Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = sea water reverse osmosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3431 KiB  
Article
Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis
by Sarah Kerdi, Adnan Qamar, Henry J. Tanudjaja and Noreddine Ghaffour
Membranes 2025, 15(1), 32; https://doi.org/10.3390/membranes15010032 - 16 Jan 2025
Cited by 3 | Viewed by 1471
Abstract
Reverse osmosis (RO) filtration performance is heavily influenced by the design of the feed spacer. Spacer design impacts hydrodynamic patterns within the system, affecting water production and concentration polarization. Two spacer designs, namely pillar (P) and standard (S), were investigated to improve the [...] Read more.
Reverse osmosis (RO) filtration performance is heavily influenced by the design of the feed spacer. Spacer design impacts hydrodynamic patterns within the system, affecting water production and concentration polarization. Two spacer designs, namely pillar (P) and standard (S), were investigated to improve the performance of a commercially available spacer design (C) in the RO process. Two approaches were employed to evaluate spacer performance. First, direct numerical simulation (DNS) was utilized to fundamentally understand the hydrodynamics generated by each spacer design. Second, laboratory RO experiments were conducted to confirm the simulation results. The P and S spacers induced higher flow velocity and vorticity than the C spacer, as confirmed by simulations and experiments. Reduced dead zones were also demonstrated using P and S spacers. However, the standard spacer design exhibited a clear advantage in promoting more efficient mixing within the filtration channels. This enhanced mixing substantially reduced salt concentration at the membrane surface, improving the filtration performance. In agreement with the permeation velocity computation, the S spacer achieved the highest improvement (13%) in both flux yield and specific flux relative to the C spacer. This finding confirms the S spacer’s ability to enhance RO performance while reducing energy consumption. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

17 pages, 4160 KiB  
Article
Experimental Investigation on Thermo-Economic Analysis of Direct Contact Membrane Distillation for Sustainable Freshwater Production
by Saleh M. Shalaby, Farid A. Hammad, Hamdy A. Ebeid, Asaad M. Armanuos, Iqbal M. Mujtaba and Tamer A. Gado
Processes 2025, 13(1), 240; https://doi.org/10.3390/pr13010240 - 15 Jan 2025
Cited by 1 | Viewed by 1509
Abstract
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated [...] Read more.
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated for desalinating extremely saline water of a salinity ranging from 40,000 to 130,000 ppm. For the purpose of comparison, the HFMD is also tested for desalinating brackish (3000–12,000 ppm) and sea (25,000–40,000 ppm) water. Firstly, the HFMD is tested at two values of feed water temperature (65 and 76 °C) and flow rate (600 and 850 L/h). The experimental results showed that the HFMD productivity significantly increases when the temperature of feed water increases. Increasing the feed water flow rate also has a positive effect on the productivity of HFMD. It is also concluded that the productivity of the HFMD is not significantly affected by increasing the salt concentration when brackish and sea water are used. The productivity also slightly decreases with increasing the salt concentration when extremely saline water is used. The decrement in the productivity reaches 27%, when the salt concentration increases from 40,000 to 130,000 ppm. Based on the conducted economic analysis, the HFMD shows a good potential for desalinating extremely saline water especially when the solar collector is used as a heat source. In this case, the cost per liter of freshwater is reduced by 21.7–23.1% when the evacuated tube solar collectors are used compared to the system using electrical heaters. More reduction in the cost per liter of freshwater is expected when a high capacity solar-powered HFMD plant is installed. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

