Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,869)

Search Parameters:
Keywords = scenario forecast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1587 KiB  
Article
Incorporating Uncertainty Estimation and Interpretability in Personalized Glucose Prediction Using the Temporal Fusion Transformer
by Antonio J. Rodriguez-Almeida, Carmelo Betancort, Ana M. Wägner, Gustavo M. Callico, Himar Fabelo and on behalf of the WARIFA Consortium
Sensors 2025, 25(15), 4647; https://doi.org/10.3390/s25154647 - 26 Jul 2025
Viewed by 82
Abstract
More than 14% of the world’s population suffered from diabetes mellitus in 2022. This metabolic condition is defined by increased blood glucose concentrations. Among the different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particularly challenging to [...] Read more.
More than 14% of the world’s population suffered from diabetes mellitus in 2022. This metabolic condition is defined by increased blood glucose concentrations. Among the different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particularly challenging to treat. In this regard, automatic glucose level estimation implements Continuous Glucose Monitoring (CGM) devices, showing positive therapeutic outcomes. AI-based glucose prediction has commonly followed a deterministic approach, usually with a lack of interpretability. Therefore, these AI-based methods do not provide enough information in critical decision-making scenarios, like in the medical field. This work intends to provide accurate, interpretable, and personalized glucose prediction using the Temporal Fusion Transformer (TFT), and also includes an uncertainty estimation. The TFT was trained using two databases, an in-house-collected dataset and the OhioT1DM dataset, commonly used for glucose forecasting benchmarking. For both datasets, the set of input features to train the model was varied to assess their impact on model interpretability and prediction performance. Models were evaluated using common prediction metrics, diabetes-specific metrics, uncertainty estimation, and interpretability of the model, including feature importance and attention. The obtained results showed that TFT outperforms existing methods in terms of RMSE by at least 13% for both datasets. Full article
(This article belongs to the Collection Deep Learning in Biomedical Informatics and Healthcare)
Show Figures

Figure 1

22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Viewed by 195
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

24 pages, 3365 KiB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Viewed by 128
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

14 pages, 690 KiB  
Article
Hybrid Forecasting Framework for Emergency Material Demand in Post-Earthquake Scenarios Integrating the Grey Model and Bayesian Dynamic Linear Models
by Chenglong Chu and Guoping Huang
Sustainability 2025, 17(15), 6701; https://doi.org/10.3390/su17156701 - 23 Jul 2025
Viewed by 182
Abstract
Earthquakes are sudden and highly destructive events that severely disrupt infrastructure and logistics systems, making accurate and timely emergency material demand forecasting a critical challenge in disaster response. However, the scarcity of reliable data during the early stages of an earthquake limits the [...] Read more.
Earthquakes are sudden and highly destructive events that severely disrupt infrastructure and logistics systems, making accurate and timely emergency material demand forecasting a critical challenge in disaster response. However, the scarcity of reliable data during the early stages of an earthquake limits the effectiveness of traditional forecasting methods. To address this issue, this study proposes a hybrid forecasting framework that integrates the Grey Model (GM(1,1)) with Bayesian Dynamic Linear Models (BDLMs), aiming to improve both the accuracy and adaptability of demand predictions. The approach operates in two phases: first, GM(1,1) generates preliminary forecasts using limited initial observations; second, BDLMs dynamically update these forecasts in real time as new data become available. The model is validated through a case study of the 2010 M7.1 Yushu earthquake in Qinghai Province, China. The results indicate that the hybrid method produces reliable forecasts even at the earliest stages of the disaster, with increasing accuracy as more observational data are incorporated. Our case study demonstrates that the integrated GM(1,1)-BDLM framework substantially reduces prediction errors compared to standalone GM(1,1). Using the first five days’ data to forecast fatalities and emergency material demand for days 6–10, the hybrid model achieves a 4.01% error rate—a 19.62 percentage point improvement over GM(1,1)’s 23.63% error rate. This adaptive forecasting mechanism offers robust support for evidence-based decision-making in emergency material allocation, enhancing the efficiency and responsiveness of post-disaster relief operations. Full article
Show Figures

