Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,081)

Search Parameters:
Keywords = second variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7838 KB  
Article
Bifurcation Analysis and Solitons Dynamics of the Fractional Biswas–Arshed Equation via Analytical Method
by Asim Zafar, Waseem Razzaq, Abdullah Nazir, Mohammed Ahmed Alomair, Abdulaziz S. Al Naim and Abdulrahman Alomair
Mathematics 2025, 13(19), 3147; https://doi.org/10.3390/math13193147 - 1 Oct 2025
Abstract
This paper investigates soliton solutions of the time-fractional Biswas–Arshed (BA) equation using the Extended Simplest Equation Method (ESEM). The model is analyzed under two distinct fractional derivative operators: the β-derivative and the M-truncated derivative. These approaches yield diverse solution types, including [...] Read more.
This paper investigates soliton solutions of the time-fractional Biswas–Arshed (BA) equation using the Extended Simplest Equation Method (ESEM). The model is analyzed under two distinct fractional derivative operators: the β-derivative and the M-truncated derivative. These approaches yield diverse solution types, including kink, singular, and periodic-singular forms. Also, in this work, a nonlinear second-order differential equation is reconstructed as a planar dynamical system in order to study its bifurcation structure. The stability and nature of equilibrium points are established using a conserved Hamiltonian and phase space analysis. A bifurcation parameter that determines the change from center to saddle-type behaviors is identified in the study. The findings provide insight into the fundamental dynamics of nonlinear wave propagation by showing how changes in model parameters induce qualitative changes in the phase portrait. The derived solutions are depicted via contour plots, along with two-dimensional (2D) and three-dimensional (3D) representations, utilizing Mathematica for computational validation and graphical illustration. This study is motivated by the growing role of fractional calculus in modeling nonlinear wave phenomena where memory and hereditary effects cannot be captured by classical integer-order approaches. The time-fractional Biswas–Arshed (BA) equation is investigated to obtain diverse soliton solutions using the Extended Simplest Equation Method (ESEM) under the β-derivative and M-truncated derivative operators. Beyond solution construction, a nonlinear second-order equation is reformulated as a planar dynamical system to analyze its bifurcation and stability properties. This dual approach highlights how parameter variations affect equilibrium structures and soliton behaviors, offering both theoretical insights and potential applications in physics and engineering. Full article
14 pages, 2044 KB  
Article
Molecular Characterization of Wilson’s Disease in Liver Transplant Patients: A Five-Year Single-Center Experience in Iran
by Zahra Beyzaei, Melika Majed, Seyed Mohsen Dehghani, Mohammad Hadi Imanieh, Ali Khazaee, Bita Geramizadeh and Ralf Weiskirchen
Diagnostics 2025, 15(19), 2504; https://doi.org/10.3390/diagnostics15192504 - 1 Oct 2025
Abstract
Background/Objectives: Wilson’s disease (WD) is an autosomal recessive disorder characterized by pathological copper accumulation, primarily in the liver and brain. Severe hepatic involvement can be effectively treated with liver transplantation (LT). Geographic variation in ATP7B mutations suggests the presence of regional patterns [...] Read more.
Background/Objectives: Wilson’s disease (WD) is an autosomal recessive disorder characterized by pathological copper accumulation, primarily in the liver and brain. Severe hepatic involvement can be effectively treated with liver transplantation (LT). Geographic variation in ATP7B mutations suggests the presence of regional patterns that may impact disease presentation and management. This study aims to investigate the genetic basis of WD in patients from a major LT center in Iran. Methods: A retrospective analysis was conducted on clinical, biochemical, and pathological data from patients suspected of WD who underwent evaluation for LT between May 2020 and June 2025 at Shiraz University of Medical Sciences. Genetic testing was carried out on 20 patients at the Shiraz Transplant Research Center (STRC). Direct mutation analysis of ATP7B was performed for all patients, and the results correlated with clinical and demographic information. Results: In total, 20 WD patients who underwent liver transplantation (15 males, 5 females) carried 25 pathogenic or likely pathogenic ATP7B variants, 21 of which were previously unreported. Fifteen patients were homozygous, and five were compound-heterozygous; all heterozygous combinations occurred in the offspring of second-degree consanguineous unions. Recurrent changes included p.L549V, p.V872E, and p.P992S/L, while two nonsense variants (p.E1293X, p.R1319X) predicted truncated proteins. Variants were distributed across copper-binding, transmembrane, phosphorylation, and ATP-binding domains, and in silico AlphaMissense scores indicate damaging effects for most novel substitutions. Post-LT follow-up showed biochemical normalization in the majority of recipients, with five deaths recorded during the study period. Conclusions: This single-center Iranian study reveals a highly heterogeneous ATP7B mutational landscape with a large proportion of novel population-specific variants and underscores the benefit of comprehensive gene sequencing for timely WD diagnosis and family counseling, particularly in regions with prevalent consanguinity. Full article
Show Figures