14 pages, 1800 KiB  
Article
Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day
by J. Feo-García, A. Pulido-Alonso, A. Florido-Betancor and N. R. Florido-Suárez
Water 2024, 16(6), 910; https://doi.org/10.3390/w16060910 - 21 Mar 2024
Cited by 5 | Viewed by 9029
Abstract
The analysis of energy consumption in reverse osmosis desalination plants is the most important and relevant factor to study, because this parameter indicates the level of efficiency and competitiveness of the plant. The direct consequence of the high specific energy consumption (SEC) of [...] Read more.
The analysis of energy consumption in reverse osmosis desalination plants is the most important and relevant factor to study, because this parameter indicates the level of efficiency and competitiveness of the plant. The direct consequence of the high specific energy consumption (SEC) of a desalination plant in the production of water is one of the main obstacles to the exponential expansion of this technology worldwide. The methodological procedure used to carry out the work is based on the analysis of energy consumption, maintenance costs, staff, membranes, and reagents of three desalination plants with a production of more than 23,000 m3/day located in the Canary Islands (Spain); all data are obtained from real analyses collected “in situ” from 2015 to 2018. One of the main objectives of the current research on desalination plants is to reduce the SEC of seawater desalination plants (SWRO), incorporating energy recovery systems (ERS) and high efficiency pumps (HEP), and to implement different operational configurations with the aim of minimizing the energy requirements necessary to obtain a good product quality at minimum production cost. Full article
(This article belongs to the Special Issue Advanced Desalination Technologies for Water Treatment)
Show Figures

Figure 1

32 pages, 10843 KiB  
Article
Performance Analysis and Multi-Objective Optimization of a Cooling-Power-Desalination Combined Cycle for Shipboard Diesel Exhaust Heat Recovery
by Qizhi Gao, Senyao Zhao, Zhixiang Zhang, Ji Zhang, Yuan Zhao, Yongchao Sun, Dezhi Li and Han Yuan
Sustainability 2023, 15(24), 16942; https://doi.org/10.3390/su152416942 - 18 Dec 2023
Cited by 5 | Viewed by 1638
Abstract
This study presents a novel cooling-power-desalination combined cycle for recovering shipboard diesel exhaust heat, integrating a freezing desalination sub-cycle to regulate the ship’s cooling-load fluctuations. The combined cycle employs ammonia–water as the working fluid and efficiently utilizes excess cooling capacity to pretreat reverse [...] Read more.
This study presents a novel cooling-power-desalination combined cycle for recovering shipboard diesel exhaust heat, integrating a freezing desalination sub-cycle to regulate the ship’s cooling-load fluctuations. The combined cycle employs ammonia–water as the working fluid and efficiently utilizes excess cooling capacity to pretreat reverse osmosis desalination. By adjusting the mass flow rate of the working fluid in both the air conditioning refrigeration cycle and the freezing desalination sub-cycle, the combined cycle can dynamically meet the cooling-load demand under different working conditions and navigation areas. To analyze the cycle’s performance, a mathematical model is established for energy and exergy analysis, and key parameters including net output work, comprehensive efficiency, and heat exchanger area are optimized using the MOPSO algorithm. The results indicate that the system achieves optimal performance when the generator temperature reaches 249.95 °C, the sea water temperature is 22.29 °C, and 42% ammonia–water is used as the working fluid. Additionally, an economic analysis of frozen seawater desalination as RO seawater desalination pretreatment reveals a substantial cost reduction of 22.69%, showcasing the advantageous features of this proposed cycle. The research in this paper is helpful for waste energy recovery and sustainable development. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

15 pages, 1484 KiB  
Article
Adding Value to Reclaimed Water from Wastewater Treatment Plants: The Environmental Feasibility of a Minimal Liquid Discharge System for the Case Study of Larnaca
by Maria Avramidi, Christina Spyropoulou, Constantinos Loizou, Maria Kyriazi, Jelica Novakovic, Konstantinos Moustakas, Dimitris Malamis and Maria Loizidou
Sustainability 2023, 15(19), 14305; https://doi.org/10.3390/su151914305 - 27 Sep 2023
Cited by 2 | Viewed by 2318
Abstract
The escalating water demand in Cyprus has necessitated the exploration of alternative water resources. The available water, which relies on rainfall and dam storage supplemented by methods such as desalination and aquifer enrichment, is inadequate to meet the current water demand. As a [...] Read more.
The escalating water demand in Cyprus has necessitated the exploration of alternative water resources. The available water, which relies on rainfall and dam storage supplemented by methods such as desalination and aquifer enrichment, is inadequate to meet the current water demand. As a solution, Cyprus is utilizing reclaimed water for irrigation, in full compliance with both local and EU regulations. To address sustainable water management in Cyprus, a minimal liquid discharge (MLD) system is assessed for its environmental feasibility. A system incorporating reverse osmosis (RO), a multi-effect distillation (MED) evaporator, and a vacuum crystallizer (VC) is proposed for treating reclaimed water from the wastewater treatment plant (WWTP) in Larnaca. The proposed system aims to control the salinity (2500 mg/L) that limits the use of recovered water to the irrigation of non-sensitive types of crops, while recovering salt (sodium chloride). A life cycle assessment (LCA) was conducted, comparing the proposed MLD system with a reference system based on RO technology, where water is recovered, and brine is rejected back into the sea. The environmental feasibility was assessed via comparing 16 different environmental impact categories. Based on the analysis, the reference study provided a positive numeric value for most of the impact categories that were examined. Thus, it was concluded that the reference study has an overall negative impact on the environment, whereas the proposed MLD system demonstrated an overall positive impact, mainly due to low ecotoxicity. Full article
Show Figures