Figure 1

19 pages, 8896 KiB  
Article
Future Residential Water Use and Management Under Climate Change Using Bayesian Neural Networks
by Young-Ho Seo, Jang Hyun Sung, Joon-Seok Park, Byung-Sik Kim and Junehyeong Park
Water 2025, 17(15), 2179; https://doi.org/10.3390/w17152179 - 22 Jul 2025
Viewed by 136
Abstract
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used [...] Read more.
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used to assess the uncertainties across these models. The findings indicate that RWU in Republic of Korea (ROK) is closely linked to temperature changes, with significant increases projected in the distant future (F3), especially during summer. Under the SSP5–8.5 scenario, RWU is expected to increase by up to 10.3% by the late 21st century (2081–2100) compared to the historical baseline. The model achieved a root mean square error (RMSE) of 11,400 m3/month, demonstrating reliable predictive performance. Unlike conventional deep learning models, the BNN provides probabilistic forecasts with uncertainty bounds, enhancing its suitability for climate-sensitive resource planning. This study also projects inflows to the Paldang Dam, revealing an overall increase in future water availability. However, winter water security may decline due to decreased inflow and minimal changes in RWU. This study suggests enhancing summer precipitation storage while considering downstream flood risks. Demand management strategies are recommended for addressing future winter water security challenges. This research highlights the importance of projecting RWU under climate change scenarios and emphasizes the need for strategic water resource management in ROK. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 346 KiB  
Article
Thirst for Change in Water Governance: Overcoming Challenges for Drought Resilience in Southern Europe
by Eleonora Santos
Water 2025, 17(15), 2170; https://doi.org/10.3390/w17152170 - 22 Jul 2025
Viewed by 193
Abstract
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to [...] Read more.
This article investigates the institutional and informational foundations of water governance in Southern Europe amid escalating climate stress. Focusing on Portugal, Spain, Italy, and Greece, it develops a multi-level analytical framework to explore how information asymmetries and governance fragmentation undermine coordinated responses to water scarcity. Integrating theories of information economics, polycentric governance, and critical institutionalism, this study applies a stylized economic model and comparative institutional analysis to assess how agents—such as farmers, utilities, regulators, and civil society—respond to varying incentives, data access, and coordination structures. Using secondary data, normalized indicators, and scenario-based simulations, the model identifies three key structural parameters—institutional friction (θi), information cost (βi), and incentive strength (αi)—as levers for governance reform. The simulations are stylized and not empirically calibrated, serving as heuristic tools rather than predictive forecasts. The results show that isolated interventions yield limited improvements, while combined reforms significantly enhance both equity and effectiveness. Climate stress simulations further reveal stark differences in institutional resilience, with Greece and Italy showing systemic fragility and Portugal emerging as comparatively robust. This study contributes a flexible, policy-relevant tool for diagnosing governance capacity and informing reform strategies while also underscoring the need for integrated, equity-oriented approaches to adaptive water governance. Full article
26 pages, 1378 KiB  
Article
Effects of Electricity Price Volatility, Energy Mix and Training Interval on Prediction Accuracy: An Investigation of Adaptive and Static Regression Models for Germany, France and the Czech Republic
by Marek Pavlík and Matej Bereš
Energies 2025, 18(15), 3893; https://doi.org/10.3390/en18153893 - 22 Jul 2025
Viewed by 210
Abstract
Electricity markets in Europe have undergone major changes in the last decade, mainly due to the increasing share of variable renewable energy sources (RES), changing demand patterns, and geopolitical factors—particularly the war in Ukraine, tensions over energy imports, and disruptions in natural gas [...] Read more.
Electricity markets in Europe have undergone major changes in the last decade, mainly due to the increasing share of variable renewable energy sources (RES), changing demand patterns, and geopolitical factors—particularly the war in Ukraine, tensions over energy imports, and disruptions in natural gas supplies. These changes have led to increased electricity price volatility, reducing the reliability of traditional forecasting tools. This research analyses the potential of static and adaptive linear regression as electricity price forecasting tools in the context of three countries with different energy mixes: Germany, France and the Czech Republic. The static regression approach was compared with an adaptive approach based on incremental model updates at monthly intervals. Testing was carried out in three different scenarios combining stable and turbulent market periods. The quantitative results showed that the adaptive model achieved a lower MAE and RMSE, especially when trained on data from high-volatility periods. However, models trained under turbulent conditions performed poorly in stable environments due to a shift in market dynamics. The results supported several of the hypotheses formulated and demonstrated the need for localised, flexible and continuously updated forecasting. Limitations of the adaptive approach and suggestions for future research, including changing the length of training windows and the use of seasonal models, are also discussed. The research confirms that modern markets require adaptive analytical approaches that account for changing RES dynamics and country specificities. Full article
Show Figures

