Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = screw theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3374 KB  
Article
Dynamic Reconstruction of Degrees of Freedom and Coupling Control in 3RPUR Metamorphic Parallel Mechanism
by Shuwei Qu, Chaochao Li, Hongfu Wang, Zhike Qian, Shengquan Feng, Qianyao Wang, Tiong Sieh Kiong, Ewe Lay Sheng, Ruiqin Li and Wei Yao
Machines 2025, 13(10), 894; https://doi.org/10.3390/machines13100894 - 30 Sep 2025
Viewed by 224
Abstract
This study investigates the 3RPUR (3-Revolute–Prismatic–Universal–Revolute) variable parallel mechanism, employing screw theory and linear geometry to analyze the geometric relationships and constraint characteristics of the RPUR (Revolute–Prismatic–Universal–Revolute) limb kinematic pairs. The findings reveal that the constraint moment in the always remains perpendicular to [...] Read more.
This study investigates the 3RPUR (3-Revolute–Prismatic–Universal–Revolute) variable parallel mechanism, employing screw theory and linear geometry to analyze the geometric relationships and constraint characteristics of the RPUR (Revolute–Prismatic–Universal–Revolute) limb kinematic pairs. The findings reveal that the constraint moment in the always remains perpendicular to the two axes of the U pair, forming an equivalent plane. Through the locking/unlocking mechanism of universal joints (U pair), the mechanism achieves dynamic degree-of-freedom reconstruction, enabling seamless switching between three translational (3T) and three translational-one-rotation (3T1R) motion modes. The continuity between motion and degrees of freedom during the variable cell process is demonstrated. This research reveals a strict 1:1 linear coupling between the rotational angle of the moving platform around the Z-axis and the U pair’s rotation angle under 3T1R mode. Simulation experiments validate the feasibility and coupling characteristics of both motion modes, providing theoretical and technical support for this mechanism’s adaptation to complex working conditions in mobile robotics applications, particularly where reconfigurable parallel mechanisms are required for multi-task flexibility. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 4392 KB  
Article
Research on Identification of Minimum Parameter Set in Robot Dynamics and Excitation Strategy
by Zhiqiang Wang, Jianhai Han, Xiangpan Li, Bingjing Guo and Lewei Lu
Sensors 2025, 25(18), 5749; https://doi.org/10.3390/s25185749 - 15 Sep 2025
Viewed by 463
Abstract
The minimal parameter set is fundamental to robot dynamic identification, enabling efficient and identifiable modeling for control and simulation. In this paper, the Newton–Euler method is employed to formulate the robot dynamics. By leveraging screw theory, the model is expressed in a matrix [...] Read more.
The minimal parameter set is fundamental to robot dynamic identification, enabling efficient and identifiable modeling for control and simulation. In this paper, the Newton–Euler method is employed to formulate the robot dynamics. By leveraging screw theory, the model is expressed in a matrix form that is linear with respect to the robot’s inertial parameters. The Kronecker product is then applied to transform the matrix equation into an equivalent vector–matrix representation. Subsequently, full-rank decomposition is used to reduce the dimensionality of the parameter vector, resulting in the minimal dynamic parameter set of the robot. Following this, excitation signals are sequentially applied to each joint, starting from the end-effector and progressing toward the base, enabling a stepwise identification of the minimal parameter set using the least-squares method. The identified minimal parameters are then incorporated into the mass matrix of the dynamic model, enabling the implementation of forward dynamic simulation. Experimental validation is conducted on a planar 3R robot. The results demonstrate that the sequential excitation strategy accurately identifies dynamic parameters while ensuring the robot’s safety. Furthermore, the forward dynamic simulation closely replicates the kinematic behavior of the actual robot. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