Figure 1

26 pages, 2121 KiB  
Review
Metal Recovery from Natural Saline Brines with an Electrochemical Ion Pumping Method Using Hexacyanoferrate Materials as Electrodes
by Sebastian Salazar-Avalos, Alvaro Soliz, Luis Cáceres, Sergio Conejeros, Iván Brito, Edelmira Galvez and Felipe M. Galleguillos Madrid
Nanomaterials 2023, 13(18), 2557; https://doi.org/10.3390/nano13182557 - 14 Sep 2023
Cited by 5 | Viewed by 3053
Abstract
The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources—such as seawater, geothermal water, well brine, or reverse osmosis brine—using electrochemical systems, which is considered a non-evaporative process. This technology is potentially [...] Read more.
The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources—such as seawater, geothermal water, well brine, or reverse osmosis brine—using electrochemical systems, which is considered a non-evaporative process. This technology is potentially used for metals like Li, Cu, Ca, Mg, Na, K, Sr, and others that are mostly obtained from natural brine sources through a combination of pumping, solar evaporation, and solvent extraction steps. As the future demand for metals for the electronic industry increases, new forms of marine mining processing alternatives are being implemented. Unfortunately, both land and marine mining, such as off-shore and deep sea types, have great potential for severe environmental disruption. In this context, a green alternative is the mixing entropy battery, which is a promising technique whereby the ions are captured from a saline natural source and released into a recovery solution with low ionic force using intercalation materials such as Prussian Blue Analogue (PBA) to store cations inside its crystal structure. This new technique, called “electrochemical ion pumping”, has been proposed for water desalination, lithium concentration, and blue energy recovery using the difference in salt concentration. The raw material for this technology is a saline solution containing ions of interest, such as seawater, natural brines, or industrial waste. In particular, six main ions of interest—Na+, K+, Mg2+, Ca2+, Cl, and SO42−—are found in seawater, and they constitute 99.5% of the world’s total dissolved salts. This manuscript provides relevant information about this new non-evaporative process for recovering metals from aqueous salty solutions using hexacianometals such as CuHCF, NiHCF, and CoHCF as electrodes, among others, for selective ion removal. Full article
Show Figures

Figure 1

18 pages, 2818 KiB  
Article
Study for Recycling Water Treatment Membranes and Compnents towards a Circular Economy—Case of Macaronesia Area
by Tomás Tavares, Federico Leon, Jenifer Vaswani, Baltasar Peñate and Alejandro Ramos-Martín
Membranes 2022, 12(10), 970; https://doi.org/10.3390/membranes12100970 - 2 Oct 2022
Cited by 5 | Viewed by 3211
Abstract
Desalination is an opportunity to get fresh water for irrigation and for drinking. Reverse Osmosis (RO) for sea water desalination is a solution for the high demand for water in Atlantic islands. The most efficient process to get desalinated water is RO; however, [...] Read more.
Desalination is an opportunity to get fresh water for irrigation and for drinking. Reverse Osmosis (RO) for sea water desalination is a solution for the high demand for water in Atlantic islands. The most efficient process to get desalinated water is RO; however, it is necessary to study what to do with the RO membranes used at the end of their life. This paper confirms the possibility to recycle them. The main categories of recycling by thermal processing commonly used in the industry include incineration and pyrolysis to produce energy, gas and fuel. These processes can be applied to mixed plastic waste, such as the combination of materials used in the manufacture of RO membranes. Recycling RO elements from desalination plants is shown to be an opportunity and pioneering initiatives are already underway in Europe. Energy recovery, via incineration, is feasible nowadays and it is a possibility to recycle RO membranes. On the other hand, the recycling of RO elements, via the pyrolytic industry, for fuel production could be centralized in a new industry already planned in the Macaronesia area and all obsolete osmosis membranes could be sent there for recycling. Recycling RO membranes is a very important opportunity for the environment and economy of the zone. This is a new business in water treatments with membranes, very interesting for decreasing the residues and the carbon footprint. The importance of this work is applied to sea water membranes, brackish water ones, and also wastewater tertiaries RO elements at the end of their life. Full article
Show Figures

Figure 1

10 pages, 1777 KiB  
Article
Using Waste Brine from Desalination Plant as a Source of Industrial Water in Copper Mining Industry
by Constanza Cruz, Sebastián Herrera-León, Daniel Calisaya-Azpilcueta, Ruth Salazar, Luis A. Cisternas and Andrzej Kraslawski
Minerals 2022, 12(9), 1162; https://doi.org/10.3390/min12091162 - 14 Sep 2022
Cited by 9 | Viewed by 3823
Abstract
One of the main challenges of seawater desalination is a large volume of waste brine production that is commonly discharged into the sea and may threaten the marine ecosystem. This is critical in regions where conventional water resources are scarce and desalinated seawater [...] Read more.
One of the main challenges of seawater desalination is a large volume of waste brine production that is commonly discharged into the sea and may threaten the marine ecosystem. This is critical in regions where conventional water resources are scarce and desalinated seawater is an alternative to meet water demand. Especially in regions where the mining industry is a key player in the economic development. The novelty of this research consists in the determination of the potential use of waste brine, discharged from the reverse osmosis process, as a source of industrial water in copper mining industry. To enable the waste brine applicability, there should be reduced calcium and magnesium ions concentration for improving copper recovery in the froth flotation process. The flotation tests were conducted in a batch cell with synthetic minerals composed of chalcopyrite, kaolinite, and quartz using different water qualities. The results showed that treated waste brine significantly improved copper recovery compared to untreated waste brine and seawater. Similar copper recovery was achieved when flotation test was performed with tap water and treated waste brine. Therefore, treated waste brine could provide a suitable water quality required in the froth flotation process as an alternative non-conventional water resource. Full article
(This article belongs to the Special Issue Seawater Flotation)
Show Figures

Figure 1

15 pages, 4260 KiB  
Article
Evaluation of the Specific Energy Consumption of Sea Water Reverse Osmosis Integrated with Membrane Distillation and Pressure–Retarded Osmosis Processes with Theoretical Models
by Shao-Chi Tsai, Wei-Zhi Huang, Geng-Sheng Lin, Zhen Wang, Kuo-Lun Tung and Ching-Jung Chuang
Membranes 2022, 12(4), 432; https://doi.org/10.3390/membranes12040432 - 16 Apr 2022
Cited by 12 | Viewed by 4580
Abstract
In this study, theoretical models for specific energy consumption (SEC) were established for water recovery in different integrated processes, such as RO-PRO, RO-MD and RO-MD-PRO. Our models can evaluate SEC under different water recovery conditions and for various proportions of supplied waste heat. [...] Read more.
In this study, theoretical models for specific energy consumption (SEC) were established for water recovery in different integrated processes, such as RO-PRO, RO-MD and RO-MD-PRO. Our models can evaluate SEC under different water recovery conditions and for various proportions of supplied waste heat. Simulation results showed that SEC in RO increases with the water recovery rate when the rate is greater than 30%. For the RO-PRO process, the SEC also increases with the water recovery rate when the rate is higher than 38%, but an opposite trend can be observed at lower water recovery rates. If sufficient waste heat is available as the heat source for MD, the integration of MD with the RO or RO-PRO process can significantly reduce SEC. If the total water recovery rate is 50% and MD accounts for 10% of the recovery when sufficient waste heat is available, the SEC values of RO, RO-PRO, RO-MD and RO-MD-PRO are found to be 2.28, 1.47, 1.75 and 0.67 kWh/m3, respectively. These critical analyses provide a road map for the future development of process integration for desalination. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Ahmad Fauzi Ismail)
Show Figures

