Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,096)

Search Parameters:
Keywords = sanitizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 711 KiB  
Review
Persistent Threats: A Comprehensive Review of Biofilm Formation, Control, and Economic Implications in Food Processing Environments
by Alexandra Ban-Cucerzan, Kálmán Imre, Adriana Morar, Adela Marcu, Ionela Hotea, Sebastian-Alexandru Popa, Răzvan-Tudor Pătrînjan, Iulia-Maria Bucur, Cristina Gașpar, Ana-Maria Plotuna and Sergiu-Constantin Ban
Microorganisms 2025, 13(8), 1805; https://doi.org/10.3390/microorganisms13081805 (registering DOI) - 1 Aug 2025
Abstract
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current [...] Read more.
Biofilms are structured microbial communities that pose significant challenges to food safety and quality within the food-processing industry. Their formation on equipment and surfaces enables persistent contamination, microbial resistance, and recurring outbreaks of foodborne illness. This review provides a comprehensive synthesis of current knowledge on biofilm formation mechanisms, genetic regulation, and the unique behavior of multi-species biofilms. The review evaluates modern detection and monitoring technologies, including PCR, biosensors, and advanced microscopy, and compares their effectiveness in industrial contexts. Real-world outbreak data and a global economic impact analysis underscore the urgency for more effective regulatory frameworks and sanitation innovations. The findings highlight the critical need for integrated, proactive biofilm management approaches to safeguard food safety, reduce public health risks, and minimize economic losses across global food sectors. Full article
28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 (registering DOI) - 1 Aug 2025
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

16 pages, 4439 KiB  
Article
Baseline Assessment of Taeniasis and Cysticercosis Infections in a High-Priority Region for Taenia solium Control in Colombia
by Carlos Franco-Muñoz, María Camila Jurado Guacaneme, Sonia Dayanni Castillo Ayala, Sofia Duque-Beltrán, Adriana Arévalo, Marcela Pilar Rojas Díaz, Julián Trujillo Trujillo, Luz Elena Borras Reyes, Luis Reinel Vásquez Arteaga, Julio César Giraldo Forero and Mario J. Olivera
Pathogens 2025, 14(8), 755; https://doi.org/10.3390/pathogens14080755 (registering DOI) - 31 Jul 2025
Abstract
Coyaima is a town in the department of Tolima, Colombia, that was prioritized in a pilot program under Colombia’s National Plan for the Control of the Taeniasis/Cysticercosis Complex, focusing on this neglected health issue. The project engaged local indigenous communities, promoting education and [...] Read more.
Coyaima is a town in the department of Tolima, Colombia, that was prioritized in a pilot program under Colombia’s National Plan for the Control of the Taeniasis/Cysticercosis Complex, focusing on this neglected health issue. The project engaged local indigenous communities, promoting education and outreach within the One Health framework. The study included 444 randomly selected volunteers, who filled a Knowledge, Attitudes, and Practices (KAP) survey on the taeniasis/cysticercosis complex. The baseline study found no Taenia spp. eggs via microscopy on 383 stool samples examined, and no T. solium DNA was detected on human stool and soil samples by Copro-qPCR. However, seroprevalence was 8.5% for human cysticercosis and 14% for porcine cysticercosis, as detected by in-house ELISA testing for T. solium. Moreover, 57.9% of participants who provided a stool sample were positive for at least one parasite. Following the sampling and characterization activities, local health workers implemented mass treatment with Niclosamide, based on evidence of ongoing transmission, high porcine seroprevalence, poor basic sanitation, and the presence of free-roaming pigs reported in the KAP survey. These findings provide scientific evidence to apply national public health policies for controlling taeniasis/cysticercosis complex in Coyaima. Full article
(This article belongs to the Special Issue Recent Advances in Taeniasis and Cysticercosis)
Show Figures

Figure 1

20 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 316
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