13 pages, 265 KB  
Article
Multidual Complex Numbers and the Hyperholomorphicity of Multidual Complex-Valued Functions
by Ji Eun Kim
Axioms 2025, 14(9), 683; https://doi.org/10.3390/axioms14090683 - 5 Sep 2025
Viewed by 424
Abstract
We develop a rigorous algebraic–analytic framework for multidual complex numbers DCn within the setting of Clifford analysis and establish a comprehensive theory of hyperholomorphic multidual complex-valued functions. Our main contributions are (i) a fully coupled multidual Cauchy–Riemann system derived from the Dirac [...] Read more.
We develop a rigorous algebraic–analytic framework for multidual complex numbers DCn within the setting of Clifford analysis and establish a comprehensive theory of hyperholomorphic multidual complex-valued functions. Our main contributions are (i) a fully coupled multidual Cauchy–Riemann system derived from the Dirac operator, yielding precise differentiability criteria; (ii) generalized conjugation laws and the associated norms that clarify metric and geometric structure; and (iii) explicit operator and kernel constructions—including generalized Cauchy kernels and Borel–Pompeiu-type formulas—that produce new representation theorems and regularity results. We further provide matrix–exponential and functional calculus representations tailored to DCn, which unify algebraic and analytic viewpoints and facilitate computation. The theory is illustrated through a portfolio of examples (polynomials, rational maps on invertible sets, exponentials, and compositions) and a solvable multidual boundary value problem. Connections to applications are made explicit via higher-order automatic differentiation (using nilpotent infinitesimals) and links to kinematics and screw theory, highlighting how multidual analysis expands classical holomorphic paradigms to richer, nilpotent-augmented coordinate systems. Our results refine and extend prior work on dual/multidual numbers and situate multidual hyperholomorphicity within modern Clifford analysis. We close with a concise summary of notation and a set of concrete open problems to guide further development. Full article
(This article belongs to the Special Issue Mathematical Analysis and Applications IV)
Show Figures

Figure 1

12 pages, 1622 KB  
Article
Pitch Invariance Reveals Skill-Specific Coordination in Human Movement: A Screw-Theoretic Reanalysis of Golf Swing Dynamics
by Wangdo Kim
J. Funct. Morphol. Kinesiol. 2025, 10(3), 315; https://doi.org/10.3390/jfmk10030315 - 15 Aug 2025
Viewed by 725
Abstract
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor [...] Read more.
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor coordination. Methods: We reanalyzed a validated motion capture dataset involving a proficient and a novice female golfer. ISA trajectories and pitch values were computed from 3D marker data, and synchronized with vertical ground reaction force (GRF) signals collected via force plate. Results: The proficient golfer exhibited tightly bounded pitch oscillations (approximately ±0.0025 cm/rad) that were temporally aligned with a single, well-defined GRF peak. In contrast, the novice showed irregular pitch fluctuations (−0.025 to +0.01 cm/rad) and asynchronous GRF patterns with multiple peaks. Conclusions: These findings demonstrate that pitch can serve as a biomechanical indicator of skilled performance, reflecting the degree of intersegmental coordination and force timing. Screw theory thus offers a rigorous framework for evaluating movement efficiency in sport and rehabilitation contexts. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

25 pages, 12944 KB  
Article
A Step-by-Step Decoupling and Compensation Method for the Volumetric Error for a Gear Grinding Machine
by Kai Xu, Hao Huang, Rulong Tan, Zhiyu Ding and Xinyuan Wei
Actuators 2025, 14(8), 374; https://doi.org/10.3390/act14080374 - 26 Jul 2025
Viewed by 463
Abstract
Volumetric error decoupling is a critical prerequisite for effective error compensation. In this paper, the forward volumetric error model is established using the screw theory. Additionally, the Jacobian matrix based on the product of exponential is derived to construct the linear relationship between [...] Read more.
Volumetric error decoupling is a critical prerequisite for effective error compensation. In this paper, the forward volumetric error model is established using the screw theory. Additionally, the Jacobian matrix based on the product of exponential is derived to construct the linear relationship between the volumetric error and the axis motion and decouple the volumetric error model. To address the limitation of compensation motion, a step-by-step decoupling method is proposed, where attitude and position errors are compensated sequentially. After detecting the actual geometric errors of the grinding machine, the volumetric error can be determined, and the compensation motion commands for each axis are calculated to correct the volumetric error. The simulation result shows that the mean value of the comprehensive error ranges can be reduced from 19.7 μm to 1.8 μm, demonstrating the effectiveness of the proposed method. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

