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Abstract: Heart rate variability (HRV) is the physiological variation in the intervals between con-
secutive heartbeats that reflects the activity of the autonomic nervous system. This parameter is
traditionally evaluated based on electrocardiograms (ECG signals). Seismocardiography (SCG)
and/or gyrocardiography (GCG) are used to monitor cardiac mechanical activity; therefore, they
may be used in HRV analysis and the evaluation of valvular heart diseases (VHDs) simultaneously.
The purpose of this study was to compare the time domain, frequency domain and nonlinear HRV
indices obtained from electrocardiograms, seismocardiograms (SCG signals) and gyrocardiograms
(GCG signals) in healthy volunteers and patients with valvular heart diseases. An analysis of the time
domain, frequency domain and nonlinear heart rate variability was conducted on electrocardiograms
and gyrocardiograms registered from 29 healthy male volunteers and 30 patients with valvular heart
diseases admitted to the Columbia University Medical Center (New York City, NY, USA). The results
of the HRV analysis show a strong linear correlation with the HRV indices calculated from the ECG,
SCG and GCG signals and prove the feasibility and reliability of HRV analysis despite the influence
of VHDs on the SCG and GCG waveforms.

Keywords: heart rate variability analysis; electrocardiography; seismocardiography; gyrocardiography;
valvular heart diseases

1. Introduction

Cardiovascular diseases remain the most common cause of death in the world and
constitute a significant concern for public health due to the economic burden (expected to
reach 47 trillion USD by 2030) and the overload on medical personnel (17.9 million deaths
worldwide in 2016) despite progress in prevention, diagnosis and therapy [1–5]. Due to its
growing prevalence and significant impact on quality of life [6], we consider valvular heart
disease (VHD) in this study.

Valvular heart disease is any cardiovascular disease that affects any heart valve (the
aortic valve, mitral valve, pulmonic valve and tricupsid valve) [7,8]. The main causes of
VHDs are rheumatic heart disease and ageing [6,8–10]. The most prevalent VHD is aortic
stenosis (AS), which is the third most common cardiovascular disease after hypertension
and coronary artery disease, and is usually caused either by degenerative calcification of
the aortic valve or progressive stenosis of a congenital bicuspid valve [8].

VHDs are usually diagnosed by echocardiography, computed tomography or mag-
netic resonance imaging [9], which are not feasible in outpatient monitoring [11]. This
problem has been addressed by applying various methods [12,13], including exercise elec-
trocardiography (ECG) [14], seismocardiography (SCG) or gyrocardiography (GCG), which
register the current mechanical function of the heart with an inertial measurement unit
(IMU) placed on the chest wall [11,15,16].
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Seismocardiography (SCG) and gyrocardiography (GCG) are two complementary
techniques [15,17,18]; seismocardiography is a technique for registering low-frequency
precordial acceleration, invented by Bozhenko in 1961 [19,20], whereas gyrocardiography
registers the rotational component of cardiac vibrations and was invented by Meriheinä et al.
in 2015 [15,16,18,21,22].

Seismocardiographic (SCG) and gyrocardiographic (GCG) signals are non-stationary
signals with distinct quasiperiodic features known as waves, e.g., the mitral valve opening
wave (MO), the mitral valve closure wave (MC), the isovolumetric contraction wave, the
rapid ejection wave, the aortic valve opening wave (AO), the aortic valve closure (AC)
wave and the cardiac filling wave [18,22–28]. Figure 1 presents an annotation of concurrent
ECG, SCG and GCG signals in a healthy subject.

Figure 1. The annotation of ECG, SCG and GCG waveforms in healthy subjects. Based on the
diagrams published in [15,18,26,29] under the CC-BY 4.0 license.

SCG and GCG have found applications in the diagnosis of several cardiovascular
diseases, such as aortic stenosis [30–32], aortic valve disease (AVD) [33], coronary artery
disease [34], myocardial infarction [35,36], atrial fibrillation [37–40], the effects of cardiac
resynchronization therapy [41] and heart failure [35,42]. This has usually involved the
use of computational intelligence techniques, such as artificial neural networks (including
deep and convolutional neural networks), random forests, extreme gradient boosting and
support vector machines [28,30,32,35–40].