35 pages, 6389 KiB  
Article
Towards Sustainable Construction: Experimental and Machine Learning-Based Analysis of Wastewater-Integrated Concrete Pavers
by Nosheen Blouch, Syed Noman Hussain Kazmi, Mohamed Metwaly, Nijah Akram, Jianchun Mi and Muhammad Farhan Hanif
Sustainability 2025, 17(15), 6811; https://doi.org/10.3390/su17156811 - 27 Jul 2025
Viewed by 312
Abstract
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has [...] Read more.
The escalating global demand for fresh water, driven by urbanization and industrial growth, underscores the need for sustainable water management, particularly in the water-intensive construction sector. Although prior studies have primarily concentrated on treated wastewater, the practical viability of utilizing untreated wastewater has not been thoroughly investigated—especially in developing nations where treatment expenses frequently impede actual implementation, even for non-structural uses. While prior research has focused on treated wastewater, the potential of untreated or partially treated wastewater from diverse industrial sources remains underexplored. This study investigates the feasibility of incorporating wastewater from textile, sugar mill, service station, sewage, and fertilizer industries into concrete paver block production. The novelty lies in a dual approach, combining experimental analysis with XGBoost-based machine learning (ML) models to predict the impact of key physicochemical parameters—such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Hardness—on mechanical properties like compressive strength (CS), water absorption (WA), ultrasonic pulse velocity (UPV), and dynamic modulus of elasticity (DME). The ML models showed high predictive accuracy for CS (R2 = 0.92) and UPV (R2 = 0.97 direct, 0.99 indirect), aligning closely with experimental data. Notably, concrete pavers produced with textile (CP-TXW) and sugar mill wastewater (CP-SUW) attained 28-day compressive strengths of 47.95 MPa and exceeding 48 MPa, respectively, conforming to ASTM C936 standards and demonstrating the potential to substitute fresh water for non-structural applications. These findings demonstrate the viability of using untreated wastewater in concrete production with minimal treatment, offering a cost-effective, sustainable solution that reduces fresh water dependency while supporting environmentally responsible construction practices aligned with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Additionally, the model serves as a practical screening tool for identifying and prioritizing viable wastewater sources in concrete production, complementing mandatory laboratory testing in industrial applications. Full article
Show Figures

Figure 1

21 pages, 3898 KiB  
Article
How Reliable Are the Spectral Vegetation Indices for the Assessment of Tree Condition and Mortality in European Temporal Forests?
by Kinga Kulesza, Paweł Hawryło, Jarosław Socha and Agata Hościło
Remote Sens. 2025, 17(15), 2549; https://doi.org/10.3390/rs17152549 - 23 Jul 2025
Viewed by 255
Abstract
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled [...] Read more.
The continuous monitoring of forest vegetation conditions is of the utmost importance. The commonly used tools for assessing vegetation conditions are the normalized difference vegetation index (NDVI) and its successor—the enhanced vegetation index (EVI). In this study, the NDVI and EVI were coupled with the data on the number of dead trees removed during sanitation felling in an area of 13,780 km2 during the period 2015–2022. In order to determine which satellite-borne index best represents the actual condition of vegetation in forests of the European temperate zone, the classes of the trend in changes in the NDVI and EVI were compared with the respective trends in the volume of dead trees, following the assumption that a positive trend in the spectral index values should be reflected by a negative trend in the volume of dead trees, and vice versa. The analyses were carried out for pixels within the all-species mask in the study area and for pixels representing individual tree species. NDVI is a good predictor of forest vegetation in the European temperate zone and is substantially better than EVI. Spatially, NDVI yields more pixels showing a negative slope for the trend in changes in the spectral index values, while EVI seems to overestimate the number of positive slopes. A larger number of negative slopes in the trend in changes in NDVI seems to agree with the increasing volume of dead trees in the analysed period. Comparing the detected trend class masks for spectral indices and the multi-annual course of dead trees, in 12 out of 16 cases, the slopes of the trend in changes in NDVI agree with the slopes of the trend in the volume of dead trees, while for EVI, this number is reduced to 9. In addition, NDVI reflects the condition of coniferous tree species, Scots pine and Norway spruce, substantially better. Full article
Show Figures

Figure 1

22 pages, 3505 KiB  
Review
Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities
by Surafel Kifle Teklemariam, Rachele Schiasselloni, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(15), 3908; https://doi.org/10.3390/en18153908 - 22 Jul 2025
Viewed by 374
Abstract
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to [...] Read more.
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to patient safety. This review explores the transformative potential of solar energy as a sustainable solution for powering healthcare facilities, reducing dependence on fossil fuels, and improving health outcomes. Consequently, energy harvesting is a vital renewable energy source that captures abundant solar and thermal energy, which can sustain medical centers by ensuring the continuous operation of life-saving equipment, lighting, vaccine refrigeration, sanitation, and waste management. Beyond healthcare, it reduces greenhouse gas emissions, lowers operational costs, and enhances community resilience. To address this issue, the paper reviews critical solar energy technologies, energy storage systems, challenges of energy access, and successful solar energy implementations in rural healthcare systems, providing strategic recommendations to overcome adoption challenges. To fulfill the aims of this study, a focused literature review was conducted, covering publications from 2005 to 2025 in the Scopus, ScienceDirect, MDPI, and Google Scholar databases. With targeted investments, policy support, and community engagement, solar energy can significantly improve healthcare access in underserved regions and contribute to sustainable development. Full article
Show Figures

