Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,035)

Search Parameters:
Keywords = scientific collections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4137 KiB  
Review
The Genus Anisosciadium: A Comprehensive Review of Taxonomic Aspects, Traditional Uses, Phytochemistry, and Biological Activities
by Malek Besbes, Assia Hamdi, Hassiba Chahdoura, Abeer Ayed Alshammari, Wasimah B. Al-Shammari, Dalal AlArdan and Hichem Ben Jannet
Processes 2025, 13(8), 2475; https://doi.org/10.3390/pr13082475 - 5 Aug 2025
Abstract
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. [...] Read more.
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. A comprehensive compilation of data was conducted using major databases such as Google Scholar, Research Gate, Web of Science, Scopus, and ScienceDirect. In this review, we collected and organized the available information of identified compounds from different species of the genus Anisosciadium, covering the literature from 2003 to 2024. In total, 64 phytoconstituents were detected. The findings suggest that the traditional therapeutic properties of Anisosciadium are well supported by the reported pharmacological activities from previous studies. Notably, these studies highlight its antioxidant, antibacterial, and cytotoxic effects, emphasizing the potential of this genus in the development of new therapeutic agents. Nonetheless, the lack of comparative studies among Anisosciadium species and the scarcity of in vivo studies and clinical trials limit the full realization of its therapeutic potential. Specifically, comparative studies could be crucial in identifying species with unique chemical profiles and understanding how variations in secondary metabolite compositions may influence their pharmacological activities. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

20 pages, 4580 KiB  
Article
Increased Oxygen Treatment in the Fermentation Process Improves the Taste and Liquor Color Qualities of Black Tea
by Xinfeng Jiang, Xin Lei, Chen Li, Lixian Wang, Xiaoling Wang and Heyuan Jiang
Foods 2025, 14(15), 2736; https://doi.org/10.3390/foods14152736 - 5 Aug 2025
Abstract
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation [...] Read more.
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation on the flavor attributes and chemical properties of Congou black tea. Fresh tea leaves (variety “Fuyun 6”) were subjected to four oxygen treatments: 0 h (CK), 1 h (TY-1h), 2 h (TY-2h), and 3 h (TY-3h), with oxygen supplied at 8.0 L/min. Sensory evaluation revealed that oxygen-treated samples exhibited tighter and deeper-colored leaves, a redder liquor, fuller taste, and a sweeter fragrance compared with CK. Chromatic analysis showed significant increases in redness (a*) and luminance (L*), alongside reduced yellowness (b*), indicating enhanced liquor color. Chemical analyses demonstrated elevated levels of TFs, TRs, and TBs in oxygen treatments, with TRs showing the most pronounced increase. Non-targeted metabolomics identified 2318 non-volatile and 761 volatile metabolites, highlighting upregulated flavonoids, phenolic acids, and lipids, and downregulated catechins and tannins, which collectively contributed to improved taste and aroma. Optimal results were achieved with 2–3 h of oxygen treatment, balancing pigment formation and sensory quality. These findings can provide a scientific basis for optimizing oxygen conditions in black tea fermentation to improve product quality. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

26 pages, 3287 KiB  
Review
Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential
by Manuela Vitoria Nascimento da Silva, Andrei da Silva Alexandre and Cecilia Veronica Nunez
Microorganisms 2025, 13(8), 1826; https://doi.org/10.3390/microorganisms13081826 - 5 Aug 2025
Abstract
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, [...] Read more.
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, stand out as high-yielding producers of bioactive secondary metabolites. Given their scientific and economic relevance, this review critically examines endophytic Colletotrichum species, focusing on the chemical diversity and biological activities of the metabolites they produce, including antibacterial, antifungal, and cytotoxic activity against cancer cells, and antioxidant properties. This integrative review was conducted through a structured search of scientific databases, from which 39 relevant studies were selected, highlighting the chemical and functional diversity of these compounds. The analyzed literature emphasizes their potential applications in pharmaceutical, agricultural, and industrial sectors. Collectively, these findings reinforce the promising biotechnological potential of Colletotrichum endophytes not only as sources of bioactive metabolites but also as agents involved in ecological regulation, plant health promotion, and sustainable production systems. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