Figure 1

22 pages, 5102 KiB  
Article
Approaches to Proxy Modeling of Gas Reservoirs
by Alexander Perepelkin, Anar Sharifov, Daniil Titov, Zakhar Shandrygolov, Denis Derkach and Shamil Islamov
Energies 2025, 18(14), 3881; https://doi.org/10.3390/en18143881 - 21 Jul 2025
Viewed by 163
Abstract
In the gas industry, accurate forecasting of gas production is critical for optimizing well operating conditions. Although traditional hydrodynamic models offer high accuracy, they are often computationally intensive and time-consuming, prompting a growing interest in proxy-based alternatives. This study proposes a hybrid methodology [...] Read more.
In the gas industry, accurate forecasting of gas production is critical for optimizing well operating conditions. Although traditional hydrodynamic models offer high accuracy, they are often computationally intensive and time-consuming, prompting a growing interest in proxy-based alternatives. This study proposes a hybrid methodology based on Spatio-Temporal Graph Neural Networks (ST-GNNs) for gas production forecasting. The methodology integrates graph neural networks to account for spatial interdependencies between wells with recurrent and convolutional neural networks for time-series analysis. The model was validated using an extensive set of hydrodynamic simulation calculations and real-world field data. On average, the ST-GNN method reduces computational time by a factor of 4.3 compared to traditional hydrodynamic models, with a median predictive error not exceeding 10% across diverse datasets, despite variability in specific scenarios. The ST-GNN framework demonstrates promising potential as a tool for operational and strategic planning. Full article
Show Figures

Figure 1

24 pages, 4004 KiB  
Article
Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates
by Ivan Bevanda, Petar Marić, Ante Kristić and Tihomir Betti
Energies 2025, 18(14), 3868; https://doi.org/10.3390/en18143868 - 21 Jul 2025
Viewed by 190
Abstract
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance [...] Read more.
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance on eight PV technologies across 79 European sites, grouped by Köppen–Geiger climate classification. Unlike previous studies limited to clear-sky or single-site analysis, this work integrates satellite-derived spectral data for both all-sky and clear-sky scenarios, enabling hourly, tilt-optimized simulations that reflect real-world operating conditions. Spectral analyses reveal European climates exhibit blue-shifted spectra versus AM1.5 reference, only 2–5% resembling standard conditions. Thin-film technologies demonstrate superior spectral gains under all-sky conditions, though the underlying drivers vary significantly across climatic regions—a distinction that becomes particularly evident in the clear-sky analysis. Crystalline silicon exhibits minimal spectral sensitivity (<1.6% variations), with PERC/PERT providing highest stability. CZTSSe shows latitude-dependent performance with ≤0.7% variation: small gains at high latitudes and losses at low latitudes. Atmospheric parameters were analyzed in detail, revealing that air mass (AM), clearness index (Kt), precipitable water (W), and aerosol optical depth (AOD) play key roles in shaping spectral effects, with different parameters dominating in distinct climate groups. Full article
Show Figures

