether the proposed method exhibits bias in estimating RR from different
types of signals, we performed separate computations of ICC and the Bland–Altman
agreement analysis. The results of our analysis are summarized in Table 2, which indicates
that there was no observable bias in estimating RR from any of the analyzed signals. Our
findings suggest that the proposed method is not subject to any bias in RR estimation, as
confirmed by the ICC and Bland–Altman agreement analysis.
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Figure 4. Hilbert spectrum of SCG (data numbered b017 from CEBS database) by (a) EMD, (b) EEMD
and (c) GAFD. The illustrations in each subfigure are the Hilbert spectrum for all IMFs on the left,
whereas the Hilbert spectrum for the respiration-related IMF is on the right. In the Hilbert spectrum of
respiration (right subfigure), the dash-dotted line (blue) denotes the respiration frequency estimated
by wavelet transform from respiration signal (ground truth), whereas the dotted line (dark red)
represents the respiration frequency estimated from the Hilbert spectrum according to the rule
introduced in Section 2.2.2.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17 
 

 

Figure 4. Hilbert spectrum of SCG (data numbered b017 from CEBS database) by (a) EMD, (b) 
EEMD and (c) GAFD. The illustrations in each subfigure are the Hilbert spectrum for all IMFs on 
the left, whereas the Hilbert spectrum for the respiration-related IMF is on the right. In the Hilbert 
spectrum of respiration (right subfigure), the dash-dotted line (blue) denotes the respiration fre-
quency estimated by wavelet transform from respiration signal (ground truth), whereas the dotted 
line (dark red) represents the respiration frequency estimated from the Hilbert spectrum according 
to the rule introduced in Section 2.2.2. 

To verify the feasibility of the proposed method for RR estimation, two statistical 
tests were conducted in this study. There are 1000 finger PPG datasets of 60 s length 
(from 50 records of MIMIC database [40]), 25 wrist PPG datasets of 120 s length (from 5 
healthy subjects recruited from Feng Chia University) and 500 SCG datasets of 60 s length 
(from 13 subjects of CEBS database [43]) covered in the test database. The RRs estimated 
by wavelet transform on the synchronous respiration signals are taken as the ground 
truth values for statistical tests. A data length of 20 s is selected for each RR estimation by 
the proposed method. There is no overlap for the signal segmentation of each dataset; 
therefore, there are a total of 4650 pairs of data for statistical tests. 

The two-way mixed and single score ICC under 0.05 level of significance is con-
ducted to check the degree of consistency between the proposed and the traditional 
methods. The estimated ICC is equal to 0.9688, the lower and upper bounds of ICC at 0.05 
level of significance are 0.9669 and 0.9706, respectively. According to the guideline pro-
posed by Koo and Li [52], such ICC value represents the “excellent” agreement for the RR 
estimation between the proposed method and the conventional approach. 

Another statistical test is the Bland–Altman agreement analysis [39]. The limits of 
agreement with 95% confidence interval are also utilized to evaluate the scattering char-
acteristics between the results. The result of the Bland–Altman plot is shown in Figure 5. 
The Pearson’s correlation coefficient (CC) is 0.9689, which is very close to the derived 
ICC. In addition, the mean of the bias and the limits of agreement (95% confidence in-
terval) are also depicted in Figure 5, which is nearly 0 and around ±1 bpm, respectively. 
The values are low enough to show that the RRs derived by the proposed method agree 
well with the RRs acquired by the conventional approach. 

 
Figure 5. Bland–Altman plot for the RR estimation between the proposed method and the conven-
tional approach. 

To assess whether the proposed method exhibits bias in estimating RR from differ-
ent types of signals, we performed separate computations of ICC and the Bland–Altman 
agreement analysis. The results of our analysis are summarized in Table 2, which indi-

Figure 5. Bland–Altman plot for the RR estimation between the proposed method and the conven-
tional approach.



Sensors 2023, 23, 3785 14 of 17

Table 2. Summary of ICC and Bland–Altman agreement analysis for RR estimation under different
signal conditions.

ICC 1 95% C.I. of ICC 2 Bias 3 Limit of Agreement 4

Finger PPG 0.9680 0.9655, 0.9704 −0.0048± 0.5493 −1.1033, 1.0937

Wrist PPG 0.9650 0.9573, 0.9714 0.0018± 0.5315 −1.0611, 1.0647

SCG 0.9691 0.9658, 0.9720 −0.0104± 0.5403 −1.0910, 1.0702

Combined 5 0.9688 0.9669, 0.9706 −0.0062± 0.5446 −1.0954, 1.0830
1 ICC means the intraclass correlation coefficient.2 C.I. is the abbreviation of confidence interval. 3 Bias denotes
the difference between the estimated and the ground truth values, which is presented as mean ± SD (standard
deviation) in the unit of bpm. 4 Limit of Agreement represents the lower and the upper limit of agreement for
the Bland–Altman agreement analysis between the estimated values and the ground truth values derived by the
conventional approach in the unit of bpm. 5 “Combined” refers to the fusion of finger PPG, wrist PPG and SCG
signals for ICC and Bland–Altman agreement analysis.

