Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = seawater agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 562
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 390
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

19 pages, 2927 KiB  
Article
Restoration, Indicators, and Participatory Solutions: Addressing Water Scarcity in Mediterranean Agriculture
by Enrico Vito Perrino, Pandi Zdruli, Lea Piscitelli and Daniela D’Agostino
Agronomy 2025, 15(7), 1517; https://doi.org/10.3390/agronomy15071517 - 22 Jun 2025
Viewed by 516
Abstract
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional [...] Read more.
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional farms in the Stornara and Tara area (Puglia, Italy). The research aimed to identify critical indicators for sustainable water management and develop ecosystem restoration strategies that can be replicated across similar Mediterranean agro-ecosystems. An interdisciplinary, participatory approach was adopted, combining technical analyses and stakeholder engagement through three workshops involving 30 participants from diverse sectors. Fieldwork and laboratory assessments included soil sampling and analysis of parameters such as pH, electrical conductivity, soil organic carbon, nutrients, and salinity. Cartographic studies of vegetation, land use, and pedological characterization supplemented the dataset. The key challenges identified were water loss in distribution systems, seawater intrusion, water pumping from unauthorized wells, and inadequate public policies. Soil quality was significantly influenced by salt stress, hence affecting crop productivity, while socio-economic factors affected farm income. Restoration strategies emphasized the need for water-efficient irrigation, less water-intensive crops, and green vegetation in infrastructure channels while incorporating also the native flora. Enhancing plant biodiversity through weed management in drainage channels proved beneficial for pathogen control. Proposed socio-economic measures include increased inclusion of women and youth in agricultural management activities. Integrated technical and participatory approaches are essential for effective water resource governance in Mediterranean agriculture. This study offers scalable, context-specific indicators and solutions for sustainable land and water management in the face of ongoing desertification and climate stress. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 815
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

14 pages, 2703 KiB  
Article
Energy Efficient Forward Osmosis to Maximize Dewatering Rates
by Jongmin Jeon, Dongkeon Kim and Suhan Kim
Membranes 2025, 15(6), 171; https://doi.org/10.3390/membranes15060171 - 7 Jun 2025
Viewed by 1033
Abstract
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, [...] Read more.
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, conventional FO systems using series-connected modules suffer from progressive DS dilution and FS concentration, leading to a reduction in the osmotic driving force and thereby limiting the overall performance. To address this issue, we propose a novel hybrid FO module configuration in which the FS flows in series while the DS is split and distributed in parallel across moules. This configuration was evaluated using an experimentally validated FO module model and RO simulation tools. Under seawater (600 mM NaCl) as DS and brackish water (10 mM NaCl) as FS, a conventional three-stage FO module achieved an enrichment ratio of 2.5 with an energy consumption of 0.151 kWh/m3. In contrast, the proposed draw solution split distribution (DSSD) achieved an enrichment ratio of 12.5 at a reduced energy consumption of 0.137 kWh/m3. In comparison, a reverse osmosis system consuming 0.58 kWh/m3 achieved a similar enrichment ratio of 12.3. These results demonstrate the high energy efficiency and dewatering capacity of the proposed FO configuration, highlighting its potential for industrial applications in food processing, beverage production, pharmaceuticals and agriculture. Full article
Show Figures