One of the most prominent applications of seismocardiography and gyrocardiography
is heart rate variability (HRV) analysis [16,18,22,31,43–55]. Heart rate variability is defined
as the physiological variation in the intervals between consecutive heartbeats (inter-beat
interval) and reflects the activity of the autonomic nervous system [56–58].

HRV analysis has traditionally been performed on interbeat intervals obtained from
electrocardiograms (ECG signals) [22,43,45,50,51,55,56,59]. The first attempt of HRV analy-
sis based on cardiac mechanical signals (mechanocardiograms) was performed by Friedrich
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et al. in 2010 [60] on ballistocardiograms. In 2012, Ramos-Castro et al. performed the first
HRV analysis on seismocardiograms [43], and the first HRV analysis on gyrocardiograms
was performed by Lahdenoja et al. [61] in 2016. The validity of HRV indices obtained
from the SCG signal was first demonstrated by Laurin et al. [62] in 2013 and then in later
studies [22,45,46,51–55].

The advantages of using seismocardiography and/or gyrocardiography over electro-
cardiography for cardiac diagnosis are the simpler measurement setup (using only one
sensor) and the availability of information on cardiac intervals, contractility and the state of
heart valves at the same time [11,16,22,27,43–45,51,53,56,59,63]. However, the limitations
of SCG and GCG include the inter-subject variability of signal morphology that can be
significantly affected by cardiac diseases or sensor placement and susceptibility to motion
artifacts [11,16,23,27,55,64].

The purpose of this study is to evaluate the differences between the time domain,
frequency domain and nonlinear HRV indices derived from electrocardiograms, seismo-
cardiograms and gyrocardiograms in healthy volunteers and patients with valvular heart
diseases. This study is an extended version of [54] and is based on two publicly available
datasets obtained from healthy people and patients with VHDs.

2. Materials and Methods
2.1. Datasets

This study was carried out on two publicly available datasets with concurrent elec-
trocardiograms, seismocardiograms and gyrocardiograms. The first dataset if “Mechano-
cardiograms with ECG reference” published by M. Kaisti et al. [65,66] containing signals
acquired from twenty-nine healthy volunteers and the second contains thirty signals de-
rived from “An Open-access Database for the Evaluation of Cardio-mechanical Signals
from Patients with Valvular Heart Diseases” published by C. Yang et al. in [11,67].

The first dataset consists of 29 recordings of concurrent ECG, SCG and GCG signals
acquired from 29 healthy male volunteers that were registered with sensors attached to
the chest wall over the sternum with a double-sided tape and with a sampling frequency
of 800 Hz. The subjects were lying either in the supine position or on their left or right
side [61,65,66].

Electrocardiograms were acquired with an ADS1293 (Texas Instruments, Dallas, TX,
USA), seismocardiograms were recorded with a triaxial capacitive digital accelerometer
(MMA8451Q from Freescale Semiconductor, Austin, TX, USA) and gyrocardiograms were
acquired using a 3-axial MAX21000 gyroscope (Maxim Integrated, San Jose, CA, USA) [15,65].

The rotation and translation axes in seismocardiography and gyrocardiography were
defined for both datasets as follows: the x axis was oriented laterally from left to right, the
y axis was oriented from head to foot and the z axis was oriented from back to chest [65].

The second dataset consists of 100 simultaneous recordings of raw ECG, SCG and
GCG signals with annotated heartbeats acquired from 100 patients with valvular diseases
admitted to two different clinical sites: 30 patients were admitted to Columbia University
Medical Center (New York City, NY, USA) and 70 patients were admitted to the First
Affiliated Hospital of Nanjing Medical University (Nanjing, Jiangsu Province, People’s
Republic of China). ECG, SCG and GCG signals were recorded before any treatment in
both populations of patients [11].