Figure 1

28 pages, 32809 KB  
Article
LiteSAM: Lightweight and Robust Feature Matching for Satellite and Aerial Imagery
by Boya Wang, Shuo Wang, Yibin Han, Linfeng Xu and Dong Ye
Remote Sens. 2025, 17(19), 3349; https://doi.org/10.3390/rs17193349 - 1 Oct 2025
Abstract
We present a (Light)weight (S)atellite–(A)erial feature (M)atching framework (LiteSAM) for robust UAV absolute visual localization (AVL) in GPS-denied environments. Existing satellite–aerial matching methods struggle with large appearance variations, texture-scarce regions, and limited efficiency for real-time UAV [...] Read more.
We present a (Light)weight (S)atellite–(A)erial feature (M)atching framework (LiteSAM) for robust UAV absolute visual localization (AVL) in GPS-denied environments. Existing satellite–aerial matching methods struggle with large appearance variations, texture-scarce regions, and limited efficiency for real-time UAV applications. LiteSAM integrates three key components to address these issues. First, efficient multi-scale feature extraction optimizes representation, reducing inference latency for edge devices. Second, a Token Aggregation–Interaction Transformer (TAIFormer) with a convolutional token mixer (CTM) models inter- and intra-image correlations, enabling robust global–local feature fusion. Third, a MinGRU-based dynamic subpixel refinement module adaptively learns spatial offsets, enhancing subpixel-level matching accuracy and cross-scenario generalization. The experiments show that LiteSAM achieves competitive performance across multiple datasets. On UAV-VisLoc, LiteSAM attains an RMSE@30 of 17.86 m, outperforming state-of-the-art semi-dense methods such as EfficientLoFTR. Its optimized variant, LiteSAM (opt., without dual softmax), delivers inference times of 61.98 ms on standard GPUs and 497.49 ms on NVIDIA Jetson AGX Orin, which are 22.9% and 19.8% faster than EfficientLoFTR (opt.), respectively. With 6.31M parameters, which is 2.4× fewer than EfficientLoFTR’s 15.05M, LiteSAM proves to be suitable for edge deployment. Extensive evaluations on natural image matching and downstream vision tasks confirm its superior accuracy and efficiency for general feature matching. Full article
18 pages, 2070 KB  
Article
Changes in Soil Physical Quality, Root Growth, and Sugarcane Crop Yield During Different Successive Mechanized Harvest Cycles
by Igor Queiroz Moraes Valente, Zigomar Menezes de Souza, Gamal Soares Cassama, Vanessa da Silva Bitter, Jeison Andrey Sanchez Parra, Euriana Maria Guimarães, Reginaldo Barboza da Silva and Rose Luiza Moraes Tavares
AgriEngineering 2025, 7(10), 325; https://doi.org/10.3390/agriengineering7100325 - 1 Oct 2025
Abstract
Due to its benefits and efficiency, mechanized sugarcane harvest is a common practice in Brazil; however, continuous traffic of agricultural machinery leads to soil compaction at the end of each harvest cycle. Hence, this study evaluated whether machine traffic affects soil physical and [...] Read more.
Due to its benefits and efficiency, mechanized sugarcane harvest is a common practice in Brazil; however, continuous traffic of agricultural machinery leads to soil compaction at the end of each harvest cycle. Hence, this study evaluated whether machine traffic affects soil physical and hydraulic properties, root growth, and crop productivity in sugarcane areas during different harvest cycles. Four treatments were performed consisting of an area planted with different stages (years) of sugarcane crop: T1 = after the first harvest—plant cane (area 1); T2 = after the second harvest—first ratoon cane (area 2); T3 = after the third harvest—second ratoon cane (area 3); T4 = after fourth harvest—third ratoon cane (area 4). Five sampling sites were considered in each area, constituting five replicates collected from four layers. Two collection positions were considered: wheel track (WT) and planting row (PR). Soil physical properties, root system, productivity, and biometric characteristics of the sugarcane crop were evaluated at depths of 0.00–0.05 m, 0.05–0.10 m, 0.10–0.20 m, and 0.20–0.40 m. Traffic during the sugarcane crop growth cycles affected soil physical and hydraulic properties, showing sensitivity to the effects of the different treatments, producing variations in root growth and crop productivity. Plant cane cycle showed lower soil penetration resistance, bulk density, microporosity, higher saturated soil hydraulic conductivity, and macroporosity when compared with the other cycles studied. In the 0.10–0.20 m layer, all treatments produced higher soil penetration resistance and density, and lower saturated soil hydraulic conductivity. Dry biomass, volume, and root area were higher for the plant cane cycle in the 0.00–0.05 m and 0.05–0.10 m layers compared with the other crop cycles. Root dry biomass is directly related to crop productivity in layers up to 0.40 m deep. Sugarcane productivity was affected along the crop cycles, with higher productivity observed in the plant cane and first ratoon cane cycles compared with the second and third ratoon cane cycles. Full article
Show Figures