Figure 1

15 pages, 2600 KiB  
Article
Machine Learning Approach to Predicting Rift Valley Fever Disease Outbreaks in Kenya
by Damaris Mulwa, Benedicto Kazuzuru, Gerald Misinzo and Benard Bett
Zoonotic Dis. 2025, 5(3), 20; https://doi.org/10.3390/zoonoticdis5030020 - 21 Jul 2025
Viewed by 213
Abstract
In Kenya, Rift Valley fever (RVF) outbreaks pose significant challenges, being one of the most severe climate-sensitive zoonoses. While machine learning (ML) techniques have shown superior performance in time series forecasting, their application in predicting disease outbreaks in Africa remains underexplored. Leveraging data [...] Read more.
In Kenya, Rift Valley fever (RVF) outbreaks pose significant challenges, being one of the most severe climate-sensitive zoonoses. While machine learning (ML) techniques have shown superior performance in time series forecasting, their application in predicting disease outbreaks in Africa remains underexplored. Leveraging data from the International Livestock Research Institute (ILRI) in Kenya, this study pioneers the use of ML techniques to forecast RVF outbreaks by analyzing climate data spanning from 1981 to 2010, including ML models. Through a comprehensive analysis of ML model performance and the influence of environmental factors on RVF outbreaks, this study provides valuable insights into the intricate dynamics of disease transmission. The XGB Classifier emerged as the top-performing model, exhibiting remarkable accuracy in identifying RVF outbreak cases, with an accuracy score of 0.997310. Additionally, positive correlations were observed between various environmental variables, including rainfall, humidity, clay patterns, and RVF cases, underscoring the critical role of climatic conditions in disease spread. These findings have significant implications for public health strategies, particularly in RVF-endemic regions, where targeted surveillance and control measures are imperative. However, this study also acknowledges the limitations in model accuracy, especially in scenarios involving concurrent infections with multiple diseases, highlighting the need for ongoing research and development to address these challenges. Overall, this study contributes valuable insights to the field of disease prediction and management, paving the way for innovative solutions and improved public health outcomes in RVF-endemic areas and beyond. Full article
Show Figures

Figure 1

28 pages, 5540 KiB  
Article
An Ontology Proposal for Implementing Digital Twins in Hospitality: The Case of Front-End Services
by Moises Segura-Cedres, Desiree Manzano-Farray, Carmen Lidia Aguiar-Castillo, Rafael Perez-Jimenez and Victor Guerra-Yanez
Sensors 2025, 25(14), 4504; https://doi.org/10.3390/s25144504 - 20 Jul 2025
Viewed by 297
Abstract
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, [...] Read more.
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, and service optimization. By modeling interactions between guests, receptionists, and hotel management systems, DTs enhance resource allocation, predictive maintenance, and customer satisfaction. Simulations and historical data analysis enable forecasting demand fluctuations and optimizing check-in/check-out processes. This research provides a structured framework for DT applications in hospitality, validated through scenario-based simulations, showing significant improvements in check-in time and guest satisfaction. Validation was conducted through scenario-based simulations reflecting real-world operational challenges, such as guest surges, room assignment, and staff workload balancing. Metrics including check-in time, guest satisfaction index, task completion rates, and prediction accuracy were used to evaluate performance. Simulations were grounded in historical hotel data and modeled typical peak-period dynamics to ensure realism. Results demonstrated a 25–35% reduction in check-in time, a 20% improvement in staff efficiency, and significant enhancements in guest satisfaction, underscoring the practical value of the proposed framework in real hospitality settings. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Graphical abstract

20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 323
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

13 pages, 2619 KiB  
Proceeding Paper
Planning Resources by Model Predictive Control
by Krasimira Stoilova, Todor Stoilov and Galia Angelova
Eng. Proc. 2025, 100(1), 49; https://doi.org/10.3390/engproc2025100049 - 18 Jul 2025
Viewed by 146
Abstract
The effective functioning of an organization is directly related to properly planning the necessary resources. The purpose of the study is to propose a solution for appropriate resource planning to help the decision-maker. An applied approach integrates forecasting using linear autoregressive analysis, optimal [...] Read more.
The effective functioning of an organization is directly related to properly planning the necessary resources. The purpose of the study is to propose a solution for appropriate resource planning to help the decision-maker. An applied approach integrates forecasting using linear autoregressive analysis, optimal determination of regression coefficients as solutions to optimization problems with an embedded least squares method and sliding shift procedure for a new start of historical data. Two linear predictive models were created and validated with real data in a simulation environment under two scenarios. Comparisons were made with the real data, as well as between the two models. Full article
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 290
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Viewed by 212
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

Back to TopTop