Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,906)

Search Parameters:
Keywords = scattering approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11722 KB  
Article
Simultaneous Hyperspectral and Radar Satellite Measurements of Soil Moisture for Hydrogeological Risk Monitoring
by Kalliopi Karadima, Andrea Massi, Alessandro Patacchini, Federica Verde, Claudia Masciulli, Carlo Esposito, Paolo Mazzanti, Valeria Giliberti and Michele Ortolani
Remote Sens. 2026, 18(3), 393; https://doi.org/10.3390/rs18030393 (registering DOI) - 24 Jan 2026
Abstract
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially [...] Read more.
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially leading to the continuous global monitoring of landslide risk. We address this issue by determining the volumetric water content (VWC) of a testbed in Southern Italy (bare soil with significant flood and landslide hazard) through the comparison of two different satellite observations on the same day. In the first observation (Sentinel-1 mission of the European Space Agency, C-band Synthetic Aperture Radar (SAR)), the back-scattered radar signal is used to determine the VWC from the dielectric constant in the microwave range, using a time-series approach to calibrate the algorithm. In the second observation (hyperspectral PRISMA mission of the Italian Space Agency), the short-wave infrared (SWIR) reflectance spectra are used to calculate the VWC from the spectral weight of a vibrational absorption line of liquid water (wavelengths 1800–1950 nm). As the main result, we obtained a Pearson’s correlation coefficient of 0.4 between the VWC values measured with the two techniques and a separate ground-truth confirmation of absolute VWC values in the range of 0.10–0.30 within ±0.05. This overlap validates that both SAR and hyperspectral data can be well calibrated and mapped with 30 m ground resolution, given the absence of artifacts or anomalies in this particular testbed (e.g., vegetation canopy or cloud presence). If hyperspectral data in the SWIR range become more broadly available in the future, our systematic procedure to synchronise these two technologies in both space and time can be further adapted to cross-validate the global high-resolution soil moisture dataset. Ultimately, multi-mission data integration could lead to quasi-real-time hydrogeological risk monitoring from space. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Figure 1

