Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Descriptions
2.2. Data Collection
3. Results
3.1. Theorical SEC
3.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galvañ, P.V.; Arias, M.F.C.; Beneyto, M.S. Manipulación de Agua de Consumo Humano en Plantas de Ósmosis Inversa, Publicacions Universitat Alacant. 2011. Available online: https://books.google.es/books?id=THZ0RLlyt0sC (accessed on 15 December 2023).
- Edirisooriya, E.M.N.T.; Wang, H.; Banerjee, S.; Longley, K.; Wright, W.; Mizuno, W.; Xu, P. Economic feasibility of developing alternative water supplies for agricultural irrigation. Curr. Opin. Chem. Eng. 2024, 43, 100987. [Google Scholar] [CrossRef]
- Hadi, K. Current Status, Challenges, and Future Management Strategies for Water Resources of Kuwait BT. In Terrestrial Environment and Ecosystems of Kuwait: Assessment and Restoration; Suleiman, M.K., Shahid, S.A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 141–169. [Google Scholar] [CrossRef]
- Bhoje, R.; Ghosh, A.K. Chapter 21—Overview of water treatment technologies for preparation of drinking water. In Sustainable Remediation Technologies for Emerging Pollutants in Aqueous Environment; Dehghani, M.H., Karri, R.R., Tyagi, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 431–453. [Google Scholar] [CrossRef]
- Evangelisti, F. The Concept of Matter: A Journey from Antiquity to Quantum Physics; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Boselli, V.; Cristoforetti, S. The role of al-Bīrūnī in the history of hydrology. A modern vision 600 years in advance. In Abu Rayhon Beruniy Ilmiy Merosining Jahon Fani Rivojidagi O’rni [The Role of The Scientific Heritage of Abu Rayhan Beruniy in the Development of World Science]; Ma’naviyat: Tashkent, Uzbekistan, 2023; pp. 195–201. [Google Scholar]
- M.C.D. Adenwalla, C.I.E’, Bombay Gazette [Bombay Newspaper (India)]. Available online: https://www.granthsanjeevani.com/jspui/handle/123456789/26919?searchWord=&backquery (accessed on 1 March 2024).
- Birkett, J. The Origins of Today’s Desalination Technologies. In A Multidisciplinary Introduction to Desalination; River Publishers: Chicago, IL, USA, 2022; pp. 265–293. [Google Scholar]
- Reid, C.E.; Breton, E.J. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1959, 1, 133–143. [Google Scholar] [CrossRef]
- Sherwood, T.K.; Brian, P.L.T.; Fisher, R.E.; Dresner, L. Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis. Ind. Eng. Chem. Fundam. 1965, 4, 113–118. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. Advances in seawater desalination technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Glater, J. The early history of reverse osmosis membrane development. Desalination 1998, 117, 297–309. [Google Scholar] [CrossRef]
- Chian, E.S.K.; Chen, J.P.; Sheng, P.-X.; Ting, Y.-P.; Wang, L.K. Reverse osmosis technology for desalination. In Advanced Physicochemical Treatment Technologies; Springer Nature: Cham, Switzerland, 2007; pp. 329–366. [Google Scholar]
- Kim, J.; Park, K.; Yang, D.R.; Hong, S. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 2019, 254, 113652. [Google Scholar] [CrossRef]
- Azinheira, G.; Segurado, R.; Costa, M. Chapter 4—Use of RES-powered desalination in water-stressed regions. A case study in Algarve, Portugal. In Energy Storage for Multigeneration; Gude, V.G., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 93–124. [Google Scholar] [CrossRef]
- Clark, J.S.; Grimm, E.C.; Donovan, J.J.; Fritz, S.C.; Engstrom, D.R.; Almendinger, J.E. Drought cycles and landscape responses to past aridity on prairies of the northern great plains, USA. Ecology 2022, 83, 595–601. [Google Scholar] [CrossRef]
- Cancelliere, A.; Di Mauro, G.; Bonaccorso, B.; Rossi, G. Drought forecasting using the Standardized Precipitation Index. Water Resour. Manag. 2007, 21, 801–819. [Google Scholar] [CrossRef]
- Galitskaya, I.; Mohan, K.R.; Krishna, A.K.; Batrak, G.; Eremina, O.; Putilina, V.; Yuganova, T. Assessment of soil and Groundwater Contamination by Heavy Metals and Metalloids in Russian and Indian Megacities. Procedia Earth Planet. Sci. 2017, 17, 674–677. [Google Scholar] [CrossRef]
- Grondona, S.I.; Lima, M.L.; Massone, H.E.; Miglioranza, K.S.B. Pesticides in aquifers from Latin America and the Caribbean. Sci. Total Environ. 2023, 901, 165992. [Google Scholar] [CrossRef]
- Cellone, F.; Santucci, L.; Borzi, G.; Tanjal, C.; Di Lello, C.; Butler, L.; Córdoba, J.; Lamarche, L.; Galliari, J.; Melendi, E.; et al. Impact of dairy farms on groundwater quality in a productive basin in the northeast of the Pampean Plain, Argentina. Groundw. Sustain. Dev. 2023, 23, 100997. [Google Scholar] [CrossRef]
- Bondu, R.; Casiot, C.; Pistre, S.; Batiot-Guilhe, C. Impact of past mining activities on water quality in a karst area in the Cévennes region, Southern France. Sci. Total Environ. 2023, 873, 162274. [Google Scholar] [CrossRef]
- Raja, S.R.; Kanagaraj, B.; Eunice, S. Evaluating groundwater contamination: An examination of a municipal solid waste dump yard in southern India’s Manchester City. Resour. Conserv. Recycl. Adv. 2023, 20, 200196. [Google Scholar]
- Laonamsai, J.; Pawana, V.; Chipthamlong, P.; Chomcheawchan, P.; Kamdee, K.; Kimmany, B.; Julphunthong, P. Groundwater Quality Variations in Multiple Aquifers: A Comprehensive Evaluation for Public Health and Agricultural Use. Geosciences 2023, 13, 195. [Google Scholar] [CrossRef]
- Ghaffour, N. The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA. Desalin. Water Treat. 2009, 5, 48–53. [Google Scholar] [CrossRef]
- Martín, R.H.; González, J.M.V.; Bordón, P.S.T. Distribución y Concentración Del Alojamiento Turístico en Canarias. Plazas Hoteleras, en Apartamentos, Vivienda Vacacional y Población; Observatorio Turístico de Canaria: Santa Cruz, Spain, 2024. [Google Scholar]
- Stoughton, K.M.; Duan, X.; Wendel, E.M. Reverse Osmosis Optimization; PNNL: Richland, WA, USA, 2013.
- Feo, J.; Sadhwani, J.J.; Alvarez, L. More efficient production line with Desalination plants using reverse osmosis. Desalin. Water Treat. 2013, 51, 307–317. [Google Scholar] [CrossRef]
- Najjar, E.; Al-Hindi, M.; Massoud, M.; Saad, W. Life cycle assessment and cost of a seawater reverse osmosis plant operated with different energy sources. Energy Convers. Manag. 2022, 268, 115964. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 140, 110712. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- McGovern, R.K.; Lienhard, V.J.H. On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J. Membr. Sci. 2014, 469, 245–250. [Google Scholar] [CrossRef]
- Park, K.; Heo, H.; Kim, D.Y.; Yang, D.R. Feasibility study of a forward osmosis/crystallization/reverse osmosis hybrid process with high-temperature operation: Modeling, experiments, and energy consumption. J. Membr. Sci. 2018, 555, 206–219. [Google Scholar] [CrossRef]
- Shrivastava, A.; Rosenberg, S.; Peery, M. Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 2015, 368, 181–192. [Google Scholar] [CrossRef]
- Schunke, A.J.; Hernandez-Herrera, G.A.; Padhye, L.; Berry, T.-A. Energy Recovery in SWRO Desalination: Current Status and New Possibilities. Front. Sustain. Cities 2020, 2, 9. [Google Scholar] [CrossRef]
- McHarg, J.; Truby, R. West Coast researchers seek to demonstrate SWRO affordability. Int. Desalin. Water Reuse Q. 2004, 14, 10–18. [Google Scholar]
- Kim, J.; Hong, S. A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination. Desalination 2018, 429, 142–154. [Google Scholar] [CrossRef]
- Karabelas, A.; Koutsou, C.; Kostoglou, M.; Sioutopoulos, D. Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination 2018, 431, 15–21. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Yang, D.R.; Hong, S. Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. J. Membr. Sci. 2020, 595, 117607. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Stover, R.L. Energy Recovery Devices for Seawater Reverse Osmosis. Everything about Water. 2006. Available online: https://www.eawater.com/ (accessed on 1 March 2024).