Figure 1

23 pages, 1150 KiB  
Article
ECHO: Enhancing Linux Kernel Fuzzing via Call Stack-Aware Crash Deduplication
by Shuoyu Tao, Baoju Zhang and Qiang Zhang
Electronics 2025, 14(14), 2914; https://doi.org/10.3390/electronics14142914 - 21 Jul 2025
Viewed by 204
Abstract
Fuzz testing plays a key role in improving Linux kernel security, but large-scale fuzzing often generates a high number of crash reports, many of which are redundant. These duplicated reports burden triage efforts and delay the identification of truly impactful bugs. Syzkaller, a [...] Read more.
Fuzz testing plays a key role in improving Linux kernel security, but large-scale fuzzing often generates a high number of crash reports, many of which are redundant. These duplicated reports burden triage efforts and delay the identification of truly impactful bugs. Syzkaller, a widely used kernel fuzzer, clusters crashes using instruction pointers and sanitizer metadata. However, this heuristic may misgroup distinct issues or split similar ones caused by the same root cause. To address this, we present ECHO, a lightweight call stack-based deduplication tool that analyzes structural similarity among kernel stack traces. By computing the longest common subsequence (LCS) between normalized call stacks, ECHO groups semantically related crashes and improves post-fuzzing analysis. We integrate ECHO into the Syzkaller fuzzing workflow and use it to prioritize inputs that trigger deeper, previously untested kernel paths. Evaluated across multiple Linux kernel versions, ECHO improves average code coverage by 15.2% and discovers 20 previously unknown bugs, all reported to the Linux kernel community. Our results highlight that stack-aware crash grouping not only streamlines triage, but also enhances fuzzing efficiency by guiding seed selection toward unexplored execution paths. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

23 pages, 502 KiB  
Article
Natural Savanna Systems Within the “One Health and One Welfare” Approach: Part 2—Sociodemographic and Institution Factors Impacting Relationships Between Farmers and Livestock
by Marlyn H. Romero, Sergio A. Gallego-Polania and Jorge A. Sanchez
Animals 2025, 15(14), 2139; https://doi.org/10.3390/ani15142139 - 19 Jul 2025
Viewed by 460
Abstract
The relationships between farmers and livestock are multifaceted. The aim of this study was to describe the sociodemographic, biogeographic, and institutional factors that influence the relationships between humans and animals in the natural savanna. Visits were made to 65 farms, followed by interviews [...] Read more.
The relationships between farmers and livestock are multifaceted. The aim of this study was to describe the sociodemographic, biogeographic, and institutional factors that influence the relationships between humans and animals in the natural savanna. Visits were made to 65 farms, followed by interviews (n = 13) and three focus group interviews (n = 24) directed at farmers and institutional representatives. The results were triangulated to extract the key findings. The following findings were obtained: (a) cultural gender transitions and the lack of generational succession have transformed livestock farming; (b) the relationships between farmers and livestock have favored the implementation of new productive practices and innovations, as well as improvements in animal welfare practices; (c) conditioning factors affecting these relationships include gender discriminatory norms, low profitability and credit access, poor sanitation, animal handling infrastructure, security, and resistance to change; and (d) improvement opportunities include the inclusion of young people and women in livestock farming, education for work practices, credit facilitation, access to technologies, governance, and improvement in the cattle logistics chain. The results are useful for enhancing the relationships between farmers and livestock, guiding training activities, and responsible governance. Full article
Show Figures