27 pages, 884 KiB  
Review
Harnessing Seed Endophytic Microbiomes: A Hidden Treasure for Enhancing Sustainable Agriculture
by Ayomide Emmanuel Fadiji, Adedayo Ayodeji Lanrewaju, Iyabo Olunike Omomowo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(15), 2421; https://doi.org/10.3390/plants14152421 - 4 Aug 2025
Abstract
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria [...] Read more.
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria commonly colonize plant tissues such as stems, roots, and leaves, seed-associated endophytes generally exhibit lower diversity compared to those in other plant compartments. Nevertheless, seed-borne microbes are of particular importance, as they represent the initial microbial inoculum that influences a plant’s critical early developmental stages. The seed endophytic microbiome is of particular interest due to its potential for vertical transmission and its capacity to produce a broad array of phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites. Collectively, these functions contribute to enhanced plant biomass and yield, especially under abiotic and biotic stress conditions. Despite their multifaceted roles, seed microbiomes remain underexplored in plant ecology, and their potential benefits are not yet fully understood. This review highlights recent advances in our understanding of the diversity, community composition, mechanisms of action, and agricultural significance of seed endophytic microbes. Furthermore, it synthesizes current insights into how seed endophytes promote plant health and productivity and proposes future research directions to fully harness their potential in sustainable agriculture. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

17 pages, 1768 KiB  
Article
Quality Status and Skin-Related Functional Properties of Traditional Korean Fermented Vinegars
by Hwan Hee Yu, So-Won Jang, Eungyeong Kim, Jong-Chan Kim and Mi Jang
Foods 2025, 14(15), 2728; https://doi.org/10.3390/foods14152728 - 4 Aug 2025
Abstract
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to [...] Read more.
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to functional properties. Fifteen traditional Korean grain vinegars and fourteen persimmon vinegars were collected; distilled white vinegar was used as the control group. Grain vinegars showed 3.57–100.00% collagenase and 62.38–77.03% tyrosinase inhibition; persimmon vinegars showed 0.00–94.50% and 30.75–71.54%, respectively. To determine which quality characteristics are high in fermented vinegar with high skin-related functionality, a correlation analysis was conducted. In grain vinegar, total nitrogen and free amino acids were strongly associated with skin-related functionalities. In persimmon vinegar, organic acids, particularly lactic acid, were correlated with skin-related effects; thus, both demonstrated the importance of quality assessment. Insights into relationships between the composition and functional properties of fermented vinegar were gained. Specific quality markers for managing skin-related functionality of Korean fermented vinegar established a scientific basis for standardizing quality control, developing high-value functional vinegar products, and ensuring consistent product quality. Full article
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

21 pages, 10823 KiB  
Article
Exploring How Micro-Computed Tomography Imaging Technology Impacts the Preservation of Paleontological Heritage
by Michela Amendola, Andrea Barucci, Andrea Baucon, Chiara Zini, Claudia Borrelli, Simone Casati, Andrea di Cencio, Sandra Fiore, Salvatore Siano, Juri Agresti, Carlos Neto de Carvalho, Federico Bernardini, Girolamo Lo Russo, Alberto Collareta and Giulia Bosio
Heritage 2025, 8(8), 310; https://doi.org/10.3390/heritage8080310 - 2 Aug 2025
Viewed by 250
Abstract
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This [...] Read more.
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This work explores the application of micro-CT across three critical areas of museum practice: sample virtualization, restoration assessment, and the analysis of fossil specimens. Specifically, micro-CT scanning was applied to fossils stored in the G.A.M.P.S. collection (Scandicci, Italy), enabling the creation of highly detailed non-invasive 3D models for digital archiving and virtual exhibitions. At the Opificio delle Pietre Dure in Florence, micro-CT was employed to evaluate fossil bone restoration treatments, focusing on the internal impact of menthol as a consolidant and its effects on the structural integrity of the material. Furthermore, micro-CT was utilized to investigate a sealed bee preserved in its cocoon within a paleosol in Costa Vicentina (Portugal), providing unprecedented insights into its internal anatomy and state of preservation, all while maintaining the integrity of the specimen. The results of this study underscore the versatility of micro-CT as a powerful non-destructive tool for advancing the fields of conservation, restoration, and scientific analysis of cultural and natural heritage. By integrating high-resolution imaging with both virtual and hands-on conservation strategies, micro-CT empowers museums to enhance research capabilities, improve preservation methodologies, and foster greater public engagement with their collections. Full article
Show Figures