- Rybar, S.; Vodnar, M.; Vartolomei, F.L.; Méndez, R.L.; Ruano, J.B.L. Experience with renewable energy source and SWRO desalination in Gran Canaria. In Proceedings of the SP05-100 International Desalination Association World Congress, Singapore, 11–16 September 2005. [Google Scholar]
- Carta, J.A.; González, J.; Cabrera, P.; Subiela, V.J. Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine. Appl. Energy 2015, 137, 222–239. [Google Scholar] [CrossRef]
- Delgado-Torres, A.M.; García-Rodríguez, L.; del Moral, M.J. Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV)—Tidal range energy system. Desalination 2020, 477, 114247. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I.; Khayet, M. Performance assessment and modeling of an SWRO pilot plant with an energy recovery device under variable operating conditions. Desalination 2023, 555, 116523. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; Matos, C.; Rosales-Asensio, E.; Lund, H. Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria. Appl. Energy 2024, 358, 122564. [Google Scholar] [CrossRef]
- Kumar, S.S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.; Rahman, S.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.K.A.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Castro-Martínez, C.; Beltrán-Arredondo, L.I.; Ortiz-Ojeda, J.C. Producción de biodiesel y bioetanol:¿ una alternativa sustentable a la crisis energética. Ra Ximhai 2012, 8, 93–100. [Google Scholar] [CrossRef]
- Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO Publishing: Paris, France, 2015. [Google Scholar]
- Youssef, P.; Al-Dadah, R.; Mahmoud, S. Comparative Analysis of Desalination Technologies. Energy Procedia 2014, 61, 2604–2607. [Google Scholar] [CrossRef]
- Subramani, A.; Jacangelo, J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015, 75, 164–187. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Feo, J.; Sadhwani, J.J.; Alvarez, L. Cost analysis in RO desalination plants production lines: Mathematical model and simulation. Desalin. Water Treat. 2013, 51, 4800–4805. [Google Scholar] [CrossRef]
- IBM Corporation. IBM SPSS Statistics for Windows; IBM Corporation: Armonk, NY, USA, 2021. [Google Scholar]
- Yangali-Quintanilla, V.; Olesen, L.; Lorenzen, J.; Rasmussen, C.; Laursen, H.; Vestergaard, E.; Keiding, K. Lowering desalination costs by alternative desalination and water reuse scenarios. Desalin. Water Treat. 2015, 55, 2437–2445. [Google Scholar] [CrossRef]
- Kronenberg, G. The largest SWRO plant in the world—Ashkelon 100 million m3/y BOT project. Desalination 2004, 166, 457–463. [Google Scholar] [CrossRef]
- Feo-García, J.; Ruiz-García, A.; Ruiz-Saavedra, E.; Melian-Martel, N. Cost assessment in SWRO desalination plants with a production of 600 m3/d in Canary Islands. Desalin. Water Treat. 2016, 57, 22887–22893. [Google Scholar] [CrossRef]
- Medina, J.A. Years evolution of desalination costs in Spain. In Proceedings of the International Conference on Desalination Costing, Limassol, Cyprus, 6–8 December 2004. [Google Scholar]
- Díaz-Caneja, J.; Fariñas, M.; Rubial, R. Cost estimation briefing for large seawater reverse osmosis facilities in Spain. In Proceedings of the International Conference on Desalination Costing, Limassol, Cyprus, 6–8 December 2004. [Google Scholar]
- Avlonitis, S.; Kouroumbas, K.; Vlachakis, N. Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 2003, 157, 151–158. [Google Scholar] [CrossRef]
- Micale, G.; Rizzuti, L.; Cipollina, A. Seawater Desalination: Conventional and Renewable Energy Processes; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: Review and assessment. Desalination 2008, 223, 448–456. [Google Scholar] [CrossRef]
- Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low-Carbon Technol. 2014, 9, 1–19. [Google Scholar] [CrossRef]
A | B | C | |
---|---|---|---|
Construction (year) | 1997 | 2001 | 1998 |
Start-up (year) | 1998 | 2001 | 1998 |
Nº membranes | 6/7 | 6 | 7 |
Membrane type | IONICS | Aeronauti, LG | IOINICS |
Membrane configuration | Spiral | Spiral | Spiral |
Production (m3/day) | 30,000 | 23,000 | 33,000 |
Production lines | 4 | 3 | 4 |
Pressure vessels/line | 60 | 96 | 111 |
Total membranes | 1680 | 1728 | 3108 |
Intake | Beach well | Beach well | Beach well |
Pre-treatment (chemicals) | NaOCl NaHSO3 | NaHSO3 | NaOCl NaHSO3 |
Recovery | 40% | 45% | 42% |
Configuration | 1 pass/1 stage | 1 pass/1 stage | 1 pass/2 stage |
Energy recovery system | NO | Pelton turbine | NO |
Maintenance | Medium–high | High | Medium–high |
Feed temperature (°C) | 22 | 25 | 23 |
Feed pH (average) | 7.2 | 6.5 | 7.1 |
Plant | Year | Energy (kWh) | Production (m3) |
---|---|---|---|
A | 2015 | 23,380,191 | 5,399,582 |
2016 | 27,714,395 | 6,505,726 | |
2017 | 30,082,701 | 7,373,211 | |
2018 | 35,522,439 | 8,947,717 | |
B | 2015 | 25,965,494 | 8,295,685 |
2016 | 23,768,636 | 7,890,029 | |
2017 | 28,989,245 | 8,480,957 | |
2018 | 29,726,744 | 8,580,675 | |
C | 2015 | 39,705,138 | 9,876,900 |
2016 | 37,164,847 | 10,238,250 | |
2017 | 39,965,310 | 10,117,800 | |
2018 | 39,715,978 | 10,479,150 |
Year/Plant | A | B | C |
---|---|---|---|
2015 | 4.33 | 3.13 | 4.02 |
2016 | 4.26 | 3.03 | 3.63 |
2017 | 4.08 | 3.42 | 3.95 |
2018 | 3.97 | 3.49 | 3.79 |
Plant | Energy | Staff | Maintenance | Reagents | Membranes | Totals |
---|---|---|---|---|---|---|
A | 0.490 | 0.040 | 0.068 | 0.021 | 0.010 | 0.629 |
B | 0.600 | 0.050 | 0.077 | 0.019 | 0.009 | 0.755 |
C | 0.370 | 0.040 | 0.062 | 0.022 | 0.010 | 0.504 |
Plant | A | B | C |
---|---|---|---|
Feed press (bar) | 60.42 | 60.24 | 60.30 |
Conc press (bar) | 58.04 | 59.42 | 58.64 |
SEC (kW h/m3) | 5.28 | 4.67 | 4.96 |
Feed TDS (mg/L) | 38,038 | 38,031 | 38,034 |
Plant | A | B | C |
---|---|---|---|
Feed press (bar) | 57.4 | 58.6 | 57.90 |
Conc press (bar) | 60.4 | 60.2 | 60.30 |
SEC (kW h/m3) | 2.82 | 2.67 | 2.75 |
Feed TDS (mg/L) | 38,036 | 38,032 | 38,034 |
Plant | Margin of Error (%) |
---|---|
A | 47.1 |
B | 24.0 |
C | 34.5 |
Origin | Sum of Squares | gL | Mean Square | F | Sig. | Partial Eta Squared | Parameter Non-Centrality | Observed Power |
---|---|---|---|---|---|---|---|---|
Energy | 0.476 | 1 | 0.476 | 59.007 | 0.017 | 0.967 | 59.007 | 0.945 |
Staff | 0.004 | 1 | 0.004 | 161.340 | 0.006 | 0.988 | 161.340 | 1.000 |
Maintenance | 0.009 | 1 | 0.009 | 257.793 | 0.004 | 0.992 | 257.793 | 1.000 |
Reagents | 0.001 | 1 | 0.001 | 529.385 | 0.002 | 0.967 | 529.385 | 1.000 |
Membranes | 0.000 | 1 | 0.000 | 768.085 | 0.001 | 0.996 | 768.085 | 1.000 |
Error | 0.016 | 2 | 0.008 | |||||
Total | 0.462 | 3 | ||||||
Total corrected | 0.016 | 2 |
Confidence Interval 95% | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | B | Error Tip. | T | Sig. | Lower Limit | Upper Limit | Parameter Non-Centrality | Observed Power |
Energy | 0.502 | 1 | 7662 | 0.017 | 0.221 | 0.783 | 0.967 | 7662 |
Staff | 0.044 | 1 | 12,702 | 0.006 | 0.029 | 0.056 | 0.986 | 12,702 |
Maintenance | 0.070 | 1 | 16,056 | 0.004 | 0.051 | 0.088 | 0.992 | 16,056 |
Reagents | 0.020 | 1 | 23,008 | 0.002 | 0.008 | 0.011 | 0.967 | 23,008 |
Membranes | 0.010 | 1 | 27,714 | 0.001 | 0.047 | 0.024 | 0.996 | 27,714 |
Size of Plant (m3/day) | Production Cost (EUR/m3) |
---|---|
<100 | 1.2–15.00 |
250–1000 | 1.00–3.14 |
1000–4800 | 0.56–1.38 |
15,000–60,000 | 0.38–1.30 |
100,000–320,000 | 0.36–0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feo-García, J.; Pulido-Alonso, A.; Florido-Betancor, A.; Florido-Suárez, N.R. Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day. Water 2024, 16, 910. https://doi.org/10.3390/w16060910
Feo-García J, Pulido-Alonso A, Florido-Betancor A, Florido-Suárez NR. Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day. Water. 2024; 16(6):910. https://doi.org/10.3390/w16060910
Chicago/Turabian StyleFeo-García, J., A. Pulido-Alonso, A. Florido-Betancor, and N. R. Florido-Suárez. 2024. "Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day" Water 16, no. 6: 910. https://doi.org/10.3390/w16060910
APA StyleFeo-García, J., Pulido-Alonso, A., Florido-Betancor, A., & Florido-Suárez, N. R. (2024). Cost Studies of Reverse Osmosis Desalination Plants in the Range of 23,000–33,000 m3/day. Water, 16(6), 910. https://doi.org/10.3390/w16060910