Figure 1

31 pages, 1058 KB  
Article
Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study
by Ewelina Maculewicz, Andrzej Mastalerz, Anna Mróz, Monika Johne, Katarzyna Krawczak-Wójcik, Agata Pabin, Aleksandra Garbacz, Katarzyna Komar, Myosotis Massidda, Petr Stastny and Aleksandra Bojarczuk
Genes 2025, 16(10), 1160; https://doi.org/10.3390/genes16101160 - 30 Sep 2025
Abstract
Background/Objectives: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, [...] Read more.
Background/Objectives: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, rs12028967, rs10857983, rs3789592, rs10776763, rs1049434, rs6537765, rs7556664, rs7169) in relation to LA metabolism. Methods: 337 Polish and Czech males (elite athletes, sub-elite competitors, physically active controls) performed two maximal Wingate tests. Buccal swabs were collected for DNA extraction and single nucleotide polymorphism (SNP) genotyping. LA was assessed before and after the tests. Results: Five variants (rs3789592, rs7556664, rs7169, rs1049434, rs6537765) remained significantly associated with LA measured 30 min after the second Wingate (LA30′) and delta clearance capacity (DCC) in elites (codominant and recessive models: p = 0.01–0.03; false discovery rate (FDR)-adjusted p = 0.02–0.04). Rs10776763 showed the broadest associations, surviving FDR for LA30′ in all models (p = 0.003–0.03; FDR-adjusted p = 0.01–0.03) and for LA accumulation capacity (ACC) in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Rs12028967 also supported a clearance role, with LA30′ significant in elites (p = 0.004; FDR-adjusted p = 0.01) and DCC in the overall cohort (p = 0.02; FDR-adjusted p = 0.03). In contrast, rs4301628 and rs10857983 demonstrated isolated LA30′ effects in elites (p = 0.004–0.01; FDR-adjusted p = 0.01), and no production-phase endpoint other than rs10776763 survived FDR; ACC remained significant in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Conclusions: The results suggest that MCT1 polymorphisms contribute to differences in LA metabolism and warrant replication in larger, more diverse cohorts. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