4. Conclusions

This paper proposes a novel frequency estimation scheme named Hilbert–Gauss
transform (HGT), which combines Gaussian average filtering decomposition (GAFD) and
Hilbert transform. The principle of HGT is introduced with comprehensive mathematical
formulation. In addition to being an alternative to Hilbert–Huang transform (HHT), HGT
can also be used to estimate the frequency of specific components buried in the physiological
signals. In this article, the examples of finger PPG, wrist PPG and SCG are demonstrated to
show the feasibility of the estimation of respiratory rate (RR) based on HGT. The computer
experimental results by the proposed method have been compared with those acquired by
EMD- and EEMD-based approaches in different scenarios.

The decomposition performance is compared in Figure 1 for (a) finger PPG, (b) wrist
PPG, (c) SCG, (d) finger PPG with an SNR of 5 dB, (e) wrist PPG with an SNR of 5 dB and
(f) SCG with an SNR of 5 dB, respectively. It can be observed that GAFD can indeed extract
the respiration component buried in PPG or SCG, and its performance is the most prominent
among all the methods, even at a low SNR of 5 dB. For finger PPG (refer to Figure 1a,d), the
boundary effect is very apparent in EMD (at left end point) and relatively mild in EEMD (at
right end point). In addition, the rate of respiration may also be underestimated by EMD.
In the case of wrist PPG (refer to Figure 1b,e), the respiration component decomposed
by GAFD matches well with the pattern of respiration signal, even at a different rate of
respiration. The performance is relatively poorer for both EMD and EEMD, especially
at the first 10 s (in which the respiration pattern is not apparent and the bumpy shape
leads to an overestimate on the respiration frequency). In the case of SCG decomposition
(refer to Figure 1c,f), the respiration component decomposed by GAFD agrees well with
the practical respiration signal. However, the rate of respiration is underestimated by both
EMD and EEMD. The boundary effect at the right end points is apparent in both EMD
and EEMD.

The corresponding Hilbert spectrum of finger PPG, wrist PPG and SCG are shown in
Figures 2–4, where the results for the specified signal based on EMD, EEMD and GAFD are
organized in the same figure, and the ground truth respiration frequency and the estimated
respiration frequency are also depicted in each right subfigure. The results shown in these
figures verify that the proposed mean and standard deviation rule (refer to Section 2.2.2)
can indeed sift the respiration-related Hilbert spectrum from the original Hilbert spectrum
in each decomposition approach. In the case of finger PPG (refer to Figure 2), the error
based on EMD is the largest of all approaches, where the respiration frequency has been
underestimated (just like the phenomenon observed in the time domain). For wrist PPG
(refer to Figure 3), the respiration frequency is overestimated in both EMD- and EEMD-
based approaches for the first-minute period because of the rugged shape at the first 10 s.
In the example of SCG (refer to Figure 4), the deviation from the ground truth that is based
on GAFD is the smallest one in all approaches. In this demonstrated case, the error of RR is
0.37 bpm.
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There are a total of 4650 pairs of data (the RRs estimated by the proposed method
from PPG or SCG, and the RRs estimated by wavelet transform from respiration signal)
selected for statistical tests from three different databases. The estimated ICC is 0.9688,
and the lower and upper bounds of ICC (0.05 level of significance) are 0.9669 and 0.9706,
respectively. It is evaluated to be in “excellent” agreement (according to the guideline
proposed in [52]) for the RR estimation between the proposed method and the traditional
approach. In addition, Bland–Altman’s limits of agreement (95% confidence interval) are
derived to be around ±1 bpm (refer to Figure 5), respectively. The values are low enough
to show that the RRs derived by the proposed method agree well with the RRs acquired
by the conventional approach. With the separate analyses in estimating RR from different
types of signals, it can be observed there was no observable bias for the examined signals
(refer to Table 2). The results suggest that the proposed method is not subject to any bias in
RR estimation.

The demonstrated results verified that the proposed HGT-based approach can be used
to estimate RR from PPG or SCG signal reliably, even in the respiration pace-changed
conditions. This paper shows the superior performance of GAFD compared to EMD and
EEMD in certain examples. In addition to biomedical applications, EMD- or EEMD-based
HHT was applied in many scenarios. The proposed HGT has the potential to play a similar
role as HHT has previously.
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