Figure 1

12 pages, 2796 KiB  
Article
Processes of Groundwater Contamination in Coastal Aquifers in Sri Lanka: A Geochemical and Isotope-Based Approach
by Movini Sathma Ratnayake, Sachintha Lakshan Senarathne, Saranga Diyabalanage, Chaminda Bandara, Sudeera Wickramarathne and Rohana Chandrajith
Water 2025, 17(11), 1571; https://doi.org/10.3390/w17111571 - 23 May 2025
Viewed by 516
Abstract
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded [...] Read more.
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded by the ocean and brackish water lagoons in northern Sri Lanka. The population of the region has grown rapidly over the last decade with increasing agricultural activities, and therefore, the use of groundwater has increased. To investigate the effects of seawater intrusion and anthropogenic activities, selected water quality parameters and water isotopes (δ2H and δ18O) were measured in 51 groundwater samples. The results showed that selected shallow groundwater wells are vulnerable to contamination from anthropogenic processes and seawater intrusion, mainly indicated by Cl/Br ratios. Iron-rich groundwater (0.11 to 4.2 mg/L) could represent another problem in the studied groundwater. According to Water Quality Index calculations, 41% of shallow wells contained poor and unsuitable water for domestic and irrigation purposes. Most of the groundwater in the region was saturated with Ca and Mg containing mineral phases such as calcite, dolomite, magnesite and gypsum. Water isotopes (δ2H and δ18O) showed that about 50% of the groundwater samples were scattered near the local meteoric water line. This indicates sufficient rainwater infiltration. However, some samples exhibit elevated isotope values due to seawater admixture and secondary evaporation under semi-arid conditions. This study showed the utility of Cl/Br ratios as indicators for distinguishing anthropogenic sources of Cl contributions to groundwater in shallow, permeable aquifer systems. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Graphical abstract

26 pages, 27036 KiB  
Article
Managed Aquifer Recharge (MAR) in Semiarid Regions: Water Quality Evaluation and Dynamics from the Akrotiri MAR System, Cyprus
by Maria Achilleos, Ourania Tzoraki and Evangelos Akylas
Hydrology 2025, 12(5), 123; https://doi.org/10.3390/hydrology12050123 - 19 May 2025
Viewed by 976
Abstract
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates [...] Read more.
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates MAR effectiveness by analyzing spatial and temporal variations in water quality from 2016 to 2020. Parameters analyzed include nutrients, metals, pesticides, pharmaceuticals, fecal indicators, physicochemical characteristics, recharge and pumping volumes, and groundwater levels. The results show that soil aquifer treatment (SAT) generally improves groundwater quality but certain boreholes exhibited elevated nitrate (range 12.70–31 mg/L), electrical conductivity (range 936–10,420 μs/cm), and chloride concentrations (range 117–1631 mg/L), attributed to recharge water quality, seawater intrusion, and nearby agricultural activities. Tertiary treated wastewater used for recharge occasionally exceeds permissible limits, particularly in E. coli (up to 2420/100 mL), chloride (up to 385 mg/L), and nitrogen (up to 41 mg/L). Supplementing recharge with dam-supplied freshwater improves groundwater quality and raises water levels. These findings underline the importance of continuous monitoring and effective management, adopting sustainable farming practices, and the strict control of recharge water quality. The study offers valuable insights for optimizing MAR systems and supports integrating MAR into circular water management frameworks to mitigate pollution and seawater intrusion, enhancing long-term aquifer sustainability. Full article
Show Figures

Graphical abstract

25 pages, 1271 KiB  
Review
The Impact of Flooding on Soil Microbial Communities and Their Functions: A Review
by Ashim Kumar Das, Da-Sol Lee, Youn-Ji Woo, Sharmin Sultana, Apple Mahmud and Byung-Wook Yun
Stresses 2025, 5(2), 30; https://doi.org/10.3390/stresses5020030 - 2 May 2025
Cited by 1 | Viewed by 3020
Abstract
Soil microorganisms provide multifaceted benefits, including maintaining soil nutrient dynamics, improving soil structure, and instituting decomposition, all of which are important to soil health. Unpredictable weather events, including flooding from heavy rainfall, flash floods, and seawater intrusion, profoundly impact soil ecology, which is [...] Read more.
Soil microorganisms provide multifaceted benefits, including maintaining soil nutrient dynamics, improving soil structure, and instituting decomposition, all of which are important to soil health. Unpredictable weather events, including flooding from heavy rainfall, flash floods, and seawater intrusion, profoundly impact soil ecology, which is primarily challenged by flooding stress, and imbalances these microbial communities and their functions. This disturbance impairs the symbiotic exchanges between microbes and plants by limiting root exudates and habitats for microbes, as well as nutrient acquisition efficiency for plants. Therefore, this review comprehensively examines the changes in soil microbial communities that occur under flooding conditions. Flooding reduces soil oxygen (O2) levels, limiting aerobic microbes but promoting anaerobic ones, including potential pathogens. In flooded soil, O2 deficiency indirectly depends on the size of the soil particles and water turbidity during flooding. O2 depletion is critical in shaping microbial community adaptation, which is linked to variations in soil pH, nutrient concentrations, and redox status, and fresh and saline water vary differently in terms of the adaptation of microorganisms. Wet soil alters soil enzyme activity, which influences microbial community composition. Notably, three-month post-flooding conditions allow microbial communities to adapt and stabilize more effectively than once-weekly flooding frequency. Based on the presence of aboveground species, fungi are found to reduce under flooding conditions, while nematode numbers, surprisingly, increase. Direct and indirect impacts between soil microbes and physio-chemical properties indicate positive or negative feedback loops that influence the soil ecosystem. Over the years, beneficial microorganisms such as plant-growth-promoting microbes (PGPMs) have been identified as important in regulating soil nutrients and microbial communities in wetland environments, thereby enhancing soil health and promoting better plant growth and development. Overall, understanding the mechanisms of belowground ecosystems under flooding conditions is essential for optimizing agricultural practices and ensuring sustainable crop production in flood-prone areas. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