14 pages, 1460 KB  
Article
Supervirtual Seismic Interferometry with Adaptive Weights to Suppress Scattered Wave
by Chunming Wang, Xiaohong Chen, Shanglin Liang, Sian Hou and Jixiang Xu
Appl. Sci. 2026, 16(3), 1188; https://doi.org/10.3390/app16031188 - 23 Jan 2026
Abstract
Land seismic data are always contaminated by surface waves, which demonstrate strong energy, low velocity, and long vibrations. Such noises often mask deep effective reflections, seriously reducing the data’s signal-to-noise ratio while limiting the imaging accuracy of complex deep structures and the efficiency [...] Read more.
Land seismic data are always contaminated by surface waves, which demonstrate strong energy, low velocity, and long vibrations. Such noises often mask deep effective reflections, seriously reducing the data’s signal-to-noise ratio while limiting the imaging accuracy of complex deep structures and the efficiency of hydrocarbon reservoir identification. To address this critical technical bottleneck, this paper proposes a surface wave joint reconstruction method based on stationary phase analysis, combining the cross-correlation seismic interferometry method with the convolutional seismic interferometry method. This approach integrates cross-correlation and convolutional seismic interferometry techniques to achieve coordinated reconstruction of surface waves in both shot and receiver domains while introducing adaptive weight factors to optimize the reconstruction process and reduce interference from erroneous data. As a purely data-driven framework, this method does not rely on underground medium velocity models, achieving efficient noise reduction by adaptively removing reconstructed surface waves through multi-channel matched filtering. Application validation with field seismic data from the piedmont regions of western China demonstrates that this method effectively suppresses high-energy surface waves, significantly restores effective signals, improves the signal-to-noise ratio of seismic data, and greatly enhances the clarity of coherent events in stacked profiles. This study provides a reliable technical approach for noise reduction in seismic data under complex near-surface conditions, particularly suitable for hydrocarbon exploration in regions with developed scattering sources such as mountainous areas in western China. It holds significant practical application value and broad dissemination potential for advancing deep hydrocarbon resource exploration and improving the quality of complex structural imaging. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
19 pages, 1074 KB  
Article
An Analysis of Diffracted Mode Outcoupling in the Context of Optical Gain Measurements of Organic Thin Films: A Diffracted Emission Profile Method
by Thilo Pudleiner, Jan Hoinkis and Christian Karnutsch
Micromachines 2026, 17(2), 153; https://doi.org/10.3390/mi17020153 - 23 Jan 2026
Abstract
The sustained interest in efficient, low-cost, and straightforward-to-manufacture lasers has prompted intense research into organic semiconductor laser emitter materials in recent decades. The main focus of this research is determining the optical gains and losses of amplified spontaneous emission (ASE) in order to [...] Read more.
The sustained interest in efficient, low-cost, and straightforward-to-manufacture lasers has prompted intense research into organic semiconductor laser emitter materials in recent decades. The main focus of this research is determining the optical gains and losses of amplified spontaneous emission (ASE) in order to describe materials by their amplification signature. A method that has been used for decades as the standard technique for determining gain characteristics is the variable-stripe-length (VSL) method. The success of the VSL method has led to the development of further measurement techniques. These techniques provide a detailed insight into the nature of optical amplification. One such method is the scattered emission profile (SEP) method. In this study, we present an extension of the SEP method, the Diffracted Emission Profile (DEP) method. The DEP method is based on the detection of ASE by partial decoupling of waveguide modes diffracted by a one-dimensional grating integrated into a planar waveguide. Diffraction causes a proportion of the intensity to exit the waveguide, transferring the growth and decay process of the waveguide mode to the transverse mode profile of the diffracted mode. In the present article, an approach to determine the amplification signature of an organic copolymer is presented, utilizing partial decoupled radiation. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering, 2nd Edition)
18 pages, 9224 KB  
Article
Coupled Effects of Mg/Si Ratio and Recrystallization on Strength and Electrical Conductivity in Al-xMg-0.5Si Alloys
by Shanquan Deng, Xingsen Zhang, Junwei Zhu, Meihua Bian and Heng Chen
Crystals 2026, 16(1), 78; https://doi.org/10.3390/cryst16010078 (registering DOI) - 22 Jan 2026
Abstract
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model [...] Read more.
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model alloys with Mg/Si ratios ranging from 1.0 to 2.0. A multi-faceted experimental approach was employed, combining tailored thermo-mechanical treatments (solution treatment, cold drawing, and isothermal annealing) with comprehensive microstructural characterization techniques, including electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The results elucidate a fundamental competitive mechanism governing property optimization: excess Mg atoms concurrently contribute to solid-solution strengthening via the formation of Cottrell atmospheres around dislocations, while simultaneously enhancing electron scattering, which is detrimental to conductivity. A critical synergy was identified at the Mg/Si ratio of 1.75, which promotes the dense precipitation of fine β″ phase while facilitating extensive recovery of high dislocation density. Furthermore, EBSD analysis confirmed the development of a microstructure comprising 74.1% high-angle grain boundaries alongside a low dislocation density (KAM ≤ 2°). This specific microstructural configuration effectively minimizes electron scattering while providing moderate grain boundary strengthening, thereby synergistically achieving an optimal balance between strength and electrical conductivity. Consequently, this work elucidates the key quantitative relationships and competitive mechanisms among composition (Mg/Si ratio), processing parameters, microstructure evolution, and final properties within the studied Al-xMg-0.5Si alloy system. These findings establish a clear design guideline and provide a fundamental understanding for developing high-performance aluminum-based conductor alloys with tailored Mg/Si ratios. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