36 pages, 13124 KB  
Article
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
by Yangyang Tian, Jiaxin Zhang, Gaofei Ren and Bo Deng
Materials 2025, 18(19), 4535; https://doi.org/10.3390/ma18194535 - 29 Sep 2025
Abstract
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried [...] Read more.
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First, leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second, dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients, with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third, dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa), greater soil porosity, and larger particle sizes, while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization, demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderate-porosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure, establishing robust risk quantification frameworks, and developing effective early-warning systems, thereby facilitating the practical implementation of hydrogen energy systems. Full article
Show Figures

Figure 1

15 pages, 1827 KB  
Article
Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus
by Aolong Xiong, Kai Li, Xiaodong Liu, Yunxin Ren, Fuchao Zhang, Xiaoqi Li, Ziqing Yuan, Junhong Bie, Jinxiang Li and Changzhan Xie
Genes 2025, 16(10), 1155; https://doi.org/10.3390/genes16101155 - 29 Sep 2025
Abstract
Background: Pseudorabies virus (PRV), a critical porcine herpesvirus, induces severe diseases in both livestock and wildlife, imposing an incalculable burden and economic losses in livestock production. In this study, we investigated the evolutionary mechanisms and host adaptation strategies of the PRV gB gene [...] Read more.
Background: Pseudorabies virus (PRV), a critical porcine herpesvirus, induces severe diseases in both livestock and wildlife, imposing an incalculable burden and economic losses in livestock production. In this study, we investigated the evolutionary mechanisms and host adaptation strategies of the PRV gB gene through genomic alignment. The gB gene is highly conserved in PRV, and its encoded gB protein exhibits functional interchangeability across different herpesvirus species. Notably, the gB protein elicits the production of both complement-dependent and complement-independent neutralizing antibodies in animals, while also being closely associated with syncytium formation. Methods: Phylogenetic analysis and codon usage pattern analysis were performed in this study. A total of 110 gB gene sequences were analyzed, which were collected from [2011 to 2024] across the following regions: [Fujian, Shanxi, Guangxi, Guangdong, Chongqing, Henan, Shaanxi, Heilongjiang, Sichuan, Jiangsu, Jilin, Huzhou, Shandong, Hubei, Jiangxi, Beijing, Shanghai, Chengdu (China)], [Budapest, Szeged (Hungary)], [Tokyo (Japan)], [London (United Kingdom)], [Athens (Greece)], [Berlin (Germany)], and [New Jersey (United States)]. Results: The gB gene of PRV employs an evolutionary “selective optimization” strategy to maintain a dynamic balance between ensuring functional expression and evading host immune pressure, with this core trend strongly supported by its codon usage bias and mutation characteristics. First, the gene exhibits significant codon usage bias [Effective Number of Codons (ENC) = 27.94 ± 0.1528], driven primarily by natural selection rather than mere mutational pressure. Second, phylogenetic analysis shows that the second codon position of gB has the highest mutation rate (1.0586)—a feature closely linked to its antigenic variation and immune escape capabilities, further reflecting adaptive evolution against host immune pressure. Additionally, ENC-GC3 plot analysis reveals the complex regulatory mechanisms underlying codon bias formation, providing molecular evidence for the “selective optimization” strategy and clarifying PRV’s core evolutionary path to balance functional needs and immune pressure over time. Conclusions: Our study findings deepen our understanding of the evolutionary mechanisms of PRV and provide theoretical support for designing vaccines and assessing the risk of cross-species transmission. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