To balance the number of healthy volunteers and patients with valvular heart disease
in this comparison study, we took only 30 patients (14 female and 16 male subjects) who
were admitted to the Columbia University Medical Center (New York City, NY, USA). A
total of thirty patients had aortic stenosis, nine patients had tricupsid valve regurgitation
(TR), five had mitral valve stenosis (MS), four had mitral valve regurgitation (MR) and no
patients had aortic valve regurgitation. During registration, each subject was asked to be
awake and stay in the supine position, breathing normally.

The ECG, SCG and GCG signals were recorded with Shimmer 3 ECG module (Shimmer
Sensing, Dublin, Ireland) with a sampling frequency of 256 Hz (recordings UP-01 to UP-
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21) and 512 Hz (recordings UP-22 to UP-30) [11,67]. The shimmer 3 device contains
a 3-axial inertial measurement unit that contains an accelerometer, a gyroscope and a
magnetometer (ICM-20948 from TDK InvenSense, San Jose, CA, USA) and a separate
low-noise 3-axial Kionix KXTC9-2050 accelerometer (Kionix, Inc., Ithaca, NY, USA) [68].
Before the measurements, each subject gave informed consent by signing a consent form.
All metadata were deidentified before publication [11,67].

The basic characteristics of both datasets are shown in Table 1. Figures 2 and 3 present
a 15-second and 16-second fragment of raw ECG, SCG and GCG signals in subject 10 from
the first dataset and UP-13 of the second dataset, respectively. More details are revealed in
Appendix A.

Table 1. Basic characteristics of the datasets. Aggregated values are expressed as the range (min–max)
and mean ± SD.

Dataset Number of Age Height Weight BMI Recording
Subjects (Years) (cm) (kg) (kg/m2) Time (min)

Healthy 29 male 23–41 170–190 60–98 18–30 253
population 29 ± 5 179 ± 5 76 ± 11 24 ± 3

VHD 14 female 68–97 140–183 44–118 19–40 174.8
patients 16 male 83 ± 8 163 ± 12 74 ± 17 28 ± 6

(30 in total)

Figure 2. ECG, SCG and GCG signals from subject 10 in the first dataset (25-s fragment).
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Figure 3. ECG, SCG and GCG signals from subject UP-13 in the second dataset (16-s fragment).

2.2. Signal Processing

Signal processing started with importing the data into MATLAB R2022b (MathWorks,
Inc., Natick, MA, USA); data from [67] were directly loaded into the MATLAB workspace,
while data from [66] required importing each line of the text files containing signal samples
for subjects 1–8 and discarding the first sample (an artifact) for subjects 9–29. In both
datasets, each file represented one subject [66,67].

Heartbeat detection in SCG signals and GCG signals for both datasets was based on
the approach presented in [11,22,45,53,54,69], which consists of the following steps: The
first step was to apply the Pan–Tompkins algorithm (introduced in [70]) to ECG signals.
The next step was to find local maxima in the SCG and GCG signals within 100 ms of the
closest R waves in the ECG signals based on the observations published in [45,71], and the
final step was to calculate the intervals between each consecutive heartbeat in the ECG,
SCG and GCG signals [11,69]. An example of a tachogram for a healthy subject is shown in
Figure 4, and Figure 5 presents a tachogram of a patient with VHD.

Local maxima that occur within 100 ms of the R wave in concurrent ECG signals are
associated with the aortic valve opening waves that are single sharp peaks on the z-axis of
the SCG signal and the y-axis of the GCG signal [15,18,20,45,71]. Taking into account only
the z-axis of the SCG signal and the y-axis of the GCG signal for analyses was based on the
higher signal-to-noise ratio compared to the other axes [15,22,23,65].
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Figure 4. Tachogram derived from ECG, SCG and GCG signals taken from subject 9 in the first
dataset (15-second fragment).

Figure 5. Tachogram ECG, SCG and GCG signals taken from subject UP-09 in the second dataset.
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2.3. HRV Analysis

HRV analysis was carried out according to the recommendations published in [56,59]
and consisted of the following time and frequency domain indices: mean interbeat interval
(AVNN); standard deviation of the interbeat interval (SDNN); root mean square of the
differences of successive interbeat intervals (RMSSD); the ratio of successive differences
greater than 50 ms in all interbeat intervals (RMSSD); the power of the HRV signal in the
very low-frequency band (VLF), in the low-frequency band (LF) and in the high-frequency
band (HF); and the LF/HF ratio (LF/HF).