23 pages, 12105 KB  
Article
Fusion Framework of Remote Sensing and Electromagnetic Scattering Features of Drones for Monitoring Freighters
by Zeyang Zhou and Jun Huang
Drones 2026, 10(1), 74; https://doi.org/10.3390/drones10010074 (registering DOI) - 22 Jan 2026
Abstract
Certain types of unmanned aerial vehicles (UAVs) represent convenient platforms for remote sensing observation as well as low-altitude targets that are themselves monitored by other devices. In order to study remote sensing grayscale and radar cross-section (RCS) in an example drone, we present [...] Read more.
Certain types of unmanned aerial vehicles (UAVs) represent convenient platforms for remote sensing observation as well as low-altitude targets that are themselves monitored by other devices. In order to study remote sensing grayscale and radar cross-section (RCS) in an example drone, we present a fusion framework based on remote sensing imaging and electromagnetic scattering calculations. The results indicate that the quadcopter drone shows weak visual effects in remote sensing grayscale images while exhibiting strong dynamic electromagnetic scattering features that can exceed 29.6815 dBm2 fluctuations. The average and peak RCS of the example UAV are higher than those of the quadcopter in the given cases. The example freighter exhibits the most intuitive grayscale features and the largest RCS mean under the given observation conditions, with a peak of 51.6186 dBm2. Compared to the UAV, the small boat with a sharp bow design has similar dimensions while exhibiting lower RCS features and intuitive remote sensing grayscale. Under cross-scale conditions, grayscale imaging is beneficial for monitoring UAVs, freighters, and other nearby boats. Dynamic RCS features and grayscale local magnification are suitable for locating and recognizing drones. The established approach is effective in learning remote sensing grayscale and electromagnetic scattering features of drones used for observing freighters. Full article
24 pages, 5216 KB  
Article
Characterizing L-Band Backscatter in Inundated and Non-Inundated Rice Paddies for Water Management Monitoring
by Go Segami, Kei Oyoshi, Shinichi Sobue and Wataru Takeuchi
Remote Sens. 2026, 18(2), 370; https://doi.org/10.3390/rs18020370 - 22 Jan 2026
Abstract
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving [...] Read more.
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving greenhouse gas estimation accuracy. This study investigates the backscattering mechanisms of L-band SAR for inundation/non-inundation classification in paddy fields using full-polarimetric ALOS-2 PALSAR-2 data. Field surveys and satellite observations were conducted in Ryugasaki (Ibaraki) and Sekikawa (Niigata), Japan, collecting 1360 ground samples during the 2024 growing season. Freeman–Durden decomposition was applied, and relationships with plant height and water level were analyzed. The results indicate that plant height strongly influences backscatter, with backscattering contributions from the surface decreasing beyond 70 cm, reducing classification accuracy. Random forest models can classify inundated and non-inundated fields with up to 88% accuracy when plant height is below 70 cm. However, when using this method, it is necessary to know the plant height. Volume scattering proved robust to incidence angle and observation direction, suggesting its potential for phenological monitoring. These findings highlight the effectiveness of L-band SAR for water management monitoring and the need for integrating crop height estimation and regional adaptation to enhance classification performance. Full article
Show Figures

Figure 1

12 pages, 3014 KB  
Article
The Application of High-Performance Silver Nanowire and Metal Oxide Composite Electrodes as Window Electrodes in Electroluminescent Devices
by Xingzhen Yan, Ziyao Niu, Mengying Lyu, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2026, 17(1), 141; https://doi.org/10.3390/mi17010141 - 22 Jan 2026
Abstract
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local [...] Read more.
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local medium environment surrounding the AgNW meshes. The randomly distributed AgNW meshes fabricated via drop-coating were treated with plasma to remove surface organic residues and reduce the inter-nanowire contact resistance. Subsequently, a zinc oxide (ZnO) coating was applied to further decrease the sheet resistance (Rsheet) value. The pristine AgNW mesh exhibits an Rsheet of 17.4 ohm/sq and an optical transmittance of 93.06% at a wavelength of 550 nm. After treatment, the composite structure achieves a reduced Rsheet of 8.7 ohm/sq while maintaining a high optical transmittance of 92.20%. The use of AgNW meshes as window electrodes enhances electron injection efficiency and facilitates the coupling mechanism between localized surface plasmon resonances and excitons. Compared with conventional ITO transparent electrodes, the incorporation of the AgNW mesh leads to a 17-fold enhancement in ZnO emission intensity under identical injection current conditions. Moreover, the unique scattering characteristics of the AgNW and metal oxide composite structure effectively reduce photon reflection at the device interface, thereby broadening the angular distribution of emitted light in electroluminescent devices. Full article
Show Figures