Figure 1

13 pages, 2278 KiB  
Article
Modern Use of Water Produced by Purification of Municipal Wastewater: A Case Study
by Giorgia Tomassi, Pietro Romano and Gabriele Di Giacomo
Energies 2021, 14(22), 7610; https://doi.org/10.3390/en14227610 - 14 Nov 2021
Cited by 4 | Viewed by 3143
Abstract
All the urban areas of developed countries have hydric distribution grids and sewage systems for collecting municipal wastewater to treatment plants. In this way, the municipal wastewater is purified from human excreta and other minor contaminants while producing excess sludges and purified water. [...] Read more.
All the urban areas of developed countries have hydric distribution grids and sewage systems for collecting municipal wastewater to treatment plants. In this way, the municipal wastewater is purified from human excreta and other minor contaminants while producing excess sludges and purified water. In arid and semi-arid areas of the world, the purified water can be used, before discharging, to enhance the energy efficiency of seawater desalination and solve the problems of marine pollution created by desalination plants. Over the past half-century, seawater desalination has gradually met demand in urbanized, oil-rich, arid areas. At the same time, technological evolution has made it possible to significantly increase the energy efficiency of the plants and reduce the unit cost of the produced water. However, for some years, these trends have flattened out. The purified water passes through the hybridized desalination plant and produces renewable osmotic energy before the final discharge in the sea to restart the descent behaviour. Current technological development of reverse osmosis (RO), pressure retarded osmosis (PRO) and very efficient energy recovery devices (ERDs) allows this. Furthermore, it is reasonable to predict that, in the short-medium term, a new generation of membranes specifically designed for improving the performance of the pressure retarded osmosis will be available. In such circumstances, the presently estimated 13-20% decrease of the specific energy consumption will improve up to more than 30%. With the hybrid plant, the salinity of the final discharged brine is like that of seawater, while the adverse effect of GHG emission will be significantly mitigated. Full article
Show Figures