29 pages, 7233 KB  
Article
No-Signaling in Steepest Entropy Ascent: A Nonlinear, Non-Local, Non-Equilibrium Quantum Dynamics of Composite Systems Strongly Compatible with the Second Law
by Rohit Kishan Ray and Gian Paolo Beretta
Entropy 2025, 27(10), 1018; https://doi.org/10.3390/e27101018 - 28 Sep 2025
Abstract
Lindbladian formalism models open quantum systems using a ‘bottom-up’ approach, deriving linear dynamics from system–environment interactions. We present a ‘top-down’ approach starting with phenomenological constraints, focusing on a system’s structure, subsystems’ interactions, and environmental effects and often using a non-equilibrium variational principle designed [...] Read more.
Lindbladian formalism models open quantum systems using a ‘bottom-up’ approach, deriving linear dynamics from system–environment interactions. We present a ‘top-down’ approach starting with phenomenological constraints, focusing on a system’s structure, subsystems’ interactions, and environmental effects and often using a non-equilibrium variational principle designed to enforce strict thermodynamic consistency. However, incorporating the second law’s requirement—that Gibbs states are the sole stable equilibria—necessitates nonlinear dynamics, challenging no-signaling principles in composite systems. We reintroduce ‘local perception operators’ and show that they allow to model signaling-free non-local effects. Using the steepest-entropy-ascent variational principle as an example, we demonstrate the validity of the ‘top-down’ approach for integrating quantum mechanics and thermodynamics in phenomenological models, with potential applications in quantum computing and resource theories. Full article
Show Figures

Graphical abstract

43 pages, 4605 KB  
Article
Unveiling the Dynamics of Wholesale Sales and Business Cycle Impacts in Japan: An Extended Moving Linear Model Approach
by Koki Kyo and Hideo Noda
Forecasting 2025, 7(4), 54; https://doi.org/10.3390/forecast7040054 - 26 Sep 2025
Abstract
Wholesale sales value is one of the key elements included in the coincident indicator series of the indexes of business conditions in Japan. The objectives of this study are twofold. The first is to comprehend features of dynamic structure of various components for [...] Read more.
Wholesale sales value is one of the key elements included in the coincident indicator series of the indexes of business conditions in Japan. The objectives of this study are twofold. The first is to comprehend features of dynamic structure of various components for 12 business types of the wholesale sales in Japan, focusing on the period from January 1980 to December 2022. The second is to elucidate effect of business cycles on the behavior of each business type of wholesale sales. Specifically, we utilize our moving linear model approach to decompose monthly time-series data of wholesale sales into a seasonal component, an unusually varying component containing outliers, a constrained component, and a remaining component. Additionally, we construct a distribution-free dynamic linear model and examine the time-varying relationship between the decomposed remaining component, which contains cyclical variation, in each business type of the wholesale sales and that in the coincident composite index. Our proposed approach reveals complex dynamics of various components of time series on wholesale sales. Furthermore, we find that different business types of the wholesale sales exhibit diverse responses to business cycles, which are influenced by macroeconomic conditions, government policies, or exogenous shocks. Full article
Show Figures