25 pages, 1707 KB  
Article
The Kinematics of a New Schönflies Motion Generator Parallel Manipulator Using Screw Theory
by Jaime Gallardo-Alvarado, Horacio Orozco-Mendoza, Ramon Rodriguez-Castro, Alvaro Sanchez-Rodriguez and Luis A. Alcaraz-Caracheo
Mathematics 2025, 13(14), 2291; https://doi.org/10.3390/math13142291 - 16 Jul 2025
Viewed by 516
Abstract
In this work, an innovative Schönflies motion generator manipulator is introduced, featuring a parallel architecture composed of serial chains with mixed degrees of freedom. Fundamental kinematic aspects essential to any manipulator such as displacement, velocity, acceleration, and singularity analyses are thoroughly addressed. Screw [...] Read more.
In this work, an innovative Schönflies motion generator manipulator is introduced, featuring a parallel architecture composed of serial chains with mixed degrees of freedom. Fundamental kinematic aspects essential to any manipulator such as displacement, velocity, acceleration, and singularity analyses are thoroughly addressed. Screw theory is employed to derive compact input–output expressions for velocity and acceleration, leveraging the properties of reciprocal screws and lines associated with the constrained degrees of freedom in the parallel manipulator. A key advantage of the proposed design is its near-complete avoidance of singular configurations, which significantly enhances its applicability in robotic manipulation. Numerical examples are provided to validate the theoretical results, with corroboration from specialized tools such as ADAMS™ software and data fitting algorithms. These results confirm the reliability and robustness of the developed kinematic analysis approach. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

21 pages, 4453 KB  
Article
Accuracy Analysis and Synthesis of Planar Mechanism for Antenna Based on Screw Theory and Geometric Coordination
by Qiying Li, Jing Zhang, Miao Yu, Chuang Shi, Yaliang Dou, Hongwei Guo and Rongqiang Liu
Actuators 2025, 14(6), 293; https://doi.org/10.3390/act14060293 - 16 Jun 2025
Cited by 1 | Viewed by 415
Abstract
To address the deployment accuracy issues of multi-frequency band reflector antennas, this study takes a hexagonal prism modular deployable antenna as an example and proposes an accuracy design method. This paper proposes a screw-theory-based sub-chain precision analysis method. This method constructs a virtual [...] Read more.
To address the deployment accuracy issues of multi-frequency band reflector antennas, this study takes a hexagonal prism modular deployable antenna as an example and proposes an accuracy design method. This paper proposes a screw-theory-based sub-chain precision analysis method. This method constructs a virtual screw model of rod length errors and hinge gap errors. Based on geometric relationships, a multi-loop point position error model is established, and accuracy surfaces considering rod length errors and hinge gap are output using MATLAB R2024b. By outputting the relationship curves of single-rod errors relative to point errors, the linearized influence law of individual rods on precision is further elucidated. Simulation results demonstrate the reliability of the error modeling theory. Based on the established cost-effective precision model and the minimum point error, which is obtained by using the numerical iterative method, the optimal solution for error parameters is obtained. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

27 pages, 3222 KB  
Article
DNN-Augmented Kinematically Decoupled Three-DoF Origami Parallel Robot for High-Precision Heave and Tilt Control
by Gaokun Shi, Hassen Nigatu, Zhijian Wang and Yongsheng Huang
Actuators 2025, 14(6), 291; https://doi.org/10.3390/act14060291 - 13 Jun 2025
Viewed by 587
Abstract
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic [...] Read more.
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic motion. The elimination of parasitic motion is critical, allowing the use of this device in applications requiring high precision. The robot’s key kinematic features include a parasitic motion-free workspace, large orientational capability, compactness, decoupled motion, simplicity in manufacturing and control, mechanically pivoted rotation of the moving platform, and scalability. These characteristics make the robot particularly well-suited for micromanipulation tasks in both manufacturing and medical applications. In manufacturing, it can enable high-precision operations such as micro-assembly, optical fiber alignment, and semiconductor packaging. In medicine, it can support delicate procedures such as microsurgery and cell injection, where sub-micron accuracy, high stability, and precise motion decoupling are critical requirements. The use of nearly identical limbs simplifies the architecture, facilitating easier design, manufacture, and control. The kinematics of the robot is analyzed using reciprocal screw theory for an analytic constraint-embedded Jacobian. To further enhance operational accuracy and robustness, particularly in the presence of uncertainties or disturbances, a deep neural network (DNN)-based state estimation method is integrated, providing accurate forward kinematic predictions. The construction of the robot utilizes origami-inspired limbs and joints, enhancing miniaturization, manufacturing simplicity, and foldability. Although capable of being scaled up or further miniaturized, its current size is 66 mm × 68 mm × 100 mm. The robot’s moving platform is theoretically and experimentally proven to be free of parasitic motion and possesses a large orientation capability. Its unique features are demonstrated, and its potential for high-precision applications is thoroughly discussed. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 1463 KB  
Article
An Autonomous Fluoroscopic Imaging System for Catheter Insertions by Bilateral Control Scheme: A Numerical Simulation Study
by Gregory Y. Ward, Dezhi Sun and Kenan Niu
Machines 2025, 13(6), 498; https://doi.org/10.3390/machines13060498 - 6 Jun 2025
Viewed by 1090
Abstract
This study presents a bilateral control architecture that links fluoroscopic image feedback directly to the kinematics of a tendon-driven, three-joint robotic catheter and a 3-DoF motorised C-arm, intending to preserve optimal imaging geometry during autonomous catheter insertion and thereby mitigating radiation exposure. Forward [...] Read more.
This study presents a bilateral control architecture that links fluoroscopic image feedback directly to the kinematics of a tendon-driven, three-joint robotic catheter and a 3-DoF motorised C-arm, intending to preserve optimal imaging geometry during autonomous catheter insertion and thereby mitigating radiation exposure. Forward and inverse kinematics for both manipulators were derived via screw theory and geometric analysis, while a calibrated projection model generated synthetic X-ray images whose catheter bending angles were extracted through intensity thresholding, segmentation, skeletonisation, and least-squares circle fitting. The estimated angle fed a one-dimensional extremum-seeking routine that rotated the C-arm about its third axis until the apparent bending angle peaked, signalling an orthogonal view of the catheter’s bending plane. Implemented in a physics-based simulator, the framework achieved inverse-kinematic errors below 0.20% for target angles between 20° and 90°, with accuracy decreasing to 3.00% at 10°. The image-based angle estimator maintained a root-mean-square error 3% across most of the same range, rising to 6.4% at 10°. The C-arm search consistently located the optimal perspective, and the combined controller steered the catheter tip along a predefined aortic path without collision. These results demonstrate sub-degree angular accuracy under idealised, noise-free conditions and validate real-time coupling of image guidance to dual-manipulator motion; forthcoming work will introduce realistic image noise, refined catheter mechanics, and hardware-in-the-loop testing to confirm radiation-dose and workflow benefits. Full article
Show Figures