18 pages, 3597 KiB  
Review
Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China
by Pei Jiang, Jiali Chang, Yu Xia, Xia Li, Liping Li, Xinhui Liu and Le Fang
Water 2025, 17(9), 1282; https://doi.org/10.3390/w17091282 - 25 Apr 2025
Viewed by 584
Abstract
The accumulation of antibiotic resistance genes (ARGs) in aquatic systems jeopardizes public health and ecological environments. This study investigates ARGs dissemination in freshwater and seawater, focusing on the sources, prevalence and influencing factors. In freshwater, ARGs primarily originate from medical/pharmaceutical wastewaters, industrial operations, [...] Read more.
The accumulation of antibiotic resistance genes (ARGs) in aquatic systems jeopardizes public health and ecological environments. This study investigates ARGs dissemination in freshwater and seawater, focusing on the sources, prevalence and influencing factors. In freshwater, ARGs primarily originate from medical/pharmaceutical wastewaters, industrial operations, agriculture, and livestock sectors. By contrast, in addition to the above sources, seawater is contaminated by mariculture and terrestrial runoff. Comparative analysis indicates that fresh water hosts multidrug resistance, bacitracin resistance, sulfonamides, aminoglycosides, and beta-lactams, whereas seawater exhibits a wider range of ARGs encompassing sulfonamides, tetracyclines, aminoglycosides, beta-lactams, quinolones, macrolides, and chloramphenicol resistance genes. There was a stronger correlation between antibiotics and ARGs in seawater than in freshwater, especially in farmed waters. Human activities significantly contribute to ARGs pollution in both freshwater and seawater. Urbanization influences ARGs pollution in freshwater, while offshore distance and coastal economic development dictate ARGs selection pressure in seawater. This study shed lights on the current ARGs pollutant status in marine and freshwater ecosystems in China, providing a scientific foundation for water health preservation and ecosystem safeguarding measures. Full article
(This article belongs to the Special Issue Water Safety, Ecological Risk and Public Health)
Show Figures

Figure 1

16 pages, 969 KiB  
Article
Green Analytical Method Using Single-Drop Microextraction Followed by Gas Chromatography for Nitro Compound Detection in Environmental Water and Forensic Rinse Water
by Tamara Pócsová, Senad Okanovič and Svetlana Hrouzková
Molecules 2025, 30(9), 1894; https://doi.org/10.3390/molecules30091894 - 24 Apr 2025
Viewed by 866
Abstract
The extensive use of nitro compounds in agriculture, industry, armaments, and pharmaceuticals, along with their toxic effects on living organisms, necessitates efficient and environmentally sustainable analytical methods. Traditional extraction techniques often involve practices that are not eco-friendly, such as the use of large [...] Read more.
The extensive use of nitro compounds in agriculture, industry, armaments, and pharmaceuticals, along with their toxic effects on living organisms, necessitates efficient and environmentally sustainable analytical methods. Traditional extraction techniques often involve practices that are not eco-friendly, such as the use of large volumes of solvents, toxic chemicals, and the generation of significant waste; therefore, the single-drop microextraction technique was involved in overcoming these limitations. This study shows an environmentally friendly method for nitro compound analysis focusing on NB (Nitrobenzene), 2-NT (2-Nitrotoluene), 3-NT (3-Nitrotoluene), 4-NT (4-Nitrotoluene), 1,3-DNB (1,3-Dinitrobenzene), 1,2-DNB (1,2-Dinitrobenzene), 2,4-DNT (2,4-Dinitrotoluene), and TNT (Trinitrotoluene). To separate and to detect selected nitro compounds, gas chromatography with an electron capture detector was utilized, which is highly selective for analytes containing nitro groups. To determine optimal experimental conditions, extraction parameters were studied, including the impact of salt addition, temperature, and pH on extraction efficiency. Key performance parameters, such as limit of detection (LOD), limit of quantification (LOQ), repeatability, extraction recoveries, calibration range, and matrix effects, were assessed. The LOD values ranged from 0.01 to 0.09 μg/L in deionized water, 0.01 to 0.06 μg/L in tap water, 0.01 to 0.03 μg/L in seawater, and 0.03 to 0.11 μg/L in model forensic rinse water. The optimized method was successfully applied to the determination of nitro compounds in real environmental water samples and forensic rinse water samples. The environmental sustainability and greenness of the proposed method was evaluated with the AGREE, AGREEprep, and AESA techniques. Full article
Show Figures

Figure 1

41 pages, 11437 KiB  
Article
A Decision Support System for Managed Aquifer Recharge Through Non-Conventional Waters in the South of the Mediterranean
by Rym Hadded, Mongi Ben Zaied, Fatma Elkmali, Giulio Castelli, Fethi Abdelli, Zouhaier Khabir, Khaled Ben Zaied, Elena Bresci and Mohamed Ouessar
Resources 2025, 14(4), 63; https://doi.org/10.3390/resources14040063 - 11 Apr 2025
Viewed by 2089
Abstract
Water management in arid regions faces significant challenges due to limited water resources and increasing competition among sectors. Climate change (CC) exacerbates these issues, highlighting the need for advanced modeling tools to predict trends and guide sustainable resource management. This study employs Water [...] Read more.
Water management in arid regions faces significant challenges due to limited water resources and increasing competition among sectors. Climate change (CC) exacerbates these issues, highlighting the need for advanced modeling tools to predict trends and guide sustainable resource management. This study employs Water Evaluation And Planning (WEAP) software to develop a Decision Support System (DSS) to evaluate the impact of climate change and water management strategies on the Triassic aquifer of “Sahel El Ababsa” in southeast Tunisia up to 2050. The reference scenario (SC0) assumes constant climatic and socio-economic conditions as of 2020. CC is modeled under RCP4.5 (SC1.0) and RCP8.5 (SC2.0). Additional scenarios include Seawater Desalination Plants (SDPs) (SC3.0 and SC4.0), water harvesting techniques (SC5.0) to highlight their impact on the recharge, and irrigation management strategies (SC6.0). All these scenarios were further developed under the “SC1.0” scenario to assess the impact of moderate CC. The initial aquifer storage is estimated at 100 Million cubic meters (Mm3). Under (SC0), storage would decrease by 76%, leaving only 23.7 Mm3 by 2050. CC scenarios (SC1.0, SC2.0) predict about a 98% reduction. The implementation of the Zarat SDP (SC3.0) would lead to a 45% improvement compared to reference conditions by the end of the simulation period, while its extension (SC4.0) would result in a 69.5% improvement. Under moderate CC, these improvements would be reduced, with SC3.1 showing a 59% decline and SC4.1 a 35% decline compared to the reference scenario. The WHT scenario (SC5.0) demonstrated a 104% improvement in Triassic aquifer storage by 2050 compared to the reference scenario. However, under CC (SC5.1), this improvement would be partially offset, leading to a 29% decline in aquifer storage. The scenario maintaining stable agricultural demand from the Triassic aquifer under CC (SC6.1) projected an 83% decrease in storage. Conversely, the total “Irrigation Cancellation” scenario (SC7.1) under CC showed a significant increase in aquifer storage, reaching 59.3 Mm3 by 2050—an improvement of 250% compared to the reference scenario. The study underscores the critical need for alternative water sources for irrigation and integrated management strategies to mitigate future water scarcity. Full article
Show Figures

Figure 1

31 pages, 3248 KiB  
Article
Assessment of Heavy Metal Contamination of Seawater and Sediments Along the Romanian Black Sea Coast: Spatial Distribution and Environmental Implications
by Elena Ristea, Oana Cristina Pârvulescu, Vasile Lavric and Andra Oros
Sustainability 2025, 17(6), 2586; https://doi.org/10.3390/su17062586 - 14 Mar 2025
Cited by 4 | Viewed by 1644
Abstract
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 [...] Read more.
This study assesses the spatial distribution and contamination levels of some heavy metals (HMs), i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb), in seawater and surface sediments along the Romanian Black Sea coast (RBSC). Sampling was conducted at 40 stations across 12 transects during May–June 2021, and the measured levels of HM concentrations were compared with Environmental Quality Standards (EQS), i.e., maximum allowable concentration (MAC) values, for seawater and effects range-low (ERL) thresholds for sediments. HM concentrations were measured using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). In seawater, the levels of Cd, Cu, and Pb concentrations exceeded the MAC values at three stations located in areas influenced by the Danube River or anthropogenic activities. In sediments, exceedances of ERL thresholds were found for Ni at 11 stations, for Cu at three stations, and for Pb at one station. HM contamination of sediment samples collected from these stations can be caused by both natural and anthropogenic sources, e.g., the Danube River, rock/soil weathering and erosion, agricultural runoff, port and construction activities, maritime and road transport, coastal tourism, petrochemical industry, wastewater discharges, offshore oil and gas extraction. Principal Component Analysis (PCA) provided valuable information about the relationships between relevant variables, including water depth and HM concentrations in seawater and sediments, and potential sources of contamination. The results highlight the influence of fluvial inputs and localized human activities on HM contamination. While the overall chemical status of Romanian Black Sea waters and sediments remains favorable, targeted management strategies are needed to address localized pollution hotspots and mitigate potential ecological risks. These findings provide valuable insights for environmental monitoring and sustainable coastal management. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

17 pages, 12868 KiB  
Article
PSInSAR-Based Time-Series Coastal Deformation Estimation Using Sentinel-1 Data
by Muhammad Ali, Alessandra Budillon, Zeeshan Afzal, Gilda Schirinzi and Sajid Hussain
Land 2025, 14(3), 536; https://doi.org/10.3390/land14030536 - 4 Mar 2025
Cited by 1 | Viewed by 931
Abstract
Coastal areas are highly dynamic regions where surface deformation due to natural and anthropogenic activities poses significant challenges. Synthetic Aperture Radar (SAR) interferometry techniques, such as Persistent Scatterer Interferometry (PSInSAR), provide advanced capabilities to monitor surface deformation with high precision. This study applies [...] Read more.
Coastal areas are highly dynamic regions where surface deformation due to natural and anthropogenic activities poses significant challenges. Synthetic Aperture Radar (SAR) interferometry techniques, such as Persistent Scatterer Interferometry (PSInSAR), provide advanced capabilities to monitor surface deformation with high precision. This study applies PSInSAR techniques to estimate surface deformation along coastal zones from 2017 to 2020 using Sentinel-1 data. In the densely populated areas of Pasni, an annual subsidence rate of 130 mm is observed, while the northern, less populated region experiences an uplift of 70 mm per year. Seawater intrusion is an emerging issue causing surface deformation in Pasni’s coastal areas. It infiltrates freshwater aquifers, primarily due to excessive groundwater extraction and rising sea levels. Over time, seawater intrusion destabilizes the underlying soil and rock structures, leading to subsidence or gradual sinking of the ground surface. This form of surface deformation poses significant risks to infrastructure, agriculture, and the local ecosystem. Land deformation varies along the study area’s coastline. The eastern region, which is highly reclaimed, is particularly affected by erosion. The results derived from Sentinel-1 SAR data indicate significant subsidence in major urban districts. This information is crucial for coastal management, hazard assessment, and planning sustainable development in the region. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

26 pages, 9680 KiB  
Article
Development of Transient Hydrodynamic and Hydrodispesive Models in Semi-Arid Environments
by Samir Hakimi, Mohamed Abdelbaset Hessane, Mohammed Bahir, Turki Kh. Faraj and Paula M. Carreira
Hydrology 2025, 12(3), 46; https://doi.org/10.3390/hydrology12030046 - 3 Mar 2025
Viewed by 934
Abstract
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with [...] Read more.
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with lower water quality (2 to 6 g/L). The deep aquifer is overexploited for agricultural purposes. This overexploitation has led to declining piezometric levels and the worsening of the oceanic intrusion phenomenon. The study aims to develop a numerical model for a period of 15 years, from 1992/93 to 2006/07 for monitoring groundwater quantity and quality, considering recharge, exploitation, and basin characteristics. A hydrodynamic model based on storage coefficient calibration identifies overexploitation for irrigation, increasing from 93 Mm3 in 1993 to 170 Mm3 in 2007, as the primary driver of declining water levels. A hydrodispersive model highlights higher salt concentrations in the shallow aquifer (up to 6 g/L), high nitrate concentrations due to human activity, and pinpoints areas of seawater intrusion approximately 500 m from the shoreline. Although the deeper aquifer remains relatively preserved, negative hydraulic balances from −15.4 Mm3 in 1993 to −36.6 Mm3 in 2007 indicate an impending critical period. Full article
Show Figures

Figure 1

23 pages, 2943 KiB  
Article
Impact of the Biostimulants Algevit and Razormin on the Salinity Tolerance of Two Tomato Cultivars
by Mihaela Covașă, Cristina Slabu, Alina Elena Marta, Ștefănica Ostaci and Carmenica Doina Jităreanu
Agronomy 2025, 15(2), 352; https://doi.org/10.3390/agronomy15020352 - 29 Jan 2025
Cited by 1 | Viewed by 1246
Abstract
The global water crisis and the expansion of saline soils present significant challenges to agricultural sustainability. To address these issues, innovative solutions are needed to harness seawater and adapt plants to high-salinity conditions. Biostimulants represent an innovative strategy for mitigating the adverse effects [...] Read more.
The global water crisis and the expansion of saline soils present significant challenges to agricultural sustainability. To address these issues, innovative solutions are needed to harness seawater and adapt plants to high-salinity conditions. Biostimulants represent an innovative strategy for mitigating the adverse effects of salinity on crops. This study examined the impact of two biostimulants, Algevit (based on marine algae) and Razormin (based on plant extracts), on the salinity tolerance of two Romanian tomato varieties, Buzau 4 and Buzau 22. The research was conducted under greenhouse conditions and assessed parameters such as plant height, flower and fruit counts, photosynthetic fluorescence, chlorophyll content, stomatal conductance, and proline concentration. The results showed that Algevit had a more significant impact compared to Razormin, enhancing plant growth, maintaining higher chlorophyll levels (in the Algevit variants, values ranged from 27.43 to 44.99 SPAD units, while in the Razormin variants, they ranged from 24.23 to 41.63 SPAD units), and improving photosynthetic efficiency. Both tomato varieties responded positively to the treatments, with Buzau 4 demonstrating greater salinity tolerance, especially when treated with Algevit. These findings suggest that integrating biostimulants into crop management can effectively reduce the negative effects of salinity and support sustainable agriculture in salt-affected regions. The study highlights the importance of applying biostimulants in managing soil salinity and freshwater scarcity in the context of climate change. Full article
Show Figures

Figure 1

Back to TopTop