Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = savanna trees

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2039 KB  
Article
Genomic Diversity and Structure of Copaifera langsdorffii Populations from a Transition Zone Between the Atlantic Forest and the Brazilian Savanna
by Marcos Vínicius Bohrer Monteiro Siqueira, Juliana Sanchez Carlos, Wilson Orcini, Miklos Maximiliano Bajay, Karina Martins, Arthur Tavares de Oliveira Melo, Elizabeth Ann Veasey, Evandro Vagner Tambarussi and Enéas Ricardo Konzen
Plants 2025, 14(18), 2858; https://doi.org/10.3390/plants14182858 - 13 Sep 2025
Viewed by 643
Abstract
Copaifera langsdorffii is a neotropical tree widely distributed in the Brazilian Atlantic Forest and Brazilian Savanna. Population genetic analyses can identify the scale at which tree species are impacted by human activities and provide useful demographic information for management and conservation. Using a [...] Read more.
Copaifera langsdorffii is a neotropical tree widely distributed in the Brazilian Atlantic Forest and Brazilian Savanna. Population genetic analyses can identify the scale at which tree species are impacted by human activities and provide useful demographic information for management and conservation. Using a Restriction site Associated DNA Sequencing approach, we assessed the genomic variability of six C. langsdorffii population relicts in a transition zone between the Seasonal Atlantic Forest and Savanna biomes in Southeastern Brazil. We identified 2797 high-confidence SNP markers from six remnant populations, with 10 to 29 individuals perpopulation, in a transition zone between the Seasonal Atlantic Forest and Savanna biomes in Southeastern Brazil. Observed heterozygosity values (0.197) were lower than expected heterozygosity (0.264) in all populations, indicating an excess of homozygotes. Differentiation among populations (FST) was low (0.023), but significant (0.007–0.044, c.i. 95%). A clear correlation was observed between geographic versus genetic distances, suggesting a pattern of isolation by distance. Bayesian inferences of population structure detected partial structuring due to the transition between the Atlantic Forest and the Brazilian Savanna, also suggested by spatial interpolation of ancestry coefficients. Through the analysis of FST outliers, 28 candidates for selection have been identified and may be associated with adaptation to these different phytophysiognomies. We conclude that the genetic variation found in these populations can be exploited in programs for the genetic conservation of the species. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

25 pages, 12947 KB  
Article
A Comparison of Tree Segmentation Methods for Savanna Tree Extraction from TLS Point Clouds
by Tasiyiwa Priscilla Muumbe, Pasi Raumonen, Jussi Baade, Corli Coetsee, Jenia Singh and Christiane Schmullius
Land 2025, 14(9), 1761; https://doi.org/10.3390/land14091761 - 30 Aug 2025
Viewed by 760
Abstract
Detecting trees accurately from terrestrial laser scanning (TLS) point clouds is crucial for processing terrestrial LiDAR data in individual tree analyses. Due to the heterogeneity of savanna ecosystems, our understanding of how various segmentation methods perform on savanna trees remains limited. Therefore, we [...] Read more.
Detecting trees accurately from terrestrial laser scanning (TLS) point clouds is crucial for processing terrestrial LiDAR data in individual tree analyses. Due to the heterogeneity of savanna ecosystems, our understanding of how various segmentation methods perform on savanna trees remains limited. Therefore, we compared two segmentation algorithms based on the ecological theory of resource distribution, which enables the prediction of the branching geometry of plants. This approach suggests that the shortest path along the vegetation from a point on the tree to the ground remains within the same tree. The algorithms were tested on a 15.2 ha plot scanned at 0.025° resolution during the dry season, using a Riegl VZ1000 Terrestrial Laser Scanner (TLS) in October 2019 at the Skukuza Flux Tower in Kruger National Park, South Africa. Individual tree segmentation was performed on the cloud using the comparative shortest-path (CSP) algorithm, implemented in LiDAR 360 (v 5.4), and the shortest path-based tree isolation method (SPBTIM), implemented in MATLAB (R2022a). The accuracy of each segmentation method was validated using 125 trees that were segmented and manually edited. Results were evaluated using recall (r), precision (p), and the F-score (F). Both algorithms detected (recall) 90% of the trees. The SPBTIM achieved a precision of 91%, slightly higher than the CSP’s 90%. Overall, both methods demonstrated an F-score of 0.90, indicating equal segmentation accuracy. Our findings suggest that both techniques can reliably segment savanna trees, with no significant difference between them in practical application. These results provide valuable insights into the suitability of each method for savanna ecosystems, which is essential for ecological monitoring and efficient TLS data processing workflows. Full article
(This article belongs to the Special Issue Observation, Monitoring and Analysis of Savannah Ecosystems)
Show Figures