Figure 1

19 pages, 1359 KiB  
Article
Spatial Barriers to Improved Water and Sanitation in Rural Zambia
by Sarah L. Smiley, Angela G. Subulwa and Sav Herald
Water 2025, 17(14), 2132; https://doi.org/10.3390/w17142132 - 18 Jul 2025
Viewed by 311
Abstract
The Sustainable Development Goals seek to achieve universal, adequate, and equitable access to drinking water and sanitation by the year 2030. Yet, significant and persistent disparities in water and sanitation access exist, with rural and low-income households in Sub-Saharan Africa exhibiting some of [...] Read more.
The Sustainable Development Goals seek to achieve universal, adequate, and equitable access to drinking water and sanitation by the year 2030. Yet, significant and persistent disparities in water and sanitation access exist, with rural and low-income households in Sub-Saharan Africa exhibiting some of the lowest levels. This paper uses household surveys from rural villages in Zambia’s Western Province to identify, highlight, and examine spatial barriers to improved water and sanitation. Most households included in the study area drink unimproved water, including surface water, and either use unimproved sanitation facilities or practice open defecation. Access to improved water sources and improved sanitation in the study area lags behind the rest of rural Zambia. Beyond the distance to urban areas that makes piped water and sanitation expensive, the location of these villages in the Barotse Floodplain necessitates seasonal migration, which creates barriers to universal access to improved water and sanitation. Full article
(This article belongs to the Special Issue Groundwater Quality and Human Health Risk, 2nd Edition)
Show Figures

Figure 1

14 pages, 271 KiB  
Article
Determinants of Stunting Among Children Aged 0.5 to 12 Years in Peninsular Malaysia: Findings from the SEANUTS II Study
by Ika Aida Aprilini Makbul, Giin Shang Yeo, Razinah Sharif, See Meng Lim, Ahmed Mediani, Jan Geurts, Bee Koon Poh and on behalf of the SEANUTS II Malaysia Study Group
Nutrients 2025, 17(14), 2348; https://doi.org/10.3390/nu17142348 - 17 Jul 2025
Viewed by 416
Abstract
Background/Objectives: Childhood stunting remains a critical public health issue in low- and middle-income countries. Despite Malaysia’s economic growth, there is limited large-scale evidence on the determinants of stunting among children from infancy to primary school age. This cross-sectional study, part of South [...] Read more.
Background/Objectives: Childhood stunting remains a critical public health issue in low- and middle-income countries. Despite Malaysia’s economic growth, there is limited large-scale evidence on the determinants of stunting among children from infancy to primary school age. This cross-sectional study, part of South East Asian Nutrition Surveys II (SEANUTS II), aimed to determine sociodemographic and environmental risk factors for stunting among 2989 children aged 0.5–12 years. Methods: Children were recruited from four regions in Peninsular Malaysia (Central, East Coast, 2022–2030Northern, Southern). Standing height or recumbent length was measured, and stunting was classified based on WHO criteria (height-for-age Z-score below −2 standard deviations). Parents reported information on socioeconomic status, sanitation facilities, and hygiene practices. Multivariate binary logistic regression was used to determine the determinants of stunting. Results: Stunting prevalence was 8.9%, with infants (aOR = 2.92, 95%CI:1.14–7.52) and young children (aOR = 2.92, 95%CI:1.80–4.76) having higher odds than school-aged children. Key biological predictors included low birth weight (aOR = 2.41; 95%CI:1.40–4.13) and maternal height <150 cm (aOR = 2.24; 95%CI:1.36–3.70). Chinese (aOR = 0.56; 95%CI:0.35–0.88) and Indian children (aOR = 0.16; 95%CI:0.05–0.52) had a lower risk of stunting compared to Malays. Conclusions: This study highlights the ongoing challenge of childhood stunting in Malaysia, with age, birth weight, ethnicity, and maternal height identified as key determinants. These findings call for early identification of at-risk households and targeted support, especially through education and financial aid to foster healthy child growth. Full article
(This article belongs to the Section Pediatric Nutrition)
26 pages, 2715 KiB  
Systematic Review
Hepatitis E Virus (HEV) Infection in the Context of the One Health Approach: A Systematic Review
by Sophie Deli Tene, Abou Abdallah Malick Diouara, Sarbanding Sané and Seynabou Coundoul
Pathogens 2025, 14(7), 704; https://doi.org/10.3390/pathogens14070704 - 16 Jul 2025
Viewed by 385
Abstract
Hepatitis E virus (HEV) is a pathogen that has caused various epidemics and sporadic localized cases. It is considered to be a public health problem worldwide. HEV is a small RNA virus with a significant genetic diversity, a broad host range, and a [...] Read more.
Hepatitis E virus (HEV) is a pathogen that has caused various epidemics and sporadic localized cases. It is considered to be a public health problem worldwide. HEV is a small RNA virus with a significant genetic diversity, a broad host range, and a heterogeneous geographical distribution. HEV is mainly transmitted via the faecal–oral route. However, some animals are considered to be natural or potential reservoirs of HEV, thus elucidating the zoonotic route of transmission via the environment through contact with these animals or consumption of their by-products. Other routes of human-to-human transmission are not negligible. The various human–animal–environment entities, taken under one health approach, show the circulation and involvement of the different species (mainly Paslahepevirus balayani and Rocahepevirus ratti) and genotypes in the spreading of HEV infection. Regarding P. balayani, eight genotypes have been described, of which five genotypes (HEV-1 to 4 and HEV-7) are known to infect humans, while six have been reported to infect animals (HEV-3 to HEV-8). Furthermore, the C1 genotype of the rat HEV strain (HEV-C1) is known to be more frequently involved in human infections than the HEV-C2 genotype, which is known to infect mainly ferrets and minks. Contamination can occur during run-off, flooding, and poor sanitation, resulting in all of these genotypes being disseminated in the environment, contaminating both humans and animals. This systematic review followed the PRISMA guidelines and was registered in PROSPERO 2025 CRD420251071192. This research highlights the importance of investigating the transmission routes and major circulating HEV genotypes in order to adopt a holistic approach for controlling its emergence and preventing future outbreaks. In addition, this article outlines the knowledge of HEV in Africa, underlining the absence of large-scale studies at the environmental, human, and animal levels, which could improve HEV surveillance on the continent. Full article
Show Figures