The frequency bands of the HRV spectrum were defined as follows: the very low-
frequency band was defined as 0.0033–0.04 Hz, the low frequency band was defined as
0.04–0.15 Hz and the high-frequency band was defined as 0.15–0.4 Hz [56,72]. The analyses
were performed with the CardioNet Cardiovascular Signal Toolbox and MATLAB R2022b.
HRV indices in the frequency domain were based on spectral power estimates calculated
as 1024-sample Lomb periodograms [72,73]. The Lomb periodogram for frequency ω is
expressed as:

Px(ω) =
1
2


[
∑j Xj cos ω(tj − τ)

]2

∑j cos2 ω(tj − τ)
+

[
∑j Xj sin ω(tj − τ)

]2

∑j sin2 ω(tj − τ)

 (1)

where τ is the time delay defined in Equation (2), Xj is the value of the j-th sample and tj is
the time of the j-th sample [74,75].

tan 2ωτ =
∑j sin 2ωtj

∑j cos 2ωtj
. (2)

The non-linear analysis of heart rate variability was based on three indices derived
from the geometrical features of Poincaré maps: SD1, SD2 and SD1/SD2.

SD1 is a measure of the short-term heart rate variability that is defined as the width of
an ellipse fitted to scatter points of a Poincaré map and may be expressed as the standard
deviation of the distances from the identity line (y = x axis) of the Poincaré plot [76,77]:

SD1 = stddev
(
|NNi+1 − NNi|√

2

)
(3)

where NNi is the i-th inter-beat interval series for i = 1, 2, . . . N − 1, NNi+1 is the next
inter-beat interval and stddev() denotes the standard deviation (SD) [78–81].

SD2 is the length of an ellipse fitted to the scatter points of a Poincaré map that reflects
the long-term heart rate variability and is calculated as the standard deviation of the
distance of points from the y = −x + 2NN axis:

SD2 = stddev
(∣∣∣∣NNi+1 − NNi√

2
− 2NN

∣∣∣∣). (4)

SD1/SD2 is calculated as the ratio between SD1 and SD2 and reflects the unpredictabil-
ity of the heart rate [82].

3. Results

The results of HRV analyses on electrocardiograms, seismocardiograms and gyrocar-
diograms obtained from healthy volunteers and patients with VHDs were expressed as the
mean and standard deviation (SD) values and are shown in Tables 2–4, respectively. The
HRV indices calculated for patients with VHD were derived from [53], except for SD1, SD2
and SD1/SD2.

The mean and standard deviation values of most HRV indices for patients with VHD
are significantly different from those of healthy volunteers, except for AVNN and VLF.
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These differences were further evaluated by applying the Student’s t-test for the significance
level of 0.05. The results of the t-test are shown in Table 5.

Table 2. HRV indices derived from ECG signals from both datasets.

HRV Index Healthy VHDs

Mean SD Mean SD

AVNN (ms) 952.2551 112.1082 881.7178 155.9992
SDNN (ms) 93.7994 32.0249 94.7063 47.4722
RMSSD (ms) 84.7391 36.1640 121.6602 74.7506

pNN50 0.3092 0.1924 0.3152 0.3178
VLF (ms2) 2108.3429 1555.0081 960.4883 828.3130
LF (ms2) 2947.2316 2468.9979 2190.3676 2270.7844
HF (ms2) 3493.6581 2550.7361 5687.0552 5676.3914
LF/HF 0.9345 0.5333 0.4307 0.1792

SD1 (ms) 59.9739 26.1703 86.1176 52.9350
SD2 (ms) 117.6626 39.0786 101.2172 44.6326
SD1/SD2 0.5026 0.1258 0.8095 0.2275

Table 3. HRV indices derived from SCG signals from both datasets.