Figure 1

30 pages, 1538 KiB  
Review
Circular Economy in the Construction Sector in Materials, Processes, and Case Studies: Research Review
by Alicja Krajewska and Monika Siewczyńska
Sustainability 2025, 17(15), 7029; https://doi.org/10.3390/su17157029 - 2 Aug 2025
Viewed by 348
Abstract
Closed-loop processes can help reduce the environmental impact of the construction sector. Despite its growing popularity, the reuse of materials is still not a common practice. There are many studies available on material processing, design processes, and case studies, but the opportunities and [...] Read more.
Closed-loop processes can help reduce the environmental impact of the construction sector. Despite its growing popularity, the reuse of materials is still not a common practice. There are many studies available on material processing, design processes, and case studies, but the opportunities and challenges in this area have not been identified. Through a review of the scientific literature, including articles published in peer-reviewed journals, this study aims to organise the information collected in the form of an article and identify areas that require further research and expansion. When the articles are divided into the three groups mentioned above, the barriers and benefits of the research already carried out have been identified. The tools used in the research or processes were identified to highlight good practices that are worth replicating in the future. The challenges that commonly arose, the links between them, and their causes were also identified. Full article
Show Figures

Figure 1

50 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 (registering DOI) - 1 Aug 2025
Viewed by 72
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

20 pages, 4472 KiB  
Article
Exploring Scientific Collaboration Patterns from the Perspective of Disciplinary Difference: Evidence from Scientific Literature Data
by Jun Zhang, Shengbo Liu and Yifei Wang
Big Data Cogn. Comput. 2025, 9(8), 201; https://doi.org/10.3390/bdcc9080201 - 1 Aug 2025
Viewed by 158
Abstract
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their [...] Read more.
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their underlying mechanisms. Data were collected from the China National Knowledge Infrastructure (CNKI) database, covering papers from four disciplines: mathematics, mechanical engineering, philosophy, and sociology. Using social network analysis, we examined core network metrics (degree centrality, neighbor connectivity, clustering coefficient) in collaboration networks, analyzed collaboration patterns across scholars of different academic ages, and compared the academic age distribution of collaborators and network characteristics across career stages. Key findings include the following. (1) Mechanical engineering exhibits the highest and most stable clustering coefficient (mean 0.62) across all academic ages, reflecting tight team collaboration, with degree centrality increasing fastest with academic age (3.2 times higher for senior vs. beginner scholars), driven by its reliance on experimental resources and skill division. (2) Philosophy shows high degree centrality in early career stages (mean 0.38 for beginners) but a sharp decline in clustering coefficient in senior stages (from 0.42 to 0.17), indicating broad early collaboration but loose later ties due to individualized knowledge production. (3) Mathematics scholars prefer collaborating with high-centrality peers (higher neighbor connectivity, mean 0.51), while sociology shows more inclusive collaboration with dispersed partner centrality. Full article
Show Figures