Figure 1

19 pages, 941 KiB  
Article
Residents’ Perceptions of Informal Green Spaces in High-Density Cities: Urban Land Governance Implications from Taipei
by Chen-Yi Sun, Tzu-Pei Chiang and Ya-Wen Wu
Land 2025, 14(7), 1466; https://doi.org/10.3390/land14071466 - 15 Jul 2025
Viewed by 337
Abstract
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and [...] Read more.
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and social dynamics. This study explores residents’ perceptions of IGSs and examines how these spaces contribute to urban sustainability and land governance. Using a mixed-methods approach that combines the literature review, field observations, and a structured public opinion survey in Taipei’s Wenshan District, the study identifies key perceived benefits and drawbacks of IGSs. Findings show that residents highly value IGSs for enhancing urban greenery, offering recreational opportunities, and promoting physical and mental health. However, concerns persist regarding safety, sanitation, and maintenance—particularly fears of waste accumulation, mosquito breeding, and risks to children. The results highlight the dual nature of IGSs as both vital ecological assets and potential sources of urban disorder. These insights underscore the need for inclusive, community-based governance models that can transform IGSs into legitimate components of green infrastructure. The study contributes to emerging discussions on adaptive urban land governance by proposing that informal spaces be strategically integrated into urban planning frameworks to enhance environmental equity, resilience, and citizen well-being. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

24 pages, 1829 KiB  
Article
A Sustainable Water Management Framework for Schools in Sub-Saharan Africa
by Chibueze G. Achi, Oluwafemi F. Ariyo, Akinwale O. Coker, Samuel J. Abbey, Kofi Agyekum, Colin A. Booth and Rosemary E. Horry
Green Health 2025, 1(2), 8; https://doi.org/10.3390/greenhealth1020008 - 15 Jul 2025
Viewed by 190
Abstract
Safe and adequate water supply, sanitation, and hygiene (WASH) in schools are prerequisites within the right to basic education. WASH facilities across schools in developing nations, particularly in Africa, are unsatisfactory and expose children to risks of disease and infection. This study aims [...] Read more.
Safe and adequate water supply, sanitation, and hygiene (WASH) in schools are prerequisites within the right to basic education. WASH facilities across schools in developing nations, particularly in Africa, are unsatisfactory and expose children to risks of disease and infection. This study aims to gather insights into the WASH status of secondary schools in Ibadan, Nigeria, to develop a sustainable water management framework for schools. A concurrent mixed-method design (questionnaires and interviews) was adopted to benchmark water management in schools and inform the design of a framework. Results reveal a wealth of issues and concerns that include infrastructure challenges accessing reliable and safe water supplies, rundown and unhygienic toilet/urinal facilities, and dilapidated sinks/taps, plus resource challenges, such as an absence of tissue paper and soap. These issues are exposing schoolchildren to unnecessary health risks, further supported by reported illnesses and reduced school attendance. Based on these findings, and guided by the UN SDG#6 targets, a water improvement framework has been created and validated by school officials. The framework identifies both short-term and long-term guidance/actions to improve water management in schools across Sub-Saharan Africa. These form crucial steps toward better WASH, building healthier communities and enhancing educational environments and outcomes for schoolchildren. Full article
Show Figures

Figure 1

Back to TopTop