Figure 1

23 pages, 2070 KB  
Review
Review and Prospects of Numerical Simulation Research on Internal Flow and Performance Optimization of Twin-Screw Compressors
by Yiqiao Li, Xing Zhao, Shan Liu, Chen Wang, Shenqiang Shen and Yali Guo
Energies 2025, 18(10), 2608; https://doi.org/10.3390/en18102608 - 18 May 2025
Cited by 2 | Viewed by 1630
Abstract
The twin-screw compressor exhibits significant application value in the fields of energy, refrigeration, construction, transportation, and related domains. Owing to the benefits of short cycles and low costs, numerical simulation technology has attracted increasing attention. Over recent years, the numerical simulation technology for [...] Read more.
The twin-screw compressor exhibits significant application value in the fields of energy, refrigeration, construction, transportation, and related domains. Owing to the benefits of short cycles and low costs, numerical simulation technology has attracted increasing attention. Over recent years, the numerical simulation technology for twin-screw compressors has advanced rapidly, and many important results have been achieved. This paper comprehensively discusses the modeling method of twin-screw compressors, the meshing technique, advances in numerical simulation of internal flow, the research status of numerical simulation research regarding structural operating conditions, and performance optimization. The synergistic potential between these technologies for improving the performance and efficiency of twin-screw compressors is investigated. The numerical simulation research progress of the internal flow and performance optimization of twin-screw compressors is systematically reviewed. Against the background of global energy saving and carbon reduction, this paper offers readers an in-depth understanding of the technical challenges, research hotspots, and development directions in the related field. It fills the relevant gaps within the current literature. The results highlight the role and potential of deep exploration of the intrinsic relationship between local complex flow characteristics and structural optimization for the performance optimization of twin-screw compressors. For conforming to actual conditions and pertinency, mathematical models such as multiphase flow and turbulence models should be further improved. The current research results remain constrained by the lack of comprehensive consideration of multi-field coupling. In the future development of energy-saving and environment-friendly high-performance twin-screw compressors, numerical simulation research should be developed for high precision, multi-physical field coupling, influencing mechanism research, energy-saving, and environmental friendliness, and intelligence. It establishes a theoretical foundation for further enhancing the performance and mechanism theory of twin-screw compressors. Full article
Show Figures