Figure 1

15 pages, 619 KiB  
Article
Tell Me What You’ve Done, and I’ll Predict What You’ll Do: The Role of Motivation and Past Behavior in Exercise Adherence
by Luís Cid, Diogo Monteiro, Teresa Bento, Miguel Jacinto, Anabela Vitorino, Diogo S. Teixeira, Pedro Duarte-Mendes, Vasco Bastos and Nuno Couto
Healthcare 2025, 13(15), 1879; https://doi.org/10.3390/healthcare13151879 - 1 Aug 2025
Viewed by 198
Abstract
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 [...] Read more.
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 years, from different gyms and health clubs, completed several scales validated in exercise settings, regarding perceived motivational climate, basic psychological need satisfaction, behavioral regulation, and exercise adherence. For the last measure, weekly computer access to a control system over a 6-month period before and after data collection was consulted. Results: Through structural equation models (SEM), it was verified that (1) task-involving climate positively predicted basic psychological needs. In turn, the satisfaction of these needs predicted autonomous motivation, which led to a positive prediction of adherence; (2) a small variation in exercise adherence was explained by the motivational model under analysis. Nevertheless, models significantly improved their analytical power when past adherence was inserted in the model increasing the explained variance in future behavior from 9.2% to 64%. Conclusions: In conclusion, autonomous motivation can predict people’s exercise adherence, and past behavior increases that predictive effect. The present study brings scientific evidence to the popular saying “tell me what you’ve done and, and I’ll predict what you’ll do”. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 237
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 2703 KiB  
Article
Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights
by Hongwen Zhang, Haiwei Song, Xiangxi Lv, Wenlong Pang, Wenjun Pang, Xin Li, Yingxue Li and Jiliang Shao
Quaternary 2025, 8(3), 41; https://doi.org/10.3390/quat8030041 - 31 Jul 2025
Viewed by 154
Abstract
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, [...] Read more.
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, and research of palynological data reveal that the black soil profiles in the Xingkai Lake Plain can be categorized into the following three distinct palynological assemblage zones: the lower zone (11.7–7.5 ka BP) is characterized by Pinus-Laevgatomonoleti-Amaranthaceae-Artemisia, having a cold, dry climate; the middle zone (7.5–2.5 ka BP) features Quercus-Juglans-Polygonum-Cyperaceae, with a warm and humid climate; and the upper zone (2.5 ka BP to present) consists of Pinus-Quercus-Betula, indicating a cold and dry climate. Furthermore, field lithostratigraphic observations of the two black soil profiles suggest that late Pleistocene loessial clay serves as the parent material in this region. Quaternary geology, section lithology, palynology, and AMS 14C dating results indicate that a significant portion of black soil in the Xingkai Lake Plain was primarily formed during the Great Warm Period following the middle Holocene. These insights not only enhance our understanding of Holocene climate dynamics in Northeast China but also provide a substantial scientific foundation for further studies on related topics. Full article
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
A Kansei-Oriented Morphological Design Method for Industrial Cleaning Robots Integrating Extenics-Based Semantic Quantification and Eye-Tracking Analysis
by Qingchen Li, Yiqian Zhao, Yajun Li and Tianyu Wu
Appl. Sci. 2025, 15(15), 8459; https://doi.org/10.3390/app15158459 - 30 Jul 2025
Viewed by 137
Abstract
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data [...] Read more.
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data on user cognition. To address these limitations, this study develops a comprehensive methodology grounded in Kansei engineering that combines Extenics-based semantic analysis, eye-tracking experiments, and user imagery evaluation. First, we used web crawlers to harvest user-generated descriptors for industrial floor-cleaning robots and applied Extenics theory to quantify and filter key perceptual imagery features. Second, eye-tracking experiments captured users’ visual-attention patterns during robot observation, allowing us to identify pivotal design elements and assemble a sample repository. Finally, the semantic differential method collected users’ evaluations of these design elements, and correlation analysis mapped emotional needs onto stylistic features. Our findings reveal strong positive correlations between four core imagery preferences—“dignified,” “technological,” “agile,” and “minimalist”—and their corresponding styling elements. By integrating qualitative semantic data with quantitative eye-tracking metrics, this research provides a scientific foundation and novel insights for emotion-driven design in industrial floor-cleaning robots. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

Back to TopTop