Figure 1

17 pages, 773 KB  
Article
Impact of Living Labs on Innovation Ecosystems: Water Management in Flanders
by Dimitri Schuurman, Olivia Willems and Ben Robaeyst
Sustainability 2026, 18(2), 1094; https://doi.org/10.3390/su18021094 - 21 Jan 2026
Viewed by 55
Abstract
Since the early 2000s, Living Labs have evolved as a predominantly European innovation approach focusing on information and communication technology (ICT) innovation to a worldwide phenomenon spanning multiple topics and sectors, with various innovation goals. However, there remain questions regarding their impact and [...] Read more.
Since the early 2000s, Living Labs have evolved as a predominantly European innovation approach focusing on information and communication technology (ICT) innovation to a worldwide phenomenon spanning multiple topics and sectors, with various innovation goals. However, there remain questions regarding their impact and effectiveness at tackling so-called ‘wicked problems’. As recent research has suggested, Living Labs have the potential of fostering and orchestrating stakeholders and activities in local innovation ecosystems; this paper investigates how this works in practice and what the outcomes and impact of a Living Lab approach are in the case of a newly emerging innovation ecosystem. This is performed via an in-depth case study of the Internet of Water project in Flanders and the subsequent outcomes and impacts on the water ecosystem in the region. The study shows that adopting a Living Lab approach functioned as the starting point and catalyst for an innovation ecosystem as opposed to the mostly scattered and siloed stakeholder landscape before the project. Although far from all ambitions were met during the project, the real-life experimentation and intense co-creation of the Living Lab approach fostered the discovery of shared goals and ambitions. This led to an intensified collaboration, not only among the consortium partners, but throughout the whole ecosystem, resulting in multiple follow-up collaborations and initiatives in an emerging innovation ecosystem on water management. Full article
(This article belongs to the Special Issue Sustainable Impact and Systemic Change via Living Labs)
Show Figures

Figure 1

27 pages, 9811 KB  
Article
ICESat-2 and SnowEx Surface Elevation Measurements: A Cross-Validation Study for Snow Depth Application
by Xiaomei Lu, Yongxiang Hu, Nathan Kurtz, Ali Omar, Travis Knepp and Zachary Fair
Remote Sens. 2026, 18(2), 359; https://doi.org/10.3390/rs18020359 - 21 Jan 2026
Viewed by 65
Abstract
Recent studies have shown that lidar observations from the Ice, Clouds, and Land Elevation Satellite-2 (ICESat-2) enable seasonal snow depth retrieval over land through two primary approaches. The snow-on–off method estimates snow depth by differencing surface elevations acquired during snow-covered and snow-free periods, [...] Read more.
Recent studies have shown that lidar observations from the Ice, Clouds, and Land Elevation Satellite-2 (ICESat-2) enable seasonal snow depth retrieval over land through two primary approaches. The snow-on–off method estimates snow depth by differencing surface elevations acquired during snow-covered and snow-free periods, while the pathlength method derives it from multiple-scattering photon distributions within the snowpack. In this study, we cross-validate ICESat-2-derived surface elevations and snow depths against in situ measurements from SnowEx field campaigns. ICESat-2 surface elevations agree closely with SnowEx data, which we consider closest to the truth, achieving centimeter-level accuracy (e.g., 1 cm) over flat, sparsely vegetated terrain, with larger biases in vegetated and steep areas. Snow depth estimates from both methods show comparable performance in the tundra area, with typical errors on the order of tens of centimeters; however, in vegetated or steep terrain, the pathlength method yields more reliable snow depth results, being less affected by slope and vegetation than the snow-on–off method. These findings show that ICESat-2 is a reliable tool for measuring snow depth from space. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

27 pages, 3891 KB  
Article
Multi-Frequency Time-Reversal and Topological Derivative Fusion Imaging of Steel Pipe Defects via Sparse Bayesian Learning
by Xinyu Zhang, Changzhi He, Zhen Li and Shaofeng Wang
Appl. Sci. 2026, 16(2), 1084; https://doi.org/10.3390/app16021084 - 21 Jan 2026
Viewed by 40
Abstract
Steel pipes play a vital role in energy and industrial transportation systems, where undetected defects such as cracks and wall thinning may lead to severe safety hazards. Although ultrasonic guided waves enable long-range inspection, their defect imaging performance is often limited by dispersion, [...] Read more.
Steel pipes play a vital role in energy and industrial transportation systems, where undetected defects such as cracks and wall thinning may lead to severe safety hazards. Although ultrasonic guided waves enable long-range inspection, their defect imaging performance is often limited by dispersion, multimode interference, and strong noise. In this work, a multi-frequency fusion imaging method integrating time-reversal, topological derivative, and sparse Bayesian learning is proposed for guided wave-based defect detection in steel pipes. Multi-frequency guided waves are employed to enhance defect sensitivity and suppress frequency-dependent ambiguity. Time-reversal focusing is used to concentrate scattered energy at defect locations, while the topological derivative provides a global sensitivity map as physics-guided prior information. These results are further fused within a sparse Bayesian learning framework to achieve probabilistic defect imaging and uncertainty quantification. Dispersion compensation based on the semi-analytical finite element method is introduced to ensure accurate wavefield reconstruction at different frequencies. Domain randomization is also incorporated to improve robustness against uncertainties in material properties, temperature, and measurement noise. Numerical simulation results verify that the proposed method achieves high localization accuracy and significantly outperforms conventional TR-based imaging in terms of resolution, false alarm suppression, and stability. The proposed approach provides a reliable and robust solution for guided wave inspection of steel pipelines and offers strong potential for engineering applications in nondestructive evaluation and structural health monitoring. Full article
Show Figures

Figure 1

18 pages, 1868 KB  
Review
Stray Light Analysis and Mitigation Perspectives for Next Generation Gravitational-Wave Detectors
by Eleonora Polini and Antonino Chiummo
Galaxies 2026, 14(1), 5; https://doi.org/10.3390/galaxies14010005 - 21 Jan 2026
Viewed by 44
Abstract
The low-frequency sensitivity of gravitational-wave detectors can be degraded by noise arising from the re-coupling of stray light with the main interferometer beam. This review describes the re-coupling mechanism and shows how the experience gained with current detectors can be used to anticipate [...] Read more.
The low-frequency sensitivity of gravitational-wave detectors can be degraded by noise arising from the re-coupling of stray light with the main interferometer beam. This review describes the re-coupling mechanism and shows how the experience gained with current detectors can be used to anticipate and mitigate stray-light issues in third-generation instruments. We summarize the work carried out on numerical simulations and on the extensive characterization of stray light originating from both core and auxiliary optics. We also discuss possible improvements to the interferometric readout system aimed at reducing stray-light-induced noise, as well as diagnostic approaches for identifying potentially harmful scattering elements. Overall, this review summarizes best practices for the effective control of stray light in future gravitational-wave detectors, supporting design approaches aimed at preventing unforeseen noise issues. Full article
Show Figures

Figure 1

19 pages, 1481 KB  
Article
GPU-Accelerated FLIP Fluid Simulation Based on Spatial Hashing Index and Thread Block-Level Cooperation
by Changjun Zou and Hui Luo
Modelling 2026, 7(1), 27; https://doi.org/10.3390/modelling7010027 - 21 Jan 2026
Viewed by 68
Abstract
The Fluid Implicit Particle (FLIP) method is widely adopted in fluid simulation due to its computational efficiency and low dissipation. However, its high computational complexity makes it challenging for traditional CPU architectures to meet real-time requirements. To address this limitation, this work migrates [...] Read more.
The Fluid Implicit Particle (FLIP) method is widely adopted in fluid simulation due to its computational efficiency and low dissipation. However, its high computational complexity makes it challenging for traditional CPU architectures to meet real-time requirements. To address this limitation, this work migrates the FLIP method to the GPU using the CUDA framework, achieving a transition from conventional CPU computation to large-scale GPU parallel computing. Furthermore, during particle-to-grid (P2G) mapping, the conventional scattering strategy suffers from significant performance bottlenecks due to frequent atomic operations. To overcome this challenge, we propose a GPU parallelization strategy based on spatial hashing indexing and thread block-level cooperation. This approach effectively avoids atomic contention and significantly enhances parallel efficiency. Through diverse fluid simulation experiments, the proposed GPU-parallelized strategy achieves a nearly 50× speedup ratio compared to the conventional CPU-FLIP method. Additionally, in the P2G stage, our method demonstrates over 30% performance improvement relative to the traditional GPU-based particle-thread scattering strategy, while the overall simulation efficiency gains exceeding 20%. Full article
Show Figures

Figure 1

20 pages, 8055 KB  
Article
Research on an Underwater Visual Enhancement Method Based on Adaptive Parameter Optimization in a Multi-Operator Framework
by Zhiyong Yang, Shengze Yang, Yuxuan Fu and Hao Jiang
Sensors 2026, 26(2), 668; https://doi.org/10.3390/s26020668 - 19 Jan 2026
Viewed by 133
Abstract
Underwater images often suffer from luminance attenuation, structural degradation, and color distortion due to light absorption and scattering in water. The variations in illumination and color distribution across different water bodies further increase the uncertainty of these degradations, making traditional enhancement methods that [...] Read more.
Underwater images often suffer from luminance attenuation, structural degradation, and color distortion due to light absorption and scattering in water. The variations in illumination and color distribution across different water bodies further increase the uncertainty of these degradations, making traditional enhancement methods that rely on fixed parameters, such as underwater dark channel prior (UDCP) and histogram equalization (HE), unstable in such scenarios. To address these challenges, this paper proposes a multi-operator underwater image enhancement framework with adaptive parameter optimization. To achieve luminance compensation, structural detail enhancement, and color restoration, a collaborative enhancement pipeline was constructed using contrast-limited adaptive histogram equalization (CLAHE) with highlight protection, texture-gated and threshold-constrained unsharp masking (USM), and mild saturation compensation. Building upon this pipeline, an adaptive multi-operator parameter optimization strategy was developed, where a unified scoring function jointly considers feature gains, geometric consistency of feature matches, image quality metrics, and latency constraints to dynamically adjust the CLAHE clip limit, USM gain, and Gaussian scale under varying water conditions. Subjective visual comparisons and quantitative experiments were conducted on several public underwater datasets. Compared with conventional enhancement methods, the proposed approach achieved superior structural clarity and natural color appearance on the EUVP and UIEB datasets, and obtained higher quality metrics on the RUIE dataset (Average Gradient (AG) = 0.5922, Underwater Image Quality Measure (UIQM) = 2.095). On the UVE38K dataset, the proposed adaptive optimization method improved the oriented FAST and rotated BRIEF (ORB) feature counts by 12.5%, inlier matches by 9.3%, and UIQM by 3.9% over the fixed-parameter baseline, while the adjacent-frame matching visualization and stability metrics such as inlier ratio further verified the geometric consistency and temporal stability of the enhanced features. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 6437 KB  
Article
Wildfire Mitigation in Small-to-Medium-Scale Industrial Hubs Using Cost-Effective Optimized Wireless Sensor Networks
by Juan Luis Gómez-González, Effie Marcoulaki, Alexis Cantizano, Myrto Konstantinidou, Raquel Caro and Mario Castro
Fire 2026, 9(1), 43; https://doi.org/10.3390/fire9010043 - 19 Jan 2026
Viewed by 170
Abstract
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, [...] Read more.
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, and long-term economic losses due to business interruption and environmental remediation. While large industrial complexes, such as oil, gas, and chemical facilities have sufficient resources for the implementation of effective prevention and mitigation plans, small-to-medium-sized industrial hubs are particularly vulnerable due to their scattered distribution and limited resources for investing in comprehensive fire prevention systems. This study targets the vulnerability of these communities by proposing the deployment of Wireless Sensor Networks (WSNs) as cost-effective Early Wildfire Detection Systems (EWDSs) to safeguard wildland and industrial domains. The proposed approach leverages wildland–industrial interface (WII) geospatial data, simulated wildfire dynamics data, and mathematical optimization to maximize detection efficiency at minimal cost. The WII delimits the boundary where the presence of wildland fires impacts industrial activity, thus representing a proxy for potential Natech disasters. The methodology is tested in Cocentaina, Spain, a municipality characterized by a highly flammable Mediterranean landscape and medium-scale industrial parks. Results reveal the complex trade-offs between detection characteristics and the degree of protection in the combined wildland and WII areas, enabling stakeholders to make informed decisions. This methodology is easily replicable for any municipality and industrial installation, or for generic wildland–human interface (WHI) scenarios, provided there is access to wildfire dynamics data and geospatial boundaries delimiting the areas to protect. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

12 pages, 1694 KB  
Article
Effective Control of Poly(L-lactide-co-ε-caprolactone) Chain Microstructure Through Polymerization with Different Catalysts and Delayed Co-Monomer Addition
by Evgeniy Anokhin, Nikita Sedush, Alexander Buzin, Artem Bakirov, Sergei Korolev and Sergei Chvalun
Macromol 2026, 6(1), 7; https://doi.org/10.3390/macromol6010007 - 19 Jan 2026
Viewed by 104
Abstract
Poly(L-lactide-co-ε-caprolactones) (PLCL) are promising biodegradable polymers with tunable properties for various biomedical applications. Along with the composition, the microstructure of PLCL chain is an important factor affecting its properties, crystallinity, and degradation profile. In this study, to find effective ways for tailoring the [...] Read more.
Poly(L-lactide-co-ε-caprolactones) (PLCL) are promising biodegradable polymers with tunable properties for various biomedical applications. Along with the composition, the microstructure of PLCL chain is an important factor affecting its properties, crystallinity, and degradation profile. In this study, to find effective ways for tailoring the microstructure of PLCL chain, kinetic patterns of L-lactide/ε-caprolactone (75:25) ring-opening copolymerization in the presence of two different catalysts were evaluated. The kinetic studies, accompanied by the assessment of the evolution of PLCL microstructure over the reaction course, provided the optimal regimes for synthesis of PLCL with a fixed composition (LA:CL = 75:25) and different chain microstructure. This was achieved by employing two types of catalysts (tin(II) 2-ethylhexanoate and zirconium(IV) acetylacetonate) and delayed co-monomer addition approach. The control of average LA block length (lLA) was achieved in a wide range from 4 to 14 monomeric units. Differential scanning calorimetry and wide-angle X-ray scattering revealed a pronounced effect of lLA on glass transition temperature, melting temperature, and crystallinity. Full article
Show Figures

Figure 1

Back to TopTop