Figure 1

24 pages, 3282 KB  
Article
The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems
by Stephanie P. Koolen, John L. Godlee, Bruna Alberton, Desirée Marques Ramos, Magna Soelma Beserra Moura, Leonor Patricia C. Morellato and Kyle G. Dexter
Remote Sens. 2025, 17(16), 2883; https://doi.org/10.3390/rs17162883 - 19 Aug 2025
Viewed by 748
Abstract
The use of digital cameras to monitor vegetation phenology (phenocams) has become increasingly common as a means of ground truthing estimates of land surface phenology from Earth observation data. Whilst the relationship between phenocam and Earth Observation-derived indices of land surface phenology has [...] Read more.
The use of digital cameras to monitor vegetation phenology (phenocams) has become increasingly common as a means of ground truthing estimates of land surface phenology from Earth observation data. Whilst the relationship between phenocam and Earth Observation-derived indices of land surface phenology has been examined across many temperate land cover types, our understanding of these relationships across the seasonally dry tropics is limited. Here we examined phenological time series derived from coarse-scale MODIS and fine-scale phenocam data across four seasonally dry tropical sites in Brazil to determine their correlation and how phenological metrics derived from these time series differed. While MODIS-derived vegetation indices showed seasonal patterns, we found a poor correlation with vegetation indices from phenocams at sites with a high proportion of evergreen vegetation and a poor correlation of MODIS indices with specific vegetation components. The high spatial and temporal resolution of phenocams allowed us to demonstrate differences in phenological metrics among different components of the vegetation which were obscured in the coarser MODIS data. This study highlights the potential of phenocam data to improve our understanding of complex vegetation leaf phenology and its drivers within mixed tree–shrub–grass systems in the seasonally dry tropics. This could help improve the representation of the savanna, grass, and shrubland biomes within terrestrial biosphere models, and lead to better predictions of the impact of climate change on carbon dynamics via shifting vegetation phenology. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

20 pages, 8029 KB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 772
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

25 pages, 10286 KB  
Article
Plant Community Restoration Efforts in Degraded Blufftop Parkland in Southeastern Minnesota, USA
by Neal D. Mundahl, Austin M. Yantes and John Howard
Land 2025, 14(7), 1326; https://doi.org/10.3390/land14071326 - 22 Jun 2025
Viewed by 763
Abstract
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn [...] Read more.
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn (Rhamnus cathartica) and honeysuckles (Lonicera spp.). Habitat restoration was initiated in the early 1990s, but management gaps and a seedbank of invasives compromised initial efforts. More consistent and sustainable restoration activities since 2016 have included cutting and chemical treatment of invasives, managed goat browsing, targeted reseeding and plug planting with native species, and more regular prescribed fires. Throughout the restoration process, we assessed changes in buckthorn densities in response to various management practices, assessed the restored savanna tree community, and documented the presence of blooming plants across all park habitats. Manual clearing of woody invasives and repeated goat browsing significantly reduced buckthorn and honeysuckle abundance in prairies and savannas. Park plant communities responded to the combination of management strategies with reduced densities of woody invasives and expanding diversity (currently >220 species present) of forbs and grasses, including a large and growing population of state-threatened Great Indian Plantain (Arnoglossum reniforme). Prescribed fires have benefitted prairies but have done little to improve savanna plant communities, due largely to excessive tree canopy coverage causing a lack of burnable fuels (i.e., dry forbs and grasses). Improved partnerships between landowners and dedicated volunteers are working to expand restoration efforts to include other portions of the park and adjacent woodlands. Full article
Show Figures