Figure 1

15 pages, 5361 KiB  
Article
Renewable Thermal Energy Driven Desalination Process for a Sustainable Management of Reverse Osmosis Reject Water
by Kawtar Rahaoui, Hamid Khayyam, Quoc Linh Ve, Aliakbar Akbarzadeh and Abhijit Date
Sustainability 2021, 13(19), 10860; https://doi.org/10.3390/su131910860 - 30 Sep 2021
Cited by 3 | Viewed by 2990
Abstract
A sustainable circular economy involves designing and promoting products with the least environmental impact. This research presents an experimental performance investigation of direct contact membrane distillation with feed approaching supersaturation salinity, which can be useful for the sustainable management of reverse osmosis reject [...] Read more.
A sustainable circular economy involves designing and promoting products with the least environmental impact. This research presents an experimental performance investigation of direct contact membrane distillation with feed approaching supersaturation salinity, which can be useful for the sustainable management of reverse osmosis reject water. Traditionally, reject water from the reverse osmosis systems is discharged in the sea or in the source water body. The reinjection of high salinity reject water into the sea has the potential to put the local sea environment at risk. This paper presents a design of a solar membrane distillation system that can achieve close to zero liquid discharge. The theoretical and experimental analysis on the performance of the lab scale close to zero liquid discharge system that produces supersaturated brine is studied. The lab-based experiments were conducted at boundary conditions, which were close to the real-world conditions where feed water temperatures ranged between 40 °C and 85 °C and the permeate water temperatures ranged between 5 °C and 20 °C. The feed water was supplied at salinity between 70,000 ppm to 110,000 ppm, similar to reject from reverse osmosis. The experimental results show that the maximum flux of 17.03 kg/m2·h was achieved at a feed temperature of 80 °C, a feed salinity of 10,000 ppm, a permeate temperature of 5 °C and at constant feed and a permeate flow rate of 4 L/min. Whereas for the same conditions, the theoretical mass flux was 18.23 kg/m2·h. Crystal formation was observed in the feed tank as the feed water volume reduced and the salinity increased, reaching close to 308,000 ppm TDS. At this condition, the mass flux approached close to zero due to crystallisation on the membrane surface. This study provides advice on the practical limitations for the use of membrane distillation to achieve close to zero liquid discharge. Full article
(This article belongs to the Special Issue Circular Economy and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 2503 KiB  
Article
Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants
by Muna Hindiyeh, Aiman Albatayneh, Rashed Altarawneh, Mustafa Jaradat, Murad Al-Omary, Qasem Abdelal, Tarek Tayara, Osama Khalil, Adel Juaidi, Ramez Abdallah, Partick Dutournié and Mejdi Jeguirim
Sustainability 2021, 13(17), 9552; https://doi.org/10.3390/su13179552 - 25 Aug 2021
Cited by 15 | Viewed by 6086
Abstract
This work suggests a solution for preventing/eliminating the predicted Sea Level Rise (SLR) by seawater desalination and storage through a large number of desalination plants distributed worldwide; it also comprises that the desalinated seawater can resolve the global water scarcity by complete coverage [...] Read more.
This work suggests a solution for preventing/eliminating the predicted Sea Level Rise (SLR) by seawater desalination and storage through a large number of desalination plants distributed worldwide; it also comprises that the desalinated seawater can resolve the global water scarcity by complete coverage for global water demand. Sea level rise can be prevented by desalinating the additional water accumulated into oceans annually for human consumption, while the excess amount of water can be stored in dams and lakes. It is predicted that SLR can be prevented by desalination plants. The chosen desalination plants for the study were Multi-Effect Desalination (MED) and Reverse Osmosis (RO) plants that are powered by renewable energy using wind and solar technologies. It is observed that the two main goals of the study are fulfilled when preventing an SLR between 1.0 m and 1.3 m by 2100 through seawater desalination, as the amount of desalinated water within that range can cover the global water demand while being economically viable. Full article
(This article belongs to the Special Issue Waste Strategies Development in the Framework of Circular Economy)
Show Figures

Figure 1

14 pages, 267 KiB  
Article
Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant
by Federico Leon, Alejandro Ramos-Martin and Sebastian Ovidio Perez-Baez
Membranes 2021, 11(6), 377; https://doi.org/10.3390/membranes11060377 - 21 May 2021
Cited by 7 | Viewed by 3716
Abstract
The water situation in the Canary Islands has been a historical problem that has been sought to be solved in various ways. After years of work, efforts have focused on desalination of seawater to provide safe water mainly to citizens, agriculture, and tourism. [...] Read more.
The water situation in the Canary Islands has been a historical problem that has been sought to be solved in various ways. After years of work, efforts have focused on desalination of seawater to provide safe water mainly to citizens, agriculture, and tourism. Due to the high demand in the Islands, the Canary Islands was a pioneering place in the world in desalination issues, allowing the improvement of the techniques and materials used. There are a wide variety of technologies for desalination water, but nowadays the most used is reverse osmosis. Desalination has a negative part, the energy costs of producing desalinated water are high. To this we add the peculiarities of the electricity generation system in the Canary Islands, which generates more emissions per unit of energy produced compared to the peninsular generation system. In this study we have selected a desalination plant located on the island of Tenerife, specifically in the municipality of Granadilla de Abona, and once its technical characteristics have been known, the ecological footprint has been calculated. To do this we have had to perform some calculations such as the capacity to fix carbon dioxide per hectare in the Canary Islands, as well as the total calculation of the emissions produced in the generation of energy to feed the desalination plant. Full article
(This article belongs to the Special Issue Membrane Separation Process in Wastewater and Water Purification)
17 pages, 1176 KiB  
Article
Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories
by Federico Leon, Alejandro Ramos, Jenifer Vaswani, Carlos Mendieta and Saulo Brito
Water 2021, 13(3), 293; https://doi.org/10.3390/w13030293 - 25 Jan 2021
Cited by 19 | Viewed by 3228
Abstract
This article shows a climate change mitigation strategy by means of membranes replacement and determination methodology of carbon footprint in reverse osmosis (RO) desalination plants, valid for all the islands, and even isolated territories in the continent. This study takes the case of [...] Read more.
This article shows a climate change mitigation strategy by means of membranes replacement and determination methodology of carbon footprint in reverse osmosis (RO) desalination plants, valid for all the islands, and even isolated territories in the continent. This study takes the case of study of Canary Islands, where there are more than 320 desalination plants with different sizes, private, and public. The objective is to propose a new method which integrates this analysis with the replacement of membranes, from 0% to 20% per year in sea water reverse osmosis desalination plants, to reduce the carbon footprint and ecological footprint. If it is considered a replacement of 20% of the elements per year, the carbon footprint could be reduced to between 5% and 6% and even more if it is introduced low energy consumption membranes instead of high rejection elements. The factor mix in Canary Islands, according to the technological structure of the generation park that uses oil products, is around 0.678 kgCO2/kWh, much higher than in the Spanish mainland where it is 0.263 kgCO2/kWh. Therefore, it is estimated in Canary Islands 5,326,963 t CO2/year can be emitted, which represents 2.4 tCO2/person/year, 12 times more the admissible admissions per inhabitant in the Canary Islands, only considering the seawater desalination sector. This document shows the different results of the analysis of energy efficiency and the environmental footprints. This study may serve as a tool for the decision-making processes related to how to improve energy efficiency in desalination plants. Full article
(This article belongs to the Special Issue Water Treatment: Desalination, Treatment, Reuse and Management)
Show Figures

Figure 1

25 pages, 23431 KiB  
Article
Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes
by Soroush Mehdizadeh, Yuriko Kakihana, Takakazu Abo, Qingchun Yuan and Mitsuru Higa
Membranes 2021, 11(1), 27; https://doi.org/10.3390/membranes11010027 - 1 Jan 2021
Cited by 35 | Viewed by 5973
Abstract
Reverse electrodialysis (RED) is a promising process for harvesting energy from the salinity gradient between two solutions without environmental impacts. Seawater (SW) and river water (RW) are considered the main RED feed solutions because of their good availability. In Okinawa Island (Japan), SW [...] Read more.
Reverse electrodialysis (RED) is a promising process for harvesting energy from the salinity gradient between two solutions without environmental impacts. Seawater (SW) and river water (RW) are considered the main RED feed solutions because of their good availability. In Okinawa Island (Japan), SW desalination via the reverse osmosis (RO) can be integrated with the RED process due to the production of a large amount of RO brine (concentrated SW, containing ~1 mol/dm3 of NaCl), which is usually discharged directly into the sea. In this study, a pilot-scale RED stack, with 299 cell pairs and 179.4 m2 of effective membrane area, was installed in the SW desalination plant. For the first time, asymmetric monovalent selective membranes with monovalent selective layer just at the side of the membranes were used as the ion exchange membranes (IEMs) inside the RED stack. Natural and model RO brines, as well as SW, were used as the high-concentrate feed solutions. RW, which was in fact surface water in this study and close to the desalination plant, was utilized as the low-concentrate feed solution. The power generation performance investigated by the current-voltage (I–V) test showed the maximum gross power density of 0.96 and 1.46 W/m2 respectively, when the natural and model RO brine/RW were used. These are a 50–60% improvement of the maximum gross power of 0.62 and 0.97 W/m2 generated from the natural and model SW, respectively. The approximate 50% more power generated from the model feed solutions can be assigned to the suppression of concentration polarization of the RED stack due to the absence of multivalent ions. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes (Volume II))
Show Figures

Graphical abstract

Back to TopTop