Figure 1

23 pages, 4045 KB  
Article
Analysis and Optimization of Dynamic Characteristics of Primary Frequency Regulation Under Deep Peak Shaving Conditions for Industrial Steam Extraction Heating Thermal Power Units
by Libin Wen, Jinji Xi, Hong Hu and Zhiyuan Sun
Processes 2025, 13(10), 3082; https://doi.org/10.3390/pr13103082 - 26 Sep 2025
Abstract
This study investigates the primary frequency regulation dynamic characteristics of industrial steam extraction turbine units under deep peak regulation conditions. A high-fidelity integrated dynamic model was established, incorporating the governor system, steam turbine with extraction modules, and interconnected pipeline dynamics. Through comparative simulations [...] Read more.
This study investigates the primary frequency regulation dynamic characteristics of industrial steam extraction turbine units under deep peak regulation conditions. A high-fidelity integrated dynamic model was established, incorporating the governor system, steam turbine with extraction modules, and interconnected pipeline dynamics. Through comparative simulations and experimental validation, the model demonstrates high accuracy in replicating real-unit responses to frequency disturbances. For the power grid system in this study, the frequency disturbance mainly comes from three aspects: first, the power imbalance formed by the random mutation of the load side and the intermittence of new energy power generation; second, transformation of the energy structure directly reduces the available frequency modulation resources; third, the system-equivalent inertia collapse effect caused by the integration of high permeability new energy; the rotational inertia provided by the traditional synchronous unit is significantly reduced. In the cogeneration unit and its control system in Guangxi involved in this article, key findings reveal that increased peak regulation depth (30~50% rated power) exacerbates nonlinear fluctuations. This is due to boiler combustion stability thresholds and steam pressure variations. Key parameters—dead band, power limit, and droop coefficient—have coupled effects on performance. Specifically, too much dead band (>0.10 Hz) reduces sensitivity; likewise, too high a power limit (>4.44%) leads to overshoot and slow recovery. The robustness of parameter configurations is further validated under source-load random-intermittent coupling disturbances, highlighting enhanced anti-interference capability. By constructing a coordinated control model of primary frequency modulation, the regulation strategy of boiler and steam turbine linkage is studied, and the optimization interval of frequency modulation dead zone, adjustment coefficient, and frequency modulation limit parameters are quantified. Based on the sensitivity theory, the dynamic influence mechanism of the key control parameters in the main module is analyzed, and the degree of influence of each parameter on the frequency modulation performance is clarified. This research provides theoretical guidance for optimizing frequency regulation strategies in coal-fired units integrated with renewable energy systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2859 KB  
Article
Simulation and Experimental Study on the Optimization of Operating Parameters for Coating Pellets of Agropyron Seeds
by Haiyang Liu, Xuejie Ma, Zhanfeng Hou, Liying Chen, Aijun Tan and Yishuai Liu
Agriculture 2025, 15(19), 2017; https://doi.org/10.3390/agriculture15192017 - 26 Sep 2025
Abstract
In addressing the challenges of low pelletization qualification rates, poor uniformity between seeds and powder, and difficulties in optimizing equipment parameters for agropyron seed coating, this paper integrates numerical simulation with experimental verification to optimize the working parameters of pelletization coating. The study [...] Read more.
In addressing the challenges of low pelletization qualification rates, poor uniformity between seeds and powder, and difficulties in optimizing equipment parameters for agropyron seed coating, this paper integrates numerical simulation with experimental verification to optimize the working parameters of pelletization coating. The study investigates the impact of vibration frequency, vibration direction, vibration amplitude, rotational speed, and inclination angle on seed-powder mixing uniformity and single-seed pellet qualification rates through both physical experiments and simulation tests. The study found that the coefficient of variation obtained through discrete element simulation can serve as a reliable surrogate indicator for evaluating pelletization coating quality, with its variation trend highly consistent with the single-seed pellet qualification rate observed in physical experiments. A secondary regression orthogonal design experiment used these indicators to establish a second-order regression equation, thereby performing single-objective optimization of the regression model. The results showed that the relative errors between simulation and physical test parameters were 1.24% for vibration frequency, 1.08% for coating pan rotational speed, and 0.17% for coating pan inclination angle. This demonstrates the high reliability of the coefficient of variation as a surrogate indicator for pellet qualification. With the optimized parameters, the qualification rate of single-seed pellets for agropyron seeds reached 95.3%, and the relative error between model predictions and physical tests was 1.7%. These findings validate the use of the second-order regression equation for predicting and analyzing single-seed pellet qualification rates and provide valuable insights for designing small-grain forage seed pelletization coating machines and optimizing coating parameters. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