Figure 1

15 pages, 2684 KB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Cited by 1 | Viewed by 727
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

20 pages, 2456 KB  
Article
Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative
by Maria Clarisnete de Oliveira Moura, Esther Morais da Silva Assuncão, Salatiel Silva Barbosa, Edu Istarley Lourenço Tenente, Alessandro Pereira de Souza, Rajá Vidya Moreira dos Santos, Ana Paula Folmer Correa, Laura Adriane de Moraes Pinto, Amélia Carlos Tuler, Daniela Cavalcante dos Santos Campos, Marcos Jose Salgado Vital, Antonio Alves de Melo Filho and Jéssica de Oliveira Monteschio
Foods 2025, 14(11), 1954; https://doi.org/10.3390/foods14111954 - 30 May 2025
Viewed by 1218
Abstract
Anacardium occidentale, known as cashew tree, is widely used in the Amazon. This study aimed to evaluate the chemical composition, as well as the biological, physicochemical, antioxidant, and acceptability properties, of the essential oil (EO) extracted from the leaves of the dwarf [...] Read more.
Anacardium occidentale, known as cashew tree, is widely used in the Amazon. This study aimed to evaluate the chemical composition, as well as the biological, physicochemical, antioxidant, and acceptability properties, of the essential oil (EO) extracted from the leaves of the dwarf cashew tree (EOLC) from the Amazonian savanna. The EO was obtained by hydrodistillation from fresh and frozen leaves, with the frozen sample selected due to its higher yield. The components of the EOLC were identified by GC-MS. Antioxidant activity was assessed using DPPH and ABTS radicals, with values of 1.96 µmol Trolox mL−1 and 1.41 mM, respectively. Total phenolic content was determined by the Folin–Ciocalteu method. Antibacterial activity was evaluated by agar diffusion and minimum inhibitory concentration (MIC) methods, and toxicity was assessed with Artemia salina L. The physicochemical properties analyzed included density, refractive index, viscosity, and solubility. Terpinolene was identified as the major compound (80.21%). The EOLC exhibited antioxidant capacity, stronger antibacterial action against Gram-positive bacteria, moderate toxicity, and appropriate physicochemical characteristics. The 0.05% concentration was the most accepted in the sensory evaluation, standing out as a promising natural alternative for application in meat products. These findings highlight the potential of EOLC as a natural food preservative and a source of bioactive compounds, with promising applications in various food matrices. Full article
Show Figures

Graphical abstract

19 pages, 3695 KB  
Article
Contextualizing Estimated Tree Densities and Expert-Classified Ecosystems in the Historical Midwestern United States, a Region with Exposure to Frequent Fires
by Brice B. Hanberry, Charles M. Ruffner and Robert Tatina
Forests 2025, 16(5), 748; https://doi.org/10.3390/f16050748 - 27 Apr 2025
Viewed by 455
Abstract
Many ecosystems have been altered since European colonization, resulting in the loss of historical ecosystems along with information about historical ecosystems. Tree density estimation from historical land surveys with alignment to expert classifications of historical vegetation strengthen reconstructions of vegetation history through research [...] Read more.
Many ecosystems have been altered since European colonization, resulting in the loss of historical ecosystems along with information about historical ecosystems. Tree density estimation from historical land surveys with alignment to expert classifications of historical vegetation strengthen reconstructions of vegetation history through research triangulation. For the midwestern United States, we extended historical tree density estimates (≥12.7 cm in diameter) to contextualize expert classifications of vegetation types in Illinois and Minnesota, part of the historical Great Plains grasslands with very frequent fire exposure, and Indiana and southern Michigan, which were more protected from fire. We also identified a tree density threshold between grasslands and savannas and contrasted density estimates with two alternate density estimates. After refining expert-classified vegetation types, out of 14 major historical ecosystems in this region, 11 were grasslands, savannas, or woodlands. The three additional ecosystems were American beech (Fagus grandifolia) closed woodlands and forests in Indiana and American beech-oak (Quercus) closed woodlands and forests and tamarack (Larix laricina) and ash (Fraxinus) swamp forests in southern Michigan. Because tree densities in the grasslands of Illinois and Minnesota did not exceed 4 trees/ha and tree densities in the savannas of Indiana, Michigan, and Minnesota ranged from 23 trees/ha to 78 trees/ha, around 15 trees/ha may be a reasonable threshold between grasslands and savannas. Density estimates generally matched with two other sources of density estimates, despite using different approaches, supporting the reliability of density estimation. Anchoring density estimates from land surveys to other sources of historical vegetation establishes the validity of density estimation, while supplementing expert-classified ecosystems. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 1230 KB  
Review
Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review
by Monde Rapiya and Abel Ramoelo
Water 2025, 17(8), 1174; https://doi.org/10.3390/w17081174 - 14 Apr 2025
Cited by 3 | Viewed by 1723
Abstract
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. [...] Read more.
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. This review explores the interactions between groundwater and vegetation dynamics in various rangeland types. Groundwater serves as a critical water source that helps sustain plants, but changes in its availability, depth, and quality can significantly impact plant health, biodiversity, and ecosystem stability. Research indicates that groundwater depth affects vegetation types and their distribution, with specific plants thriving at certain groundwater levels. For instance, in grasslands, shallow groundwater can support diverse herbaceous species, while deeper conditions may favor drought-tolerant shrubs and trees. Similarly, in forest ecosystems, extensive root systems access both groundwater and soil moisture, playing a vital role in water regulation. Savanna environments showcase complex interactions, where trees and grasses compete for water, with groundwater potentially benefiting trees during dry seasons. Climate change poses additional challenges by altering rainfall patterns and temperatures, affecting groundwater recharge and availability. As a result, it is crucial to develop effective management strategies that integrate groundwater conservation with vegetation health. Innovative monitoring techniques, including remote sensing, can provide valuable information about groundwater levels and their impact on vegetation, enhancing water resource management. This review emphasizes the importance of understanding groundwater–vegetation interactions to guide sustainable land and water management practices. By enhancing our knowledge of these connections and utilizing advanced technologies, we can promote ecosystem resilience, secure water resources, and support biodiversity in rangeland systems. Collaborative efforts among local communities, scientists, and policymakers are essential to address the pressing issues of water scarcity and to ensure the sustainability of vital ecosystems for future generations. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

19 pages, 11735 KB  
Article
Global Distribution and Local Variation of Pre-Rain Green-Up in Tropical Dryland
by Shuyi Huang, Yirong Sang, Zhanzhang Cai and Feng Tian
Remote Sens. 2025, 17(8), 1377; https://doi.org/10.3390/rs17081377 - 12 Apr 2025
Viewed by 687
Abstract
Pre-rain green-up is a distinctive phenological phenomenon observed in arid and semi-arid regions, featuring the sprouting of plants before the onset of the rainy season. This phenomenon indicates the intricate controls of vegetation phenology other than precipitation, yet its global distribution patterns and [...] Read more.
Pre-rain green-up is a distinctive phenological phenomenon observed in arid and semi-arid regions, featuring the sprouting of plants before the onset of the rainy season. This phenomenon indicates the intricate controls of vegetation phenology other than precipitation, yet its global distribution patterns and underlying causes remain unclear. In this study, we used remotely sensed phenology and rainfall data to map the global distribution of pre-rain green-up vegetation for the first time in arid and semi-arid savanna areas. The results revealed that over one-third of pre-rain green-up vegetation is in mountainous regions. Furthermore, to explore the potential effect of groundwater accessibility on pre-rain green-up, we employed high-resolution imagery to quantify phenological parameters and analyzed the relationship between pre-rain green-up and elevation at the watershed scale in a typical mountainous pre-rain green-up region in Africa. We found that within the pre-rain green-up area, 60.64% of sub-watersheds show a significant negative correlation (p < 0.05) between the start of the season (SOS) and elevation, indicating that the SOS occurs earlier at higher elevations despite the complex spatial variability overall. Our study provides a global picture of the pre-rain green-up phenomenon in tropical drylands and suggests that tree internal water regulation mechanisms rather than groundwater accessibility control the pre-rain green-up. Full article
(This article belongs to the Special Issue Remote Sensing in Applied Ecology (Second Edition))
Show Figures

Figure 1

15 pages, 955 KB  
Article
Genetic Diversity in Sporophytic Apomictic Neotropical Savanna Trees: Insights from Eriotheca and Handroanthus Agamic Complexes
by Rafaela Cabral Marinho, Mariana Gonçalves Mendes, Clesnan Mendes-Rodrigues, Ana Maria Bonetti, Eduardo Leite Borba, Paulo Eugênio Oliveira and Diana Salles Sampaio
Diversity 2025, 17(4), 254; https://doi.org/10.3390/d17040254 - 31 Mar 2025
Viewed by 367
Abstract
Apomictic populations, which produce seeds with embryos without proper sexual syngamy, often show low genetic diversity, but eventually, such diversity has been reported to be surprisingly high. We studied here the genetic diversity in agamic complexes of Eriotheca crenulata (comb. n. E. gracilipes [...] Read more.
Apomictic populations, which produce seeds with embryos without proper sexual syngamy, often show low genetic diversity, but eventually, such diversity has been reported to be surprisingly high. We studied here the genetic diversity in agamic complexes of Eriotheca crenulata (comb. n. E. gracilipes), E. pubescens (Malvaceae-Bombacoideae), and Handroanthus ochraceus (Bignoniaceae), tropical tree species from the savannas in Central Brazil. We evaluated the genetic diversity and structure of self-fertile polyploid sporophytic apomicts versus self-sterile diploid or tetraploid sexual populations by using dominant ISSR markers. Genetic diversity was either similar or even higher in apomictic populations of E. crenulata and E. pubescens, but the opposite was observed in some populations of H. ochraceus. Only two individuals of E. pubescens showed identical ISSR profiles, so strict clonality in adult individuals was very rare among the studied trees. The genetic variability was notably higher within populations than among populations of H. ochraceus and very similar among and within populations of Eriotheca species. Ordination, clustering, and Bayesian analyses showed a clear distinction between populations of Eriotheca species with different breeding systems. But for H. ochraceus, a sexual population was actually grouped with the apomictics. As in other studies, eventual sexual and recombination events seem to increase genetic diversity in apomictic populations. This may explain the similar genetic diversity among apomictic and sexual populations in the studied agamic complexes and the virtual absence of strict clonal individuals. The results have evolutionary and ecological consequences for the threatened Neotropical savanna trees. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

13 pages, 1191 KB  
Article
Soil Organic Carbon Turnover Following Afforestation of a Savanna Revealed by Particle-Size Fractionation and Natural 13C Measurements in Ivory Coast
by Thierry Desjardins, Thierry Henry Des Tureaux, Magloire Mandeng-Yogo and Fethiye Cetin
Land 2025, 14(3), 535; https://doi.org/10.3390/land14030535 - 4 Mar 2025
Viewed by 877
Abstract
Soil organic matter plays a crucial role in the global carbon cycle, yet the magnitude and direction of changes in soil carbon content following vegetation shifts in the tropics remain highly debated. Most studies have focused on short-term changes, typically spanning only a [...] Read more.
Soil organic matter plays a crucial role in the global carbon cycle, yet the magnitude and direction of changes in soil carbon content following vegetation shifts in the tropics remain highly debated. Most studies have focused on short-term changes, typically spanning only a few months or years. In this study, we investigated the medium-term dynamics of organic matter at a site where savanna, protected from fire for 58 years, has gradually transitioned to woodland vegetation. Natural 13C abundance analysis combined with particle-size fractionation was used to characterize the changes in SOM over time. While carbon content remains relatively stable, δ13C exhibits a distinct shift, particularly in the surface layers, reflecting the gradual replacement of savanna-derived carbon with tree-derived carbon. All fractions were influenced by the inputs and outputs of carbon from both savanna and tree sources. In the coarse fractions, most of the carbon originates from trees; however, a significant proportion of savanna-derived carbon (ranging from 10% to 40%, depending on the fraction, depth, and patch) persists, likely in the form of black carbon. In the fine fractions, nearly half of the carbon (40% to 50%) remains derived from the savanna, highlighting the greater stability of organic matter that is physically bound to clays and protected within microaggregates. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

25 pages, 2715 KB  
Article
Spatial and Temporal Pervasiveness of Indigenous Settlement in Oak Landscapes of Southern New England, US, During the Late Holocene
by Stephen J. Tulowiecki, Brice B. Hanberry and Marc D. Abrams
Land 2025, 14(3), 525; https://doi.org/10.3390/land14030525 - 3 Mar 2025
Cited by 1 | Viewed by 1514
Abstract
The relative influence of climate and Indigenous cultural burning on past forest composition in southern New England, US, remains debated. Employing varied analyses, this study compared data on Indigenous settlements from over 5000 years before present (YBP) with relative tree abundances estimated from [...] Read more.
The relative influence of climate and Indigenous cultural burning on past forest composition in southern New England, US, remains debated. Employing varied analyses, this study compared data on Indigenous settlements from over 5000 years before present (YBP) with relative tree abundances estimated from pollen and land survey records. Results suggested that fire-tolerant vegetation, mainly oak (Quercus spp.), was more abundant near Indigenous settlements from 4955 to 205 YBP (i.e., 86–91% fire-tolerant trees), and significantly (p < 0.05) higher from 3205 to 205 YBP; fire-tolerant vegetation was less abundant away from settlements, where it also experienced greater fluctuations. Correlative models showed that warmer temperatures and distance to Indigenous settlement, which are both indicators of fire, were important predictors in the 17th–18th centuries of fire-tolerant tree abundance; soil variables were less important and their relationships with vegetation were unclear. A marked increase in oak abundance occurred above 8 °C mean annual temperature and within 16 km of major Indigenous settlements. Pyrophilic vegetation was most correlated with distance to Indigenous villages in areas with 7–9 °C mean annual temperature, typical of higher latitudes and elevations that usually supported northern hardwoods. Widespread burning in warmer areas potentially weakened relationships between distance and pyrophilic abundance. Indigenous land use imprinted upon warmer areas conducive to burning created patterns in fire-tolerant vegetation in southern New England, plausibly affecting most low-elevation areas. Results imply that restoration of fire-dependent species and of barrens, savannas, and woodlands of oak in southern New England benefit from cultural burning. Full article
Show Figures