Figure 1

34 pages, 4856 KB  
Article
A Symmetry-Based Computational Framework for Motor Skill Optimization: Integrating Screw Theory and Ecological Perception
by Wangdo Kim and Wanda Ottes
Symmetry 2025, 17(5), 715; https://doi.org/10.3390/sym17050715 - 7 May 2025
Viewed by 1115
Abstract
This study introduces a computational framework for understanding the symmetry and asymmetry of human movement by integrating Laban Movement Analysis (LMA). By conceptualizing movement refinement as a structured computational process, we model the golf swing as a series of state transitions where perceptual [...] Read more.
This study introduces a computational framework for understanding the symmetry and asymmetry of human movement by integrating Laban Movement Analysis (LMA). By conceptualizing movement refinement as a structured computational process, we model the golf swing as a series of state transitions where perceptual invariants guide biomechanical optimization. The golf club’s motion is analyzed using the instantaneous screw axis (ISA) and inertia tensor revealing how expert golfers dynamically adjust movement by detecting and responding to invariant biomechanical structures. This approach extends Gibson’s ecological theory by proposing that movement execution follows an iterative optimization process analogous to a Turing machine updating its states. Furthermore, we explore the role of symmetry in motor control by aligning Laban’s X-scale with structured computational transitions, demonstrating how movement coordination emerges from dynamically balanced affordance–action couplings. This insight gained from the study suggests that AI-driven sports training and rehabilitation can leverage symmetry-based computational principles to enhance motion learning and real-time adaptation in virtual and physical environments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 61314 KB  
Article
The Mobility Analysis of a 3-CCR Parallel Manipulator with Three Screw-Type Terminal Constraints
by Bo Hu and Peng Bai
Appl. Sci. 2025, 15(7), 3572; https://doi.org/10.3390/app15073572 - 25 Mar 2025
Viewed by 446
Abstract
In the traditional three DOFs (degrees of freedom) PMs (parallel manipulators), the terminal constraints are constraint forces and torques. A recent study showed that the terminal constraints of some three DOFs PMs are screw-type constraints. However, determining the mobility of this class of [...] Read more.
In the traditional three DOFs (degrees of freedom) PMs (parallel manipulators), the terminal constraints are constraint forces and torques. A recent study showed that the terminal constraints of some three DOFs PMs are screw-type constraints. However, determining the mobility of this class of PMs remains challenging. In order to solve the above problems, this paper discusses the mobility of PMs having independent screw-type terminal constraints by introducing the principal screws. Firstly, taking a 3-CCR (C: cylindrical joint, R: revolute joint) PM as an example, the problem of identifying the mobility of PMs having screw-type constraints is proposed. Secondly, combined with the analytical expression of the terminal constraint and theory of quadratic curve decomposition, the mobility determination approach is given. Finally, a numerical example for solving the principal screws and determining the mobility of the 3-CCR PM is provided. Furthermore, the axodes of four poses with three helical DOFs and four poses with three rotational DOFs were plotted. The results show that there is a special phenomenon in which three rotational DOFs and three helical DOFs exist alternately in the workspace of this PM. This paper provides a method for directly identifying the independent helical DOFs in parallel manipulators and for studying the distribution of helical DOFs within the workspace. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

14 pages, 8606 KB  
Article
Predicting the Fatigue Life of a Commercial Vehicle X-EPS Steering Gear with a Rigid–Flexible Coupling Dynamics Method
by Feng Chen, Zhiquan Fu, Baoxiang Qiu, Chenfeng Si, Qizhang Zhu, Chenli Feng, Xiaoqing Sun, Huafang Liang and Lai Yang
Machines 2025, 13(3), 218; https://doi.org/10.3390/machines13030218 - 7 Mar 2025
Cited by 2 | Viewed by 964
Abstract
Commercial X-EPS steering gears are characterized by high torque output, torque—with increasing capabilities, high reliability, and excellent handling precision. Among them, the screw–nut pair in the steering gear is subjected to complex working loads, and its raceways are prone to fatigue failure. To [...] Read more.
Commercial X-EPS steering gears are characterized by high torque output, torque—with increasing capabilities, high reliability, and excellent handling precision. Among them, the screw–nut pair in the steering gear is subjected to complex working loads, and its raceways are prone to fatigue failure. To more accurately and effectively predict the fatigue life of the screw–nut pair in the steering gear, a method for dynamic simulation and fatigue life prediction of commercial X-EPS steering gears is proposed based on virtual prototyping technology and finite element theory. That is, a rigid–flexible coupling dynamic model of the X-EPS steering gear is established to obtain the load spectra of the screw and nut, and a finite-element static model is also established. Then, combined with the material S-N curve, the fatigue life is predicted through the NOCDE fatigue “five-block diagram”. The research results show that the screw and nut raceways are the key components prone to fatigue failure in the steering gear. The minimum numbers of fatigue life cycles are 1.028 × 105 times and 2.9695 × 105 times, respectively. Subsequently, a fatigue life bench test was conducted for verification. The results show that the error between the fatigue life analysis model of the XEPS recirculating ball steering gear and the test is less than 5%, meeting the requirements of the fatigue life test standard and design standard. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