HRV Index Healthy VHDs

Mean SD Mean SD

AVNN (ms) 952.2583 112.1185 881.5849 156.4511
SDNN (ms) 96.7361 31.9037 113.0716 40.8948
RMSSD (ms) 92.8507 37.1027 160.9644 63.2959

pNN50 0.3590 0.1794 0.5499 0.2345
VLF (ms2) 2108.0188 1559.9375 1009.8038 849.8141
LF (ms2) 2967.0571 2477.1760 2413.8259 2320.6393
HF (ms2) 3898.4718 2926.5900 7275.5874 5670.2440
LF/HF 0.8986 0.5179 0.3177 0.1617

SD1 (ms) 65.7216 28.4287 113.9518 44.8231
SD2 (ms) 119.3105 39.8927 110.7745 40.7536
SD1/SD2 0.5437 0.1265 1.0515 0.3080

Table 4. HRV indices derived from GCG signals from both datasets.

HRV Index Healthy VHDs

Mean SD Mean SD

AVNN (ms) 952.2358 113.3623 929.9744 222.8833
SDNN (ms) 86.6979 31.6025 133.0636 66.8667
RMSSD (ms) 83.6785 36.3714 183.8181 79.3316

pNN50 0.3712 0.1717 0.5551 0.2799
VLF (ms2) 2119.8767 1568.1258 3880.6816 13,313.9379
LF (ms2) 2978.3266 2484.0123 3251.1583 3594.0590
HF (ms2) 3663.0536 2657.3141 9481.6615 7681.8666
LF/HF 0.8997 0.5328 0.3217 0.1611

SD1 (ms) 63.7232 26.2834 130.1497 56.1906
SD2 (ms) 118.6764 39.0182 130.1935 80.8863
SD1/SD2 0.5347 0.1369 1.0302 0.2766

The differences between the HRV indices in healthy volunteers and in patients with
VHD shown in Table 5 are statistically significant for all analyzed HRV indices except
for AVNN, SDNN, pNN50 (ECG), VLF (GCG), LF and SD2. This proves a significant
influence of ventricular heart diseases on the results of heart rate variability in time domain,
frequency domain and nonlinear analyses. These results confirm the findings related to
Table 3.



Sensors 2023, 23, 2152 9 of 17

Table 5. Results of Student’s t-tests between healthy subjects and VHD subjects.

HRV Index
ECG SCG GCG

h * p-Value h * p-Value h * p-Value

AVNN 0 0.0516 0 0.0516 0 0.6316
SDNN 0 0.9320 0 0.0748 1 0.0085
RMSSD 1 0.0201 1 <0.0001 1 <0.0001
pNN50 0 0.8544 1 <0.0001 1 <0.0001

VLF 1 <0.0001 1 0.0012 0 0.4823
LF 0 0.5215 0 0.3742 0 0.7365
HF 0 0.0621 1 0.0028 1 <0.0001

LF/HF 1 <0.0001 1 <0.0001 1 <0.0001
SD1 1 0.0201 1 <0.0001 1 <0.0001
SD2 0 0.4502 0 0.6924 0 0.3863

SD1/SD2 1 <0.0001 1 <0.0001 1 <0.0001
* h = 0 means no significant difference.

The findings reported in [17,22,45,51] for HRV indices obtained from ECG, SCG
and GCG signals in healthy volunteers and patients with VHDs were verified with the
Pearson’s linear correlation that were expressed as Pearson’s linear correlation coefficient
(ρ) for healthy volunteers and VHD patients. A linear correlation coefficient larger than
0.7 was considered as a strong linear correlation between two given datasets [83].

The results presented in Table 6 indicate a strong linear correlation for the p-value
under 0.001, except for SD1/SD2 between ECG and SCG signals from VHD patients. The
correlation between the analyzed HRV indices obtained from ECG and GCG signals (as
shown in Table 7) is weaker than between the ECG and SCG signals, but remains strong for
all HRV indices except for VLF, SD2 and SD1/SD2. The strongest correlation is observed for
HF, pNN50, RMSSD and SD1, and the weakest correlation is observed for VLF (−0.0663).

Table 6. Pearson’s linear correlation coefficient of HRV indices obtained from ECG and SCG signals.

HRV Index ρ (Healthy Subjects) ρ (VHD Subjects)

AVNN 1.0000 0.9999
SDNN 0.9942 0.8767
RMSSD 0.9754 0.8164
pNN50 0.6402 0.7026

VLF 0.9999 0.8867
LF 0.9996 0.9390
HF 0.9868 0.9493

LF/HF 0.9916 0.7296
SD1 0.9754 0.8164
SD2 0.9980 0.9364

SD1/SD2 0.9375 0.4116

Table 7. Pearson’s linear correlation coefficient of HRV indices obtained from ECG and GCG signals.

HRV Index ρ (Healthy Subjects) ρ (VHD Subjects)

AVNN 1.0000 0.5602
SDNN 0.9942 0.4830
RMSSD 0.9754 0.6134
pNN50 0.6402 0.6497

VLF 0.9999 −0.0663
LF 0.9996 0.5105
HF 0.9842 0.6818

LF/HF 0.9906 0.6531
SD1 0.9976 0.6132
SD2 0.9998 0.3829

SD1/SD2 0.9841 0.3684
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4. Discussion

We have performed HRV analysis on electrocardiograms, seismocardiograms and
gyrocardiograms from healthy volunteers and patients with VHD based on publicly avail-
able datasets.

The mean and standard deviation values of HRV indices obtained from healthy
subjects are similar to those reported by Siecinski et al. in [22,50,52,53], except for the
LF/HF and frequency domain indices in [22,52], and also similar to the results reported
by Ramos-Castro et al. in [43] and Tadi et al. in [45]. The discrepancies in the mean HRV
indices are within the standard deviation for each signal (ECG, SCG and GCG) and may be
related to inter-subject variations.

The mean and standard deviation values of most HRV indices for patients with VHD
are significantly different from those of healthy volunteers, except for AVNN, LF and SD2.
This observation was confirmed by a Student’s t-test. Despite the fact that RMSSD and
SD1 should be identical [76], there were significant differences between these indices in
each case.

We have shown the significant influence of valvular heart disease on HRV indices,
except for AVNN, SDNN (ECG and SCG), pNN50 (ECG), VLF (GCG), LF, HF (ECG) and
SD2, which was in line with [84,85]. The similarities between the results of the HRV
analysis in patients with VHD in our study and those reported in [84] prove that the HRV
indices obtained from seismocardiograms are valid both for healthy subjects, patients
with aortic stenosis and also for other VHD patients as long as heartbeats were reliably
detected [45,53,54,62].

Despite the significant influence of VHDs on HRV indices, the correlation between
the HRV indices obtained from ECG and SCG signals is strong, except for SD2. Obtained
values of ρ are similar to those reported by Siecinski et al. in [50] and Charlier et al. in [86].
However, the correlations of analyzed pairs of signals are weaker for VHD patients than
for healthy volunteers, especially the correlations of HRV indices from ECG and GCG
signals [22,43,45,52].

Such results are influenced by age (the population of healthy volunteers is significantly
younger than those of patients with VHD), comorbidities, signal quality and the use of
different accelerometers and gyroscopes operating with different sampling frequency and
accuracy, according to the available datasheets [68,87,88].

The differences between RMSSD and SD1 values did not result in significantly different
ρ values. This indicates the lower accuracy of automatic heartbeat detection in SCG and
GCG signals of patients with VHDs that was affected by morphological changes caused by
VHDs and/or ageing [53,54].

The limitations of the study include the use of only one type of heartbeat detector for
seismocardiograms and gyrocardiograms that depends on a concurrent electrocardiogram,
the influence of specific cardiovascular conditions or medication on the calculated HRV
indices was not considered and the morphological changes in SCG and GCG signals due to
valvular heart disease was not evaluated.

In future studies, we will consider evaluating the influence of various cardiovascular
conditions on HRV indices derived from ECG, SCG and GCG signals; indices derived from
larger and more diverse groups, including the analysis of SCG and GCG signal morphology;
and indices derived from other detectors of SCG and GCG signals. In this study, we proved
that a heart rate variability analysis based on cardiac mechanical signals [30,31,89] may be
useful for a more cost-effective and convenient diagnosis and monitoring of patients with
cardiovascular disease.

5. Conclusions

The results of the heart rate variability analysis based on mechanocardiograms (SCG
and GCG signals) in both a healthy population and patients with VHD remain valid as long
as heartbeats are correctly detected. Valvular heart disease significantly affects RMSSD,
pNN50 (only SCG and GCG signals), VLF (only ECG and SCG signals), HF (only SCG and
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GCG signals), LF/HF, SD1 and SD1/SD2. The linear correlation between the HRV indices
obtained from the ECG and the mechanocardiograms is strong both in healthy volunteers
and in patients with VHD, except for SD2.

Future studies should include an evaluation of other cardiovascular conditions, larger
and more diverse groups and other heartbeat detection methods for mechanocardio-
grams, and an analysis of the morphology of cardiac mechanical signals. We showed
that mechanocardiogram-based heart rate variability analyses can be used in the diag-
nosis and monitoring of cardiovascular disease, which could be more cost-effective and
convenient for patients.
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MS Mitral valve stenosis
M Male
MI Myocardial infarction
NN The interval between consecutive normal heartbeats
FIR Fininte impulse response (filter)
AO Aortic valve opening (wave)
RSA Respiratory sinus arrhythmia
SNR Signal-to-noise (ratio)
AVNN Mean inter-beat interval
SDNN Standard deviation of all interbeat intervals
RMSSD Root mean square of differences (RMSSD) of successive inter-beat intervals
pNN50 The proportion of the number of pairs of successive differences

greater than 50 ms divided by total number of normal inter-beat intervals
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https://www.mdpi.com/article/10.3390/s23042152/s1
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VLF The power of very low frequency band (0.0033–0.04 Hz) of HRV spectrum
LF The power of low frequency band (0.04–0.15 Hz) of HRV spectrum
HF The power of high frequency band (0.15–0.4 Hz) of HRV spectrum
LF/HF LF/HF ratio
SD1 The width of the ellipse which containes the scatter points of Poincaré map
SD2 The length of the ellipse which containes the scatter points of Poincaré map
SD1/SD2 SD1 to SD2 ratio
AVD Aortic valve disease
AC Aortic valve closure
AO Aortic valve opening
MC Mitral valve closure
MO Mitral valve opening
PCI Percutaneous coronary intervention
AS Aortic valve stenosis
AR Aortic valve regurgitation
TR Tricupsid valve regurgitation
ρ Pearson’s linear correlation coefficient

Appendix A. Recording Descriptions in Datasets

This appendix presents a complete description of the recordings in both analyzed
datasets based on available metadata [66,67]; the recordings from the healthy volunteers
dataset (Mechanocardiograms with ECG reference) are shown in Table A1, while the full
description of the recordings in the VHD patients dataset is presented in Table A2.

Table A1. Recording description in the “Mechanocardiograms with ECG reference” dataset.

Subject Length of Recording Position Breathing Remarks

1 3 min Left or right side 2 min normal,
30 s holding a breath,

30 s normal
2 3 min Left or right side 2 min normal,

30 s holding a breath,
30 s normal

3 3 min Left or right side 2 min normal,
30 s holding a breath,

30 s normal
4 3 min Left or right side 2 min normal,

30 s holding a breath,
30 s normal

5 3 min Left or right side 2 min normal,
30 s holding a breath,

30 s normal
6 3 min Left or right side 2 min normal, Sensor not strictly secured

30 s holding a breath, on chest because of body hair.
30 s normal

7 3 min Left or right side 2 min normal,
30 s holding a breath,

30 s normal
8 3 min Supine Normal
9 10 min Supine Normal

10 10 min Supine Normal
11 30 min Supine Normal
12 10 min Supine Normal
13 10 min Supine Normal
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Table A1. Cont.

Subject Length of Recording Position Breathing Remarks

14 10 min Supine Normal
15 10 min Supine Normal
16 10 min Supine Normal
17 10 min Supine Normal
18 10 min Supine Normal
19 10 min Supine Normal
20 10 min Supine Normal
21 10 min Supine Normal
22 10 min Supine Normal Sensor loose in the end.
23 10 min Left or right side Normal
24 10 min Supine Normal
25 9 min Supine Normal
26 10 min Supine Normal
27 10 min Left or right side Normal
28 10 min Supine Normal
29 10 min Supine Normal

Table A2. Recording description in “An Open-access Database for the Evaluation of Cardio-
mechanical Signals from Patients with Valvular Heart Diseases” dataset.

Subject Length of Age Gender Height Weight History of MS MR AR AS TR
Number Recording (years) (cm) (kg) MI CABG PCI

UP-01 6 min 8 s 89 M 154.9 49.0 0 1 1 0 0 0 1 1
UP-02 6 min 10 s 89 M 170.2 82.0 1 1 1 0 0 0 1 0
UP-03 6 min 1 s 96 M 162.5 66.0 0 1 1 0 0 0 1 1
UP-04 5 min 36 s 84 M 152.4 65.0 0 1 1 0 0 0 1 0
UP-05 6 min 35 s 70 F 162.5 79.0 0 1 1 0 0 0 1 1
UP-06 5 min 39 s 90 F 160 48.0 1 1 1 0 0 0 1 1
UP-07 6 min 3 s 84 M 162.5 79.0 0 1 1 0 0 0 1 0
UP-08 5 min 11 s 95 F 152.4 44.0 0 1 1 1 0 0 1 1
UP-09 5 min 15 s 89 M 182.8 90.7 0 1 1 0 0 0 1 0
UP-10 5 min 2 s 80 F 157.4 74.0 0 1 1 1 0 0 1 0
UP-11 5 min 6 s 68 M 177.8 79.0 0 1 1 0 0 0 1 0
UP-12 5 min 10 s 79 F 154.9 78.0 0 1 1 1 0 0 1 0
UP-13 5 min 18 s 95 F 160 73.0 0 1 1 0 1 0 1 0
UP-14 5 min 38 s 85 F 152 82.0 0 1 1 1 0 0 1 0
UP-15 5 min 34 s 84 F 175 76.0 0 1 1 0 0 0 1 0
UP-16 5 min 44 s 97 M 157 77.0 0 1 1 0 0 0 1 0
UP-17 5 min 54 s 80 M 182.8 86.0 0 1 1 0 0 0 1 1
UP-18 5 min 9 s 90 F 152.4 92.0 0 1 1 0 0 0 1 0
UP-19 5 min 17 s 78 M 170.1 78.0 0 1 1 0 0 0 1 0
UP-20 7 min 49 s 92 F 139.7 53.0 0 1 1 0 1 0 1 0
UP-21 5 min 10 s 72 M 172.7 68.0 0 1 1 1 1 0 1 1
UP-22 10 min 3 s 77 F 165.1 51.3 0 0 0 0 0 0 1 1
UP-23 9 min 59 s 84 F 139.7 70.3 0 0 0 0 0 0 1 0
UP-24 5 min 80 F 155 67.6 0 0 0 0 0 0 1 1
UP-25 9 min 5 s 87 F 155.0 54.0 0 0 0 0 1 0 1 0
UP-26 5 min 8 s 80 M 175.3 85.7 0 0 1 0 0 0 1 0
UP-27 5 min 5 s 82 M 180.0 118.0 0 0 0 0 0 0 1 0
UP-28 5 min 2 s 71 M 175.0 117.0 0 0 0 0 0 0 1 0
UP-29 4 min 58 s 80 M 168.9 65.8 0 0 0 1 0 0 1 0
UP-30 4 min 59 s 71 M 177.8 81.6 0 0 1 1 0 0 1 0

M: male; F: female; MI: myocardial infarction; CABG: coronary artery bypass graft surgery; PCI: percutaneous
coronary intervention; MS: mitral valve stenosis; MR: mitral valve regurgitation; AS: aortic valve stenosis; AR:
aortic valve regurgitation; TR: tricupsid valve regurgitation; The presence of the cardiac condition: 1—yes; 0—no.
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