Figure 1

27 pages, 11161 KB  
Article
Quantifying Tree Structural Change in an African Savanna by Utilizing Multi-Temporal TLS Data
by Tasiyiwa Priscilla Muumbe, Jussi Baade, Pasi Raumonen, Corli Coetsee, Jenia Singh and Christiane Schmullius
Remote Sens. 2025, 17(5), 757; https://doi.org/10.3390/rs17050757 - 22 Feb 2025
Cited by 1 | Viewed by 1033
Abstract
Structural changes in savanna trees vary spatially and temporally because of both biotic and abiotic drivers, as well as the complex interactions between them. Given this complexity, it is essential to monitor and quantify woody structural changes in savannas efficiently. We implemented a [...] Read more.
Structural changes in savanna trees vary spatially and temporally because of both biotic and abiotic drivers, as well as the complex interactions between them. Given this complexity, it is essential to monitor and quantify woody structural changes in savannas efficiently. We implemented a non-destructive approach based on Terrestrial Laser Scanning (TLS) and Quantitative Structure Models (QSMs) that offers the unique advantage of investigating changes in complex tree parameters, such as volume and branch length parameters that have not been previously reported for savanna trees. Leaf-off multi-scan TLS point clouds were acquired during the dry season, using a Riegl VZ1000 TLS, in September 2015 and October 2019 at the Skukuza flux tower in Kruger National Park, South Africa. These three-dimensional (3D) data covered an area of 15.2 ha with an average point density of 4270 points/m2 (0.015°) and 1600 points/m2 (0.025°) for the 2015 and 2019 clouds, respectively. Individual tree segmentation was applied on the two clouds using the comparative shortest-path algorithm in LiDAR 360(v5.4) software. We reconstructed optimized QSMs and assessed tree structural parameters such as Diameter at Breast Height (DBH), tree height, crown area, volume, and branch length at individual tree level. The DBH, tree height, crown area, and trunk volume showed significant positive correlations (R2 > 0.80) between scanning periods regardless of the difference in the number of points of the matched trees. The opposite was observed for total and branch volume, total number of branches, and 1st-order branch length. As the difference in the point densities increased, the difference in the computed parameters also increased (R2 < 0.63) for a high relative difference. A total of 45% of the trees present in 2015 were identified in 2019 as damaged/felled (75 trees), and the volume lost was estimated to be 83.4 m3. The results of our study showed that volume reconstruction algorithms such as TreeQSMs and high-resolution TLS datasets can be used successfully to quantify changes in the structure of savanna trees. The results of this study are key in understanding savanna ecology given its complex and dynamic nature and accurately quantifying the gains and losses that could arise from fire, drought, herbivory, and other abiotic and biotic disturbances. Full article
(This article belongs to the Special Issue Remote Sensing of Savannas and Woodlands II)
Show Figures

Figure 1

18 pages, 3052 KB  
Article
Effects of Vegetation on Bird Communities and Bird–Plant Interactions in Urban Green Areas of Riparian Forests in Brazil That Have Undergone Ecological Restoration
by Dayana Nascimento Carvalho, Eduardo Soares Calixto and Kleber Del-Claro
Diversity 2025, 17(3), 149; https://doi.org/10.3390/d17030149 - 22 Feb 2025
Cited by 2 | Viewed by 1854
Abstract
Urbanization replaces natural vegetation for city expansion, impacting environmental and climatic variables that affect the health of the human population and fauna. These changes affect important groups such as birds, given their greater sensitivity to anthropogenic alterations, especially when we understand these effects [...] Read more.
Urbanization replaces natural vegetation for city expansion, impacting environmental and climatic variables that affect the health of the human population and fauna. These changes affect important groups such as birds, given their greater sensitivity to anthropogenic alterations, especially when we understand these effects on a large scale, considering countries such as Brazil, which represents the third country with the greatest diversity of bird species in the world. Conversely, green spaces like urban parks, tree-lined avenues, and riparian forests seem to foster biodiversity conservation. Here, we analyze the effects of vegetation on bird communities and bird–plant interactions in urban riparian areas that have undergone ecological restoration. The study was carried out between January and October 2019 in two restored urban areas of Uberlândia, Brazil. Results showed that the richness of birds observed between the two areas was Praia Clube (n = 86) and Parque Linear Rio Uberabinha (n = 80). The most representative trophic guilds in the areas, with the highest proportion in their relative abundances during both seasons, were granivores, omnivores, insectivores, and frugivores. Composition varied significantly between areas as a function of the plant community, particularly when considering the interaction between season and area (ANOSIM: R = 0.19; Stress = 0.10; p = 0.008). In environments dominated by generalist and synanthropic species (Eared Dove, Picazuro Pigeon), effective planning and management of green areas are crucial. It is important to acknowledge that certain bird species depend on specific habitats, such as riparian forests, and that specific plant species within these areas are vital for specialized bird species, such as species endemic to the Brazilian Savanna or Cerrado and restricted to Brazil (White-striped Warbler) and species in vulnerable categories globally (Bare-faced Curassow). Therefore, restoration efforts in degraded areas should be carefully planned to restore interactions and conserve biodiversity effectively. Full article
Show Figures

Figure 1

Back to TopTop