11 pages, 5586 KB  
Article
The Tribological Reduction Mechanism of the Rubber Hexagonal Surface Texture of the Screw Pump Stator
by Zhongxian Hao, Songbo Wei, Deli Jia, Qinghai Yang, Xinglong Niu, Gang Zheng, Shijia Zhu and Xinfu Liu
Lubricants 2025, 13(2), 52; https://doi.org/10.3390/lubricants13020052 - 27 Jan 2025
Cited by 1 | Viewed by 1168
Abstract
This paper develops a composite weaving structure, combining hexagonal micro-bumps and hexagonal grooves, in the design of the rubber surface of the screw pump. This allows us to solve the problem of high torque and fast wear of the rubber stator during the [...] Read more.
This paper develops a composite weaving structure, combining hexagonal micro-bumps and hexagonal grooves, in the design of the rubber surface of the screw pump. This allows us to solve the problem of high torque and fast wear of the rubber stator during the operation of screw pump lifting oil recovery, based on the bionic hexagonal surface structure, traditional surface damping principle, and fluid dynamic pressure lubrication theory. Finite element analysis is first conducted to quantitatively analyze the impacts of the parallel side distance, groove width, and groove depth on the surface flow field and wall pressure field of the composite hexagonal structure. Based on the simulation law, the rubber surface laser structure is then designed and prepared by nanosecond laser processing. Afterward, tribological experiments are conducted under the condition of long-term immersion in the actual extraction fluid of shale oil wells. This aims at simulating the actual downhole oil production conditions and quantitatively studying the impact of the size of the composite hexagonal structure on the lubrication characteristics of the friction part of the stationary rotor, as well as the effect of abrasion reduction. The results show that, within the simulation range, the smaller the parallel side distance, the higher the load-carrying capacity. In addition, the hexagonal weave with a parallel side distance of 3 mm has a higher wall load carrying capacity than that with distances of 4 mm and 5 mm. When the groove width is equal to 0.4 mm, the oil film load carrying capacity is higher than that in the case of 0.2 mm. When the groove depth increases, the oil film pressure first increases and then stabilizes or decreases after reaching 0.3 mm. In the hexagonal weave, the friction ratio of the rotor is equal to 0.4 mm. In the tribological experiment of hexagonal weave, the smaller the parallel side distance, the smaller the friction coefficient, and the 0.5 mm weave has the highest performance. Full article
Show Figures

Figure 1

21 pages, 10901 KB  
Article
Kinematics and Performance Analysis of the 2T1R/1T2R Reconfigurable Decoupled Parallel Mechanism
by Juan Liu, Ruiqin Li, Yuan Wang, Lei Zhang and Fengping Ning
Appl. Sci. 2025, 15(3), 1134; https://doi.org/10.3390/app15031134 - 23 Jan 2025
Cited by 3 | Viewed by 1148
Abstract
Based on the reconfigurable revolute (rR) pair, a reconfigurable decoupled parallel mechanism is proposed, which is composed of three serial chains. Traditional serial chain 1 and 2 are of types PRRR and URC, respectively, where P denotes a prismatic pair, R denotes a [...] Read more.
Based on the reconfigurable revolute (rR) pair, a reconfigurable decoupled parallel mechanism is proposed, which is composed of three serial chains. Traditional serial chain 1 and 2 are of types PRRR and URC, respectively, where P denotes a prismatic pair, R denotes a revolute pair, U denotes a universal pair, and C denotes a cylindric pair. The reconfigurable serial chain 3 can switch between PRRP and RRPP configurations by changing the axis of reconfigurable pair rR, thus enabling the parallel mechanism to switch between two motion modes of 2T1R (where R represents rotation and T represents translation) and 1T2R. By investigating the relationship between the mechanism’s motion output, input, and the Jacobian matrix, it is verified that the parallel mechanism is a completely decoupled mechanism in the 2T1R motion mode and a partially decoupled mechanism in the 1R2T motion mode. Finally, the performance indexes of the mechanism in both motion modes were discussed using screw theory, and the dimensions of the mechanism were optimized in scale, thereby enhancing the motion performance of the parallel mechanism. The results indicate that the decoupling characteristics of the reconfigurable parallel mechanism have significant advantages in both 2T1R and 1T2R motion modes, providing a theoretical basis for the study of reconfigurable and decoupled parallel mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop