Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = sea–land transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3319 KiB  
Technical Note
Intensification Trend and Mechanisms of Oman Upwelling During 1993–2018
by Xiwu Zhou, Yun Qiu, Jindian Xu, Chunsheng Jing, Shangzhan Cai and Lu Gao
Remote Sens. 2025, 17(15), 2600; https://doi.org/10.3390/rs17152600 - 26 Jul 2025
Viewed by 380
Abstract
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend [...] Read more.
The long-term trend of coastal upwelling under global warming has been a research focus in recent years. Based on datasets including sea surface temperature (SST), sea surface wind, air–sea heat fluxes, ocean currents, and sea level pressure, this study explores the long-term trend and underlying mechanisms of the Oman coastal upwelling intensity in summer during 1993–2018. The results indicate a persistent decrease in SST within the Oman upwelling region during this period, suggesting an intensification trend of Oman upwelling. This trend is primarily driven by the strengthened positive wind stress curl (WSC), while the enhanced net shortwave radiation flux at the sea surface partially suppresses the SST cooling induced by the strengthened positive WSC, and the effect of horizontal oceanic heat transport is weak. Further analysis revealed that the increasing trend in the positive WSC results from the nonuniform responses of sea level pressure and the associated surface winds to global warming. There is an increasing trend in sea level pressure over the western Arabian Sea, coupled with decreasing atmospheric pressure over the Arabian Peninsula and the Somali Peninsula. This enhances the atmospheric pressure gradient between land and sea, and consequently strengthens the alongshore winds off the Oman coast. However, in the coastal region, wind changes are less pronounced, resulting in an insignificant trend in the alongshore component of surface wind. Consequently, it results in the increasing positive WSC over the Oman upwelling region, and sustains the intensification trend of Oman coastal upwelling. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

16 pages, 1506 KiB  
Article
Theoretical Framework (Module) for Short-Sea Shipping System Evaluation
by Vytautas Paulauskas, Birutė Plačienė, Donatas Paulauskas, Rafał Koba, Patryk Lipka, Krzysztof Czaplewski, Adam Weintrit and Andrzej Chybicki
Appl. Sci. 2025, 15(14), 8058; https://doi.org/10.3390/app15148058 - 20 Jul 2025
Viewed by 312
Abstract
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner [...] Read more.
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner shipping. The development and improvement of SSS systems is an important scientific and practical task. This article presents theoretical and experimental results of the development and optimization of SSS. A methodology for connecting and evaluating SSS and other transport chains was developed and tested by experimental studies, with the help of which it is possible to assess the efficiency of SSS and other transport chains, e.g., in terms of economy, freight transportation time, and environmental impact. The developed SSS methodology includes sea and land transport corridors, their assessment, and possible ways of optimizing transport chains using a comparative method and can be applied to various transport and logistics chains. The basis for the development and verification of the SSS methodology was the theoretical and experimental results of real short-sea shipping operations. The use of a comparative method based on which transport and logistics chains are assessed allows one to search for the most optimal SSS routes and possible factors that allow optimizing transportation costs and reducing transportation time and environmental impact. Full article
(This article belongs to the Special Issue Advances in Land, Rail and Maritime Transport and in City Logistics)
Show Figures

Figure 1

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 545
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

23 pages, 10930 KiB  
Article
Geospatial Analysis of Patterns and Trends of Mangrove Forest in Saudi Arabia: Identifying At-Risk Zone-Based Land Use
by Amal H. Aljaddani
Sustainability 2025, 17(13), 5957; https://doi.org/10.3390/su17135957 - 28 Jun 2025
Viewed by 771
Abstract
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due [...] Read more.
Mangrove ecosystems are crucial coastal habitats that support life and regulate the Earth’s atmosphere. However, these ecosystems face prominent threats due to anthropogenic activities and environmental constraints. For instance, the Saudi Arabian coast is particularly vulnerable to species extinction and biodiversity loss due to the fragility of the ecosystem; this highlights the need to understand the spatial and temporal dynamics of mangrove forests in desert environments. Hence, this is the first national study to quantify mangrove forests and analyze at-risk zone-based land use along Saudi Arabian coasts over 40 years. Thus, the primary contents of this research were (1) to produce a new long-term dataset covering the entire Saudi coastline, (2) to identify the patterns, analyze the trends, and quantify the change of mangrove areas, and (3) to determine vulnerability zoning of mangrove area-based land use and transportation networks. This study used Landsat satellite imagery via Google Earth Engine for national-scale mangrove mapping of Saudi Arabia between 1985 and 2024. Visible and infrared bands and seven spectral indices were employed as input features for the random forest classifier. The two classes used were mangrove and non-mangrove; the latter class included non-mangrove land-use and land-cover areas. Then, the study employed the output mangrove mapping to delineate vulnerable mangrove forest-based land use. The overall results showed a substantial increase in mangrove areas, ranging from 27.74 to 59.31 km2 in the Red Sea and from 1.05 to 8.65 km2 in the Arabian Gulf between 1985 and 2024, respectively. However, within this decadal trend, there were noticeable periods of decline. The spatial coverage of mangroves was larger on Saudi Arabia’s western coasts, especially the southwestern coasts, than on its eastern coasts. The overall accuracy, conducted annually, ranged between 91.00% and 98.50%. The results also show that expanding land uses and transportation networks within at-risk zones of mangrove forests may have a high potential effect. This study aimed to benefit the government, conservation agencies, coastal planners, and policymakers concerned with the preservation of mangrove habitats. Full article
Show Figures

Figure 1

23 pages, 5570 KiB  
Article
Evaluation of Coastal Sediment Dynamics Utilizing Natural Radionuclides and Validated In-Situ Radioanalytical Methods at Legrena Beach, Attica Region, Greece
by Christos Tsabaris, Alicia Tejera, Ronald L. Koomans, Damien Pham van Bang, Abdelkader Hammouti, Dimitra Malliouri, Vasilios Kapsimalis, Pablo Martel, Ana C. Arriola-Velásquez, Stylianos Alexakis, Effrosyni G. Androulakaki, Georgios Eleftheriou, Kennedy Kilel, Christos Maramathas, Dionisis L. Patiris and Hannah Affum
J. Mar. Sci. Eng. 2025, 13(7), 1229; https://doi.org/10.3390/jmse13071229 - 26 Jun 2025
Viewed by 521
Abstract
This study was realized in the frame of an IAEA Coordinated Research Project for the evaluation of sediment dynamics, applying in-situ radiometric methods accompanied with a theoretical model. The in-situ methods were validated using lab-based high-resolution gamma-ray spectrometry. Sediment dynamics assessments were performed [...] Read more.
This study was realized in the frame of an IAEA Coordinated Research Project for the evaluation of sediment dynamics, applying in-situ radiometric methods accompanied with a theoretical model. The in-situ methods were validated using lab-based high-resolution gamma-ray spectrometry. Sediment dynamics assessments were performed based on the measured and mapped activity concentrations of specific 238U progenies (214Bi or 214Pb), 232Th progenies (208Tl and 228Ac), and 40K along the shoreline of the beach. The maps of the activity concentrations of natural radionuclides were produced rapidly using software tools (R language v4.5). The sediment dynamics of the studied area were also investigated through numerical simulations, applying an open source model considering land–sea interactions and meteorological conditions and the corresponding sediment processes. The assessments, which were conducted utilizing the detailed data from the natural radioactivity maps, were validated by the simulation results, since both were found to be in agreement. Generally, it was confirmed that the distribution of radionuclides reflects the selective transport processes of sediments, which are related to the corresponding processes that occur in the study area. Legrena Beach in Attica, Greece, served as a pilot area for the comparative analysis of methods and demonstration of their relevance and applicability for studying coastal processes. Full article
Show Figures

Figure 1

23 pages, 12735 KiB  
Article
Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary
by Qiyao Zhao, Qibin Lao, Chao Wang, Sihai Liu and Fajin Chen
Remote Sens. 2025, 17(13), 2165; https://doi.org/10.3390/rs17132165 - 24 Jun 2025
Viewed by 373
Abstract
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This [...] Read more.
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This study captured two distinct types of typhoons, namely Merbok (2017) and Nuri (2020), which landed from the right and left sides of the Pearl River Estuary (PRE), respectively, utilizing satellite remote sensing data to study their impacts on frontal dynamics and marine productivity. We found that after both typhoons, the southwest monsoon amplified geostrophic currents significantly (increased ~14% after Nuri (2020) and 48% after Merbok (2020)). These stronger currents transported warmer offshore seawater from the South China Sea to the PRE and intensified the frontal activities in nearshore PRE (increased ~47% after Nuri (2020) and ~2.5 times after Merbok (2020)). The ocean fronts limited the transport of high-chlorophyll and eutrophic water from the PRE to the offshore waters due to the barrier effect of the front. This resulted in a sharp drop in chlorophyll concentrations in the offshore-adjacent waters of PER after Typhoon Nuri (2020) (~37%). By contrast, despite the intensified geostrophic current induced by the summer monsoon following Typhoon Merbok (2020), its stronger offshore force, driven by the intense offshore wind stress (characteristic of the left-side typhoon), caused the nearshore front to move offshore. The displacement of fronts lifted the restriction of the front barrier and led more high-chlorophyll (increased ~4 times) and eutrophic water to be transported offshore, thereby stimulating offshore algal blooms. Our findings elucidate the mechanisms by which different track typhoons influence chlorophyll distribution through changes in frontal dynamics, offering new perspectives on the coastal ecological impacts of typhoons and further studies for typhoon impact modeling or longshore management. Full article
Show Figures

Figure 1

10 pages, 363 KiB  
Article
Sustainable Strategies for Ports and Maritime Logistics: A Methodological Approach to Green Transition
by Elena Cocuzza, Matteo Ignaccolo, Cristiano Marinacci, Stefano Ricci, Elen Twrdy and Marina Zanne
Sustainability 2025, 17(13), 5739; https://doi.org/10.3390/su17135739 - 22 Jun 2025
Viewed by 589
Abstract
Ports represent the point of intersection between sea and land, as well as a crucial node for the integration of maritime and land transport in the global logistics chain. Consequently, it is crucial to consider an articulated system that includes dry ports, freight [...] Read more.
Ports represent the point of intersection between sea and land, as well as a crucial node for the integration of maritime and land transport in the global logistics chain. Consequently, it is crucial to consider an articulated system that includes dry ports, freight interchange and intermodal logistics platforms, since the relationships between the port and the city, as well as those between the different decision-makers involved, are multiple and complex. Maritime transport and port operations have a direct and indirect impact on the surrounding contexts, with significant effects, particularly from an environmental point of view. Therefore, the green transition in logistics, port, and maritime systems is essential for reducing these impacts. In this context, the aspects related to operational practices and terminal design are of great importance. This paper aims to explore sustainable strategies for ports and maritime logistics in order to provide a methodological approach to green transition. The proposed methodology was divided into phases. First, an analysis of international and European legislation was conducted in order to identify the main critical issues. Subsequently, a review of the existing literature and best practices was carried out to identify tested solutions. The third phase included a Stakeholder Engagement Process, centred on the use of a thematic focus group to foster a collaborative approach to the definition of priorities and operational strategies. Part of the proposed methodology was implemented as part of the DEMASTER—Design of Maritime Sustainable Terminals—project, and it can allow for the evaluation of the different options and the identification of more effective and innovative solutions for the green transition. Full article
Show Figures

Figure 1

20 pages, 22127 KiB  
Article
Performance Analysis of Poppet Valves in Deep-Sea Hydraulic Systems: Considering Viscosity–Pressure Characteristics
by Pin-Jian Wang and Jia-Bin Wu
J. Mar. Sci. Eng. 2025, 13(6), 1177; https://doi.org/10.3390/jmse13061177 - 16 Jun 2025
Viewed by 400
Abstract
Deep-sea hydraulic systems, powering a wide range of numerous deep-sea operating equipment, employ many poppet valves to adjust the pressure and flow rate, thereby realizing precise movements of the actuators. With greater depths and ambient pressures, the hydraulic oil viscosity increases exponentially, leading [...] Read more.
Deep-sea hydraulic systems, powering a wide range of numerous deep-sea operating equipment, employ many poppet valves to adjust the pressure and flow rate, thereby realizing precise movements of the actuators. With greater depths and ambient pressures, the hydraulic oil viscosity increases exponentially, leading to a significant difference in the performance of the poppet valve compared to on-land usage and across varying depths. Based on the shear stress transport (SST) k-ω turbulence model and the dynamic mesh method, a computational fluid dynamics (CFD) model of the poppet valve was established. With the viscosity–pressure characteristics considered, the performance of the poppet valve was analyzed under different depths, different inlet flow rates, and different cracking pressures. The results indicate significant performance deterioration in poppet valves at increased depths, characterized by increased pressure loss and extended response rise time. At 11 km underwater, the pressure loss can be 7 MPa larger than the preset cracking pressure of 10 MPa, and the rise time is doubled compared with the land condition. It is recommended to use hydraulic oils with a lower initial viscosity and a slower increase in viscosity with pressure in deep sea conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Machine Learning Indicates Stronger Future Thunderstorm Downbursts Affecting Southeast Australian Airports
by Milton Speer, Lance Leslie and Shuang Wang
Climate 2025, 13(6), 127; https://doi.org/10.3390/cli13060127 - 15 Jun 2025
Viewed by 741
Abstract
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected [...] Read more.
Thunderstorms downbursts can be hazardous during aircraft landing and take-off. A warming climate increases low- to mid-level troposphere water vapor, typically transported from high sea-surface temperature regions. Consequently, the future occurrence and intensity of destructive wind gusts from wet microburst thunderstorms are expected to increase. Wet microbursts are downdrafts from heavily precipitating thunderstorms and are several kilometers in diameter, often producing near-surface extreme wind gusts. Brisbane airport recorded a wet microburst wind gust of 157 km/h in November 2016. Numerous locations in eastern Australia experience warm season (October to March) wet microbursts. Here, eight machine learning techniques comprising forward and backward linear regression, radial basis forward and backward support vector regression, polynomial-based forward and backward support vector regression, and forward and backward random forest selection were employed. They identified primary attributes for increased atmospheric instability by warm moist air influx from regions of high sea-surface temperatures. The climate drivers detected here are indicative of increased future eastern Australian warm season thunderstorm downbursts, occurring as wet microbursts. They suggest a greater frequency and intensity of impacts on aircraft safety and operations affecting major east coast airports, such as Sydney and Brisbane, and smaller aircraft at inland regional airports in southeastern Australia. Full article
(This article belongs to the Special Issue Extreme Weather Detection, Attribution and Adaptation Design)
Show Figures

Figure 1

19 pages, 9490 KiB  
Article
Source Analysis of Ozone Pollution in Liaoyuan City’s Atmosphere Based on Machine Learning Models and HYSPLIT Clustering Method
by Xinyu Zou, Xinlong Li, Dali Wang and Ju Wang
Toxics 2025, 13(6), 500; https://doi.org/10.3390/toxics13060500 - 13 Jun 2025
Viewed by 647
Abstract
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed [...] Read more.
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed to quantify the influence of meteorological and non-meteorological factors on O3 concentrations. Finally, the HYSPLIT clustering method and CMAQ model are utilized to analyze inter-regional transport characteristics, identifying the causes of O3 pollution. The results indicate that O3 pollution in Liaoyuan exhibits a distinct seasonal pattern, with the highest concentrations found in spring and summer, peaking in the afternoon. Among the three ML models, the random forest model demonstrates the best predictive performance (R2 = 0.9043). Feature importance identifies NO2 as the primary driving factor, followed by meteorological conditions in the second quarter and land surface characteristics. Furthermore, regional transport significantly contributes to O3 pollution, with approximately 80% of air mass trajectories in heavily polluted episodes originating from adjacent industrial areas and the sea. The combined effects of transboundary precursors and O3 transport with local emissions and meteorological conditions further increase the O3 pollution level. This study highlights the need to strengthen coordinated NOX and VOCs emission reductions and enhance regional joint prevention and control strategies in China. Full article
Show Figures

Figure 1

26 pages, 3807 KiB  
Article
Evaluation of IMERG Precipitation Product Downscaling Using Nine Machine Learning Algorithms in the Qinghai Lake Basin
by Ke Lei, Lele Zhang and Liming Gao
Water 2025, 17(12), 1776; https://doi.org/10.3390/w17121776 - 13 Jun 2025
Viewed by 573
Abstract
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers [...] Read more.
High-quality precipitation data are vital for hydrological research. In regions with sparse observation stations, reliable gridded data cannot be obtained through interpolation, while the coarse resolution of satellite products fails to meet the demands of small watershed studies. Downscaling satellite-based precipitation products offers an effective solution for generating high-resolution data in such areas. Among these techniques, machine learning plays a pivotal role, with performance varying according to surface conditions and algorithmic mechanisms. Using the Qinghai Lake Basin as a case study and rain gauge observations as reference data, this research conducted a systematic comparative evaluation of nine machine learning algorithms (ANN, CLSTM, GAN, KNN, MSRLapN, RF, SVM, Transformer, and XGBoost) for downscaling IMERG precipitation products from 0.1° to 0.01° resolution. The primary objective was to identify the optimal downscaling method for the Qinghai Lake Basin by assessing spatial accuracy, seasonal performance, and residual sensitivity. Seven metrics were employed for assessment: correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), standard deviation ratio (Sigma Ratio), Kling-Gupta Efficiency (KGE), and bias. On the annual scale, KNN delivered the best overall results (KGE = 0.70, RMSE = 17.09 mm, Bias = −3.31 mm), followed by Transformer (KGE = 0.69, RMSE = 17.20 mm, Bias = −3.24 mm). During the cold season, KNN and ANN both performed well (KGE = 0.63; RMSE = 5.97 mm and 6.09 mm; Bias = −1.76 mm and −1.75 mm), with SVM ranking next (KGE = 0.63, RMSE = 6.11 mm, Bias = −1.63 mm). In the warm season, Transformer yielded the best results (KGE = 0.74, RMSE = 23.35 mm, Bias = −1.03 mm), followed closely by ANN and KNN (KGE = 0.74; RMSE = 23.38 mm and 23.57 mm; Bias = −1.08 mm and −1.03 mm, respectively). GAN consistently underperformed across all temporal scales, with annual, cold-season, and warm-season KGE values of 0.61, 0.43, and 0.68, respectively—worse than the original 0.1° IMERG product. Considering the ability to represent spatial precipitation gradients, KNN emerged as the most suitable method for IMERG downscaling in the Qinghai Lake Basin. Residual analysis revealed error concentrations along the lakeshore, and model performance declined when residuals exceeded specific thresholds—highlighting the need to account for model-specific sensitivity during correction. SHAP analysis based on ANN, KNN, SVM, and Transformer identified NDVI (0.218), longitude (0.214), and latitude (0.208) as the three most influential predictors. While longitude and latitude affect vapor transport by representing land–sea positioning, NDVI is heavily influenced by anthropogenic activities and sandy surfaces in lakeshore regions, thus limiting prediction accuracy in these areas. This work delivers a high-resolution (0.01°) precipitation dataset for the Qinghai Lake Basin and provides a practical basis for selecting suitable downscaling methods in similar environments. Full article
Show Figures

Figure 1

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1546
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

21 pages, 4104 KiB  
Article
Linkage Analysis Between Coastline Change and Both Sides of Coastal Ecological Spaces
by Xianchuang Fan, Chao Zhou, Tiejun Cui, Tong Wu, Qian Zhao and Mingming Jia
Water 2025, 17(10), 1505; https://doi.org/10.3390/w17101505 - 16 May 2025
Cited by 2 | Viewed by 401
Abstract
As the first marine economic zone, the coastal zone is a complex and active ecosystem, serving as an important resource breeding area. However, during the process of economic development, coastal zone resources have been severely exploited, leading to fragile ecology and frequent natural [...] Read more.
As the first marine economic zone, the coastal zone is a complex and active ecosystem, serving as an important resource breeding area. However, during the process of economic development, coastal zone resources have been severely exploited, leading to fragile ecology and frequent natural disasters. Therefore, it is imperative to analyze coastline changes and their correlation with coastal ecological space. Utilizing long-time series high-resolution remote sensing images, Google Earth images, and key sea area unmanned aerial vehicle (UAV) remote sensing monitoring data, this study selected the coastal zone of Ningbo City as the research area. Remote sensing interpretation mark databases for coastline and typical coastal ecological space were established. Coastline extraction was completed based on the visual discrimination method. With the help of the Modified Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI) and maximum likelihood classification, a hierarchical classification discrimination process combined with a visual discrimination method was constructed to extract long-time series coastal ecological space information. The changes and the linkage relationship between the coastlines and coastal ecological spaces were analyzed. The results show that the extraction accuracy of ground objects based on the hierarchical classification process is high, and the verification effect is improved with the help of UAV remote sensing monitoring. Through long-time sequence change monitoring, it was found that the change in coastline traffic and transportation is significant. Changes in ecological spaces, such as industrial zones, urban construction, agricultural flood wetlands and irrigation land, dominated the change in artificial shorelines, while the change in Spartina alterniflora dominated the change in biological coastlines. The change in ecological space far away from the coastline on both the land and sea sides has little influence on the coastline. The research shows that the correlation analysis between coastline and coastal ecological space provides a new perspective for coastal zone research. In the future, it can provide technical support for coastal zone protection, dynamic supervision, administration, and scientific research. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

19 pages, 19050 KiB  
Article
Runoff Changes and Their Impact on Regional Water Resources in Qinling Mountains from 1970 to 2020
by Zhaopeng Zhang, Ting Wang, Chengcheng Zhu, Zhilin Xia, Cai Wu and Keqin Duan
Sustainability 2025, 17(9), 3948; https://doi.org/10.3390/su17093948 - 28 Apr 2025
Viewed by 336
Abstract
The Qinling Mountains serve as the main water source for the Weihe River and Hanjiang River. However, the lack of sufficient observational data limits a deeper understanding and the utilization of its water resources. In this study, the Variable Infiltration Capacity (VIC) hydrological [...] Read more.
The Qinling Mountains serve as the main water source for the Weihe River and Hanjiang River. However, the lack of sufficient observational data limits a deeper understanding and the utilization of its water resources. In this study, the Variable Infiltration Capacity (VIC) hydrological model is used to quantitatively analyze runoff changes and their impacts on these rivers, based on meteorological, land use, and elevation data. By using the hydrological parameter transplantation method, a parameterized system was established to simulate runoff variations from 1970 to 2020. Results showed that the total runoff of the Qinling Mountains in Shaanxi Province ranged between 13.26 and 44.47 billion m3/year, with an average perennial runoff of 25.05 billion m3/year. Over the past 51 years, the runoff volume has exhibited a slightly decreasing trend. The average runoff at the northern foothills is 3.56 billion m3/year, which accounts for 62.4% of the natural average runoff of the Weihe River (Huaxian Station). In contrast, the average runoff at the southern foothills is 21.49 billion m3/year, which accounts for 68.1% of the natural average runoff of the Hanjiang River (Huangjiagang Station). The significant variation in water vapor transport from the western equatorial Pacific to the region via the South China Sea has been identified as the primary reason for the changes in runoff. This quantitative study of runoff changes in the Qinling Mountains clarifies their influence on the Weihe River and the Hanjiang River and will provide a basis for the rational usage of ecological water. Full article
Show Figures

Graphical abstract

26 pages, 8828 KiB  
Article
Optimizing Scheduled Train Service for Seaport-Hinterland Corridors: A Time-Space-State Network Approach
by Yueyi Li and Xiaodong Zhang
Mathematics 2025, 13(8), 1302; https://doi.org/10.3390/math13081302 - 16 Apr 2025
Viewed by 497
Abstract
Effective cooperation between railways and seaports is crucial for enhancing the efficiency of seaport-hinterland corridors (SHC) . However, existing challenges stem from fragmented decision-making across seaports, rail operators, and inland cities, leading to asynchronous routing and scheduling, suboptimal service coverage, and delays. Addressing [...] Read more.
Effective cooperation between railways and seaports is crucial for enhancing the efficiency of seaport-hinterland corridors (SHC) . However, existing challenges stem from fragmented decision-making across seaports, rail operators, and inland cities, leading to asynchronous routing and scheduling, suboptimal service coverage, and delays. Addressing these issues requires a comprehensive approach to scheduled train service design from a network-based perspective. To tackle the challenges in SHCs, we propose a targeted networked solution that integrates multimodal coordination and resource optimization. The proposed framework is built upon a time-space-state network model, incorporating service selection, timing, and frequency decisions. Furthermore, an improved adaptive large neighborhood search (ALNS) algorithm is developed to enhance computational efficiency and solution quality. The proposed solution is applied to a representative land–sea transport corridor to assess its effectiveness. Compared to traditional operational strategies, our optimized approach yields a 7.6% reduction in transportation costs and a 56.6% decrease in average cargo collection time, highlighting the advantages of networked service coordination. The findings underscore the potential of network-based operational strategies in reducing costs and enhancing efficiency, particularly under unbalanced demand distributions. Additionally, effective demand management policies and targeted infrastructure capacity enhancements at bottleneck points may play a crucial role in practical implementations. Full article
(This article belongs to the Special Issue Mathematical Optimization in Transportation Engineering: 2nd Edition)
Show Figures

Figure 1

Back to TopTop