24 pages, 11397 KB  
Article
Sustainable Housing Market Responses to Landslide Hazards: A Three-Stage Hierarchical Linear Analysis of Urban Scale and Temporal Dynamics
by Seungil Yum, Jun Woo Kim and Ho Gul Kim
Sustainability 2025, 17(19), 8665; https://doi.org/10.3390/su17198665 - 26 Sep 2025
Abstract
This study hypothesizes that the impacts of landslides on housing prices are not uniform but instead vary depending on their spatial proximity to hazard zones, as well as on neighborhood, urban, and temporal characteristics of each city. To test this hypothesis, we analyze [...] Read more.
This study hypothesizes that the impacts of landslides on housing prices are not uniform but instead vary depending on their spatial proximity to hazard zones, as well as on neighborhood, urban, and temporal characteristics of each city. To test this hypothesis, we analyze APT price responses to landslides across three South Korean cities with distinct urban characteristics: Seoul (capital city), Busan (metropolitan city), and Gunsan (medium-sized local city). Using 120 three-stage hierarchical linear regression (HLR) models, the analysis incorporates housing characteristics, neighborhood attributes, and urban–temporal factors to capture multilevel variations in price dynamics. The results reveal distinct spatial and temporal patterns. At the national level, immediate post-event changes are not uniformly negative: within 250 m of landslide zones, prices increase by 0.8%, while 500-m and 750-m groups rise by 0.5% and 1.9%, respectively, and only the 1000-m group declines by 0.9%. However, in the following year, the 250-m and 500-m groups experience notable declines before showing partial recovery in the second year. City-specific trajectories further underscore regional heterogeneity. In Seoul, medium- and long-term declines dominate, with post-event decreases of 1.9%, 4.2%, and 3.5% in the 500-m, 750-m, and 1000-m groups, respectively. Busan exhibits the sharpest and most persistent declines, with immediate decreases of 3.2% to 4.1% across distance bands, followed by sustained downturns in subsequent years. In contrast, Gunsan shows mixed but relatively faster recovery, as the 750-m group increases by 3.6% post-event and eventually surpasses pre-landslide levels. Full article
Show Figures

Figure 1

16 pages, 4820 KB  
Article
Influence of Cellular Structural Characteristics on Stem Mechanical Strength in Two Wheat Cultivars (Triticum aestivum L.)
by Qingting Liu, Zhenghe Luo, Meimei Wang, Zhichao Lin, Yao Huang, Qing Zhou and Xueting Han
Appl. Sci. 2025, 15(19), 10424; https://doi.org/10.3390/app151910424 - 25 Sep 2025
Abstract
The lodging of wheat has a significant impact on its yield, and its resistance is intricately associated with the mechanical strength of its stem. The majority of existing studies on this issue have been conducted at the macroscale, and the quantitative relationship between [...] Read more.
The lodging of wheat has a significant impact on its yield, and its resistance is intricately associated with the mechanical strength of its stem. The majority of existing studies on this issue have been conducted at the macroscale, and the quantitative relationship between cellular structural characteristics and the mechanical strength of the wheat stem remains poorly understood. This study aimed to investigate this relationship in two wheat cultivars: ‘Zhoumai 36’ and ‘Angong 38’. Samples were collected from the second basal internode of stems at three growth stages: anthesis, grain filling, and maturity. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) were utilized to examine cellular morphology, measure cell wall thickness, and analyze microfibril angles and crystallite sizes within the cell walls. Tensile tests were conducted to determine the tensile strength and elastic modulus of the stem samples. The relationship between cellular structural characteristics and stem mechanical strength was systematically investigated. The results demonstrated that during the developmental transition from anthesis to maturity, the elastic modulus of the stems in the two wheat varieties exhibited divergent trends: a decrease from 1.60 ± 0.08 GPa to 1.25 ± 0.04 GPa (mean ± SEM) in ‘Zhoumai 36’ and an increase from 1.15 ± 0.07 GPa to 1.48 ± 0.18 GPa (mean ± SEM) in ‘Angong 38’ These differences were accompanied by variations in water content between the two varieties. Furthermore, it was observed that the thickness of the S2 layer (the middle layers of the secondary cell wall) in both sclerenchyma and vessel cells showed a positive correlation with stem elastic modulus. Conversely, the microfibril angle of the S2 layer displayed a negative correlation with elastic modulus. Cellulose crystallite size varied across the growth stages, ranging from 1.22 ± 0.10 nm to 1.83 ± 0.30 nm (mean ± SEM) in ‘Zhoumai 36’ and from 1.42 ± 0.11 nm to 1.85 ± 0.23 nm (mean ± SEM) in ‘Angong 38’, respectively, and this parameter also exhibited a positive correlation with elastic modulus. This study clarified the variation trends of stem elastic modulus in wheat cultivars ‘Zhoumai 36’ and ‘Angong 38’ from anthesis to maturity and revealed, through experimental determination and correlation analysis, the microscale quantitative relationships between the stem cellular structural characteristics (S2 layer thickness, S2 layer microfibril angle, and cellulose crystallite size) and mechanical strength (characterized by elastic modulus) in the two cultivars. Full article
Show Figures

Figure 1

18 pages, 3328 KB  
Article
Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China
by Peng Guo, Shaoqing Chen, Xiaosheng Luo, Kelin Hu and Baoguo Li
Water 2025, 17(19), 2815; https://doi.org/10.3390/w17192815 - 25 Sep 2025
Abstract
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of [...] Read more.
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of groundwater hydrochemistry in agricultural regions remains insufficient. In this study, 56 groundwater samples were collected from the central-eastern plain of Henan Province, China. A combination of hierarchical cluster analysis, ionic ratio methods, principal component analysis, and kriging interpolation was employed to investigate the hydrochemical characteristics, spatial patterns, and primary controlling factors of regional groundwater. The results indicate that the first group of samples is characterized by high total dissolved solids (TDS), elevated Na+ and Cl concentrations, predominantly controlled by evaporation and concentration processes. The second group exhibits high pH and low Ca2+ concentrations, mainly influenced by silicate weathering, with reverse cation exchange acting as a secondary controlling process. The third group is characterized by elevated concentrations of Ca2+ and NO3, primarily controlled by carbonate weathering and agricultural activities. The western part of the study area serves as the main groundwater recharge zone and has the highest NO3 and Ca2+ concentrations. In the central area, most ion concentrations are relatively high, forming a distinct gradient with surrounding regions. Meanwhile, the eastern area displays elevated concentrations of HCO3, TDS, Na+, and Cl, highlighting pronounced spatial heterogeneity. Overall, the hydrochemical composition of groundwater in the study area is shaped by both natural processes and anthropogenic activities, exhibiting significant spatial heterogeneity. Notably, the spatial variation of NO3 concentrations is substantial, indicating that certain localities have already been affected by agricultural non-point source pollution. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 4767 KB  
Article
Preparation and Characterization of a High-Performance Foam Extinguishing Agent with Sulfobetaine and Polyoxyethylene Ether for Solid Fires
by Huizhong Ma, Liang Cheng, Lan Zhang, Liyang Ma, Jia Deng, Ao Zhao, Xin Jiang and Fei Wang
Polymers 2025, 17(19), 2579; https://doi.org/10.3390/polym17192579 - 24 Sep 2025
Viewed by 122
Abstract
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires [...] Read more.
Although extensive studies have been conducted on the component ratios and performance of fire extinguishing foams, most research has not explored the coupling relationship between foam wettability and adhesion. Therefore, this study aims to develop an efficient foam extinguishing agent for solid fires by focusing on both wettability and adhesion. First, the influence of chemical functional groups on foam wettability and adhesion was elucidated, and the contributions of individual components to foam properties were experimentally investigated. Second, adhesion and wettability tests revealed a negative correlation between these two properties, consistent with variations in foam solution viscosity and wetting time. Third, a novel adhesion evaluation method was proposed, defined as the time required for foam to flow a fixed distance on inclined wooden surfaces; longer flow times indicated stronger adhesion. Fourth, foaming and fire suppression experiments confirmed the practical performance of the optimized formulations. A composition containing 8 wt% Polyoxyethylene ether and 5 wt% Sulfobetaine yielded a wetting-type foam suitable for rapid cooling, whereas 8 wt% Polyoxyethylene ether combined with 9 wt% Sulfobetaine produced an adhesive-type foam capable of persistent attachment to combustibles. Microscopic observations further demonstrated that foams with superior extinguishing performance developed dense lamellae. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop