Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = sand burial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4428 KiB  
Article
Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines
by Shijun Wang, Wenyuan Bai, Yunfei Tian, Hailong Zhang and Hongchao Dun
Atmosphere 2025, 16(7), 779; https://doi.org/10.3390/atmos16070779 - 25 Jun 2025
Viewed by 322
Abstract
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission [...] Read more.
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission infrastructure. In this study, the Real-Space Cellular Automaton Laboratory is deployed to explore how transverse dunes evolve around transmission towers under diverse wind velocities and varying dune dimensions. The results reveal that, beyond the immediate vicinity of the transmission tower, the height of the transverse dune remains largely stable across broad spatial scales, unaffected by the transmission line. As wind velocities wane, the structural integrity of the transverse dunes is compromised, leading to an expansion in the size of the trail structures. Initially, the height of the dune surges, only to decline progressively over time, with the maximum fluctuation reaching nearly 1m. The height of larger dunes escalates gradually at first, peaks, and then subsides, with the pinnacle height nearing 6.5m. As a critical metric for safety evaluation, the height of the transmission line above ground initially plummets, then gradually rebounds, and shifts backward over time after hitting its nadir. Full article
Show Figures

Figure 1

28 pages, 6433 KiB  
Article
Quantifying Thermal Spatiotemporal Signatures and Identifying Hidden Mining-Induced Fissures with Various Burial Depths via UAV Infrared Thermometry
by Duo Xu, Yi-Xin Zhao, Kang-Ning Zhang, Chun-Wei Ling and Peng Li
Remote Sens. 2025, 17(12), 1992; https://doi.org/10.3390/rs17121992 - 9 Jun 2025
Viewed by 278
Abstract
Hidden mining-induced fissures connected to a goaf may induce spontaneous combustion of abandoned coal, threatening safe coal mining operation and ecological and environmental protection. To identify hidden mining-induced fissures rapidly, accurately and in a timely manner, a novel method involving infrared remote sensing [...] Read more.
Hidden mining-induced fissures connected to a goaf may induce spontaneous combustion of abandoned coal, threatening safe coal mining operation and ecological and environmental protection. To identify hidden mining-induced fissures rapidly, accurately and in a timely manner, a novel method involving infrared remote sensing via an unmanned aerial vehicle (UAV) was proposed. Hidden mining-induced fissures above working face No. 52605 of the Daliuta coal mine were continuously monitored using this method. Field experiments revealed that hidden mining-induced fissures could be effectively identified via infrared technology. The diurnal variation in the hidden mining-induced fissure temperature was cosinusoidal. The temperature of the hidden mining-induced fissures was highly correlated with burial depth, and the burial depths of the identified hidden mining-induced fissures differed at various times. The temperature differences among hidden mining-induced fissures, aeolian sands and vegetation varied with time and burial depth. The temperature difference variation between in situ hidden mining-induced fissures and aeolian sand matches that between hidden mining-induced fissures at a 20 cm burial depth and sand. In situ hidden mining-induced fissures could be identified from 1:00 to 5:00 a.m. and from 11:00 a.m. to 7:00 p.m. under the studied conditions. Full article
Show Figures

Figure 1

15 pages, 6634 KiB  
Article
Comprehensive Assessment of Coalbed Methane Content Through Integrated Geophysical and Geological Analysis: Case Study from YJP Block
by Kaixin Gao, Suoliang Chang, Sheng Zhang, Bo Liu and Jing Liu
Processes 2025, 13(5), 1401; https://doi.org/10.3390/pr13051401 - 4 May 2025
Viewed by 484
Abstract
The study block is located on the eastern edge of the Ordos Basin and is one of the typical medium coalbed methane blocks in China that have previously been subjected to exploration and development work. The rich CBM resource base and good exploration [...] Read more.
The study block is located on the eastern edge of the Ordos Basin and is one of the typical medium coalbed methane blocks in China that have previously been subjected to exploration and development work. The rich CBM resource base and good exploration and development situation in this block mean there is an urgent need to accelerate development efforts, but compared with the current situation for tight sandstone gas where development is in full swing in the area, the production capacity construction of CBM wells in the area shows a phenomenon of lagging to a certain degree. In this study, taking the 4 + 5 coal seam of the YJP block in the Ordos Basin as the research object, we carried out technical research on an integrated program concerning CBM geology and engineering and put forward a comprehensive seismic geology analysis method for the prediction of the CBM content. The study quantitatively assessed the tectonic conditions, depositional environment, and coal seam thickness as potential controlling factors using gray relationship analysis, trend surface analysis, and seismic geological data integration. The results show that tectonic conditions, especially the burial depth, residual deformation, and fault development, are the main controlling factors affecting the coalbed methane content, showing a strong correlation (gray relational value greater than 0.75). The effects of the depositional environment (sand–shale ratio) and coal bed thickness were negligible. A weighted fusion model incorporating seismic attributes and geological parameters was developed to predict the gas content distribution, achieving relative prediction errors of below 15% in validation wells, significantly outperforming traditional interpolation methods. The integrated approach demonstrated enhanced spatial resolution and accuracy in delineating the lateral CBM distribution, particularly in structurally complex zones. However, limitations persist due to the seismic data resolution and logging data reliability. This method provides a robust framework for CBM exploration in heterogeneous coal reservoirs, emphasizing the critical role of tectonic characterization in gas content prediction. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

14 pages, 7668 KiB  
Article
A Machine Learning Method for the Fast Simulation of the Scattering Characteristics of a Target Under a Planar Layered Medium
by Zhaoyu Wang, Qinghe Zhang, Zhaoyang Shen, Lei Zhang and Han Liu
Sensors 2025, 25(8), 2481; https://doi.org/10.3390/s25082481 - 15 Apr 2025
Viewed by 419
Abstract
Numerical simulation of ground-penetrating radar (GPR) has been widely used to enhance the interpretation of GPR data and serves as a key component in Full Waveform Inversion (FWI). In response to the time-consuming numerical computation of layered medium and buried targets, which leads [...] Read more.
Numerical simulation of ground-penetrating radar (GPR) has been widely used to enhance the interpretation of GPR data and serves as a key component in Full Waveform Inversion (FWI). In response to the time-consuming numerical computation of layered medium and buried targets, which leads to inefficiency in full-wave inversion, this paper proposes a machine learning-based forward scattering rapid solution method. Using the detection of rebar buried in concrete under sand as the GPR application scenario, with scene parameters such as concrete moisture content, rebar radius, and burial depth, scattering echo signals are obtained via Finite Difference Time Domain (FDTD) simulation. Principal component analysis (PCA) is applied to reduce the dimensionality of the echo data, and the first 40 principal component weight coefficients are selected as the output of the deep learning network. An innovative cyclic nested deep learning network architecture is designed, which not only fully explores the intrinsic causal relationship between the scene parameters and the principal component weight coefficients, but also refines and corrects each predicted principal component. The numerical results demonstrate that, compared with traditional machine learning methods, the cyclic nested machine learning network architecture offers higher prediction accuracy and learning efficiency, validating the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

33 pages, 24486 KiB  
Article
Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin
by Yizhuo Yang, Zhilong Huang, Tong Qu, Jing Zhao and Zhiyuan Li
Minerals 2025, 15(4), 394; https://doi.org/10.3390/min15040394 - 8 Apr 2025
Viewed by 493
Abstract
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a [...] Read more.
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a variety of methods, such as microscopic image observation, particle size analysis, X-ray diffraction measurement (XRD), heavy minerals, carbon and oxygen isotopes of cement, the homogenization temperature of fluid inclusions, zircon (U-Th)/He isotopes, and high-pressure mercury intrusion (HPMI), are used to analyze the thermal evolution history, diagenetic evolution process, and the causes of differences in diagenetic processes and high-quality reservoirs. This study shows that the provenance of the southern region is derived from western metamorphic rock, while that of the northern region is dominated by northern metamorphic rock, including some eastern volcanic rock. The northern region exhibits a stronger compaction and lower porosity, primarily due to a greater proportion of volcanic rock provenance. Additionally, coarse-grained lithofacies exhibit a higher quartz content and lower proportions of clay minerals and lithic fragment compared to fine-grained lithofacies, consequently demonstrating greater resistance to compaction. The Huagang Formation reservoir has three stages of carbonate cementation, two stages of quartz overgrowth, and two stages of fluid charging. The two stages of fluid charging correspond to two stages of organic acid dissolution. In the northern region, the geothermal gradient is high, and the burial depth is large, so the diagenetic event occurred earlier and is now in the mesodiagenesis B stage, while in the southern region, the geothermal gradient is low, and the burial depth is small and is now in the mesodiagenesis A stage. The southern distributary channel sands and northern high-energy braided channel sands constitute high-quality reservoirs, characterized by a coarse grain size, large pore throats, and minimal cement content. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 4857 KiB  
Article
From Battlefield to Building Site: Probabilistic Analysis of UXO Penetration Depth for Infrastructure Resilience
by Boules N. Morkos, Magued Iskander, Mehdi Omidvar and Stephan Bless
Appl. Sci. 2025, 15(6), 3259; https://doi.org/10.3390/app15063259 - 17 Mar 2025
Cited by 1 | Viewed by 438
Abstract
Remediation of formerly used war zones requires knowledge of the depth of burial (DoB) of unexploded ordnances (UXOs). The DoB can vary greatly depending on soil and ballistic conditions, and their associated uncertainties. In this study, the well-known physics-based Poncelet equation is used [...] Read more.
Remediation of formerly used war zones requires knowledge of the depth of burial (DoB) of unexploded ordnances (UXOs). The DoB can vary greatly depending on soil and ballistic conditions, and their associated uncertainties. In this study, the well-known physics-based Poncelet equation is used to set a framework for stochastic prediction of the DoB of munitions in sandy, clayey sand, and clayey sediments using Monte Carlo simulations (MCSs). First, the coefficients of variation (COVs) of the empirical parameters affecting the model were computed, for the first time, from published experimental data. Second, the behavior of both normal and lognormal distributions was investigated and it was found that both distributions yielded comparable DoB predictions for COVs below 30%. However, a lognormal distribution was preferred, to avoid negative value sampling, since COVs of the studied parameters can easily exceed this threshold. Third, the performance of several MCS sampling techniques, including the Pseudorandom Generator (PRG), Latin Hypercube Sampling (LHS), and Gaussian Process Response Surface Method (GP_RSM), in predicting the DOB was explored. Different probabilistic sampling techniques produced similar DoB predictions for each soil type, but GP_RSM was the most computationally efficient method. Finally, a sensitivity analysis was conducted to determine the contribution of each random variable to the predicted DoB. Uncertainty of the density, drag coefficient, and bearing coefficient dominated the DoB in sandy soil, while uncertainty in the bearing coefficient controlled DoB in clayey sand soils. In clayey soil, all variables under various distribution conditions resulted in approximately identical predictions, with no single variable appearing to be dominant. It is recommended that Monte Carlo simulations using GP_RSM sampling from lognormally distributed effective variables be used for predicting DoB in soils with high COVs. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

22 pages, 10789 KiB  
Article
Characteristics and Rapid Prediction of Seismic Subsidence of Saturated Seabed Foundation with Interbedded Soft Clay–Sand
by Liuyuan Zhao, Miaojun Sun, Jianhong Ye, Fuqin Yang and Kunpeng He
J. Mar. Sci. Eng. 2025, 13(3), 559; https://doi.org/10.3390/jmse13030559 - 13 Mar 2025
Viewed by 687
Abstract
Seabed foundations consisting of interbedded layers of saturated soft clay and sand deposited during the Quaternary period are widely distributed in the coastal areas of Southeastern China. These soil foundations are prone to significant settlement under seismic loading. The study of the seismic [...] Read more.
Seabed foundations consisting of interbedded layers of saturated soft clay and sand deposited during the Quaternary period are widely distributed in the coastal areas of Southeastern China. These soil foundations are prone to significant settlement under seismic loading. The study of the seismic dynamic response characteristics of saturated foundations with interbedded soft clay–sand and the development of rapid prediction models are essential for controlling settlement and ensuring the service safety of marine structures. A total of 4000 sets of seabed foundation models are randomly generated, with layers of saturated soft clay and sand and with a random distribution of layer thickness and burial depth. The mechanical behavior of saturated soft clay is described using the Soft Clay model based on the boundary surface theory, and the generalized elastoplastic constitutive model PZIII is used to characterize the mechanical behavior of sandy soil. The finite element platform FssiCAS is employed for a computational analysis to study the characteristics of seismic subsidence in saturated seabed foundations with interbedded soft clay–sand. A machine learning model is implemented based on the Random Forest algorithm, in which 3200 sets of numerical simulation results are used for model training, and 800 sets are used for validating the model’s reliability. The results show that under seismic excitation, the pore water pressure within the saturated seabed foundation with interbedded soft clay–sand accumulates, effective stress decreases, and the seabed foundation softens, to a certain extent. During the post-seismic consolidation phase, significant settlement of the seabed foundation occurs. The fast prediction model based on the Random Forest algorithm could reliably predict the settlement characteristics of submarine foundations. This research provides a new technological avenue for the rapid prediction of the seismic settlement of submarine foundations, which could be of use in engineering design, assessment, and prediction. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 11239 KiB  
Article
Genetic Model of the Luhai Sandstone-Type Uranium Deposit in the Erlian Basin, Inner Mongolia
by Chao Tang, Zenglian Xu, Ming Duan, Lishan Meng, Huajian Liu, Jialin Wei, Chao Zhang and Lijun Zhao
Minerals 2025, 15(3), 294; https://doi.org/10.3390/min15030294 - 13 Mar 2025
Cited by 1 | Viewed by 685
Abstract
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This [...] Read more.
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This paper provides new data on the genetic processes of sandstone-type uranium mineralization through sedimentological and geochemical environmental indicators (such as Fe3⁺/Fe2⁺, organic carbon, total sulfur, etc.), analysis of C-O isotopes of carbonate cements and H-O isotopes of groundwater, and geochemical and mineralogical studies of uranium minerals, iron–titanium oxides (involving backscatter analysis, micro-area chemical composition determination, and elemental surface scanning), and organic matter. Sedimentological analysis shows that the ore- bearing layer in the upper member of the Saihan Formation developed a braided channel within floodplain subfacies, which control the distribution of uranium ore bodies. Uranium mineralogical observations, geochemical environmental indicators, and organic geochemical data indicate that the main reducing agents related to mineralization are pyrite, terrestrial plants, and deep-sourced oil and gas. The δD values of groundwater in the ore-bearing layer range from −95.34‰ to −90.68‰, and the δ18O values range from −12.24‰ to −11.87‰. For calcite cements, the δ18OV-PDB values range from −24‰ to −11.5‰, and the δ18OV-SMOW values range from 6.2‰ to 19‰. It was determined that the ore-forming fluid is mainly surface fresh water that entered the strata during the tectonic uplift stage, with local mixing of deep-sourced brine. Based on these data, the main modes of uranium mineralization in the paleochannel were obtained as follows: (1) Redox mineralization occurs due to the reducing medium within the sand body itself and the reduction caused by deep- sourced oil and gas generated from the Tengge’er and Arshan Formations. (2) Mineralization is achieved through the mixing of fluids from different sources. Furthermore, a genetic model related to uranium mineralization in the paleochannels of the Luhai area has been established: favorable uranium reservoirs were formed during the sedimentary period, and during the post-sedimentary stage, reverse structures promoted redox reactions and fluid-mixing-induced mineralization. The research findings can provide guidance for the exploration of paleochannel sandstone-type uranium deposits in other areas of the Erlian Basin. Full article
Show Figures

Figure 1

16 pages, 4035 KiB  
Article
Abiotic Degradation of the Toxin Simplexin by Soil Collected from a Pimelea-Infested Paddock
by Zhi Hung Loh, Natasha L. Hungerford, Diane Ouwerkerk, Athol V. Klieve and Mary T. Fletcher
Toxins 2025, 17(3), 124; https://doi.org/10.3390/toxins17030124 - 6 Mar 2025
Viewed by 897
Abstract
Pimelea poisoning of cattle is caused by the toxin simplexin present in native Pimelea plant species. Surface weathering and burial of Pimelea plant material under soil in Pimelea-infested pastures previously showed simplexin degradation, suggesting soil microbial metabolism and/or abiotic degradation of simplexin [...] Read more.
Pimelea poisoning of cattle is caused by the toxin simplexin present in native Pimelea plant species. Surface weathering and burial of Pimelea plant material under soil in Pimelea-infested pastures previously showed simplexin degradation, suggesting soil microbial metabolism and/or abiotic degradation of simplexin in the field. This current study investigated whether soil from a Pimelea-infested paddock was capable of simplexin degradation in the laboratory. The effects of temperature on isolated simplexin levels and simplexin levels in Pimelea plant material treated with field-collected soil, acid-washed sand or bentonite were determined. Pimelea plant material incubated in field-collected soil at 22 °C for seven days did not show any simplexin degradation. Isolated simplexin preadsorbed to field-collected soil, acid-washed sand or bentonite showed simplexin decrease after one hour of incubation at 100 °C with three breakdown products identified by UPLC-MS/MS, indicating that toxin breakdown can be a heat-induced process rather than a microbial-based metabolism. Decreased simplexin levels were observed in Pimelea plant material mixed with acid-washed sand under similar incubation conditions. Overall, the study showed the field-collected soil did not contain soil microorganisms capable of simplexin metabolism within a short period of time. However, the co-exposure to high temperature resulted in significant abiotic simplexin breakdown, without microorganism involvement, with the product structures suggesting that the degradation was a heat promoted acid hydrolysis/elimination process. Overall, this study demonstrated that simplexin breakdown in the field could be a thermal abiotic process with no indication of microbial involvement. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Graphical abstract

15 pages, 5046 KiB  
Article
Changes and Influencing Factors of Carbon Content in Surface Sediments of Different Sedimentary Environments Along the Jiangsu Coast, China
by Linlu Xu, Hui Ye, Jianing Yin, Qiang Shu and Yuxin Fan
Diversity 2025, 17(3), 158; https://doi.org/10.3390/d17030158 - 25 Feb 2025
Viewed by 349
Abstract
Coastal areas are essential for global ‘blue carbon’ burial, significantly impacting the global carbon cycle. To better understand the carbon burial capacity, impact factors, and response mechanisms of surface sediments in different coastline regions, this study investigated the surface sediments of the Spartina [...] Read more.
Coastal areas are essential for global ‘blue carbon’ burial, significantly impacting the global carbon cycle. To better understand the carbon burial capacity, impact factors, and response mechanisms of surface sediments in different coastline regions, this study investigated the surface sediments of the Spartina alterniflora vegetation, transition, and bare flat areas along Jiangsu coast in China. The results indicated significant changes in organic carbon (OC), inorganic carbon (IC), and various physicochemical property indicators between the three coastal environments. There were also significant differences in the important impact factors of OC and IC in each region. In areas of vegetation, OC and IC influenced each other, while nitrogen (N), clay, and sand were common impact factors. The pH only had a significant impact on OC. In the bare flat area, the important impact factors of OC and IC were identical: OC/IC, clay, salinity (SAL), and sand. However, the important impact factors of OC and IC in the transition area have undergone significant changes. The important impact factors of OC were N, total phosphorus (TP), total sulfur (TS), SAL, and sand. The partial least squares regression analysis results of IC were poor, and there were no important impact factors. This study refined the spatial distribution patterns and response mechanisms to the important impact factors of carbon in different coastal subregions, providing a basis for accurately evaluating the role of coastal wetlands in mitigating global climate change. Full article
Show Figures

Figure 1

18 pages, 10124 KiB  
Article
Origin, Migration, and Accumulation of Crude Oils in the Chaoyang Step-Fault Zone, Fushan Depression, Beibuwan Basin: Insight from Geochemical Evidence and Basin Modeling
by Yang Shi, Hao Guo, Xiaohan Li, Huiqi Li, Meijun Li, Xin Wang, Surui Dong and Xi He
Energies 2024, 17(23), 5842; https://doi.org/10.3390/en17235842 - 21 Nov 2024
Viewed by 704
Abstract
The Fushan Depression is a hydrocarbon-rich depression in the Beibuwan Basin, South China Sea. In this study, 14 source rocks and 19 crude oils from the Chaoyang Step-Fault Zone and Southern Slope Zone were geochemically analyzed to determine their origins. The hydrocarbon generation, [...] Read more.
The Fushan Depression is a hydrocarbon-rich depression in the Beibuwan Basin, South China Sea. In this study, 14 source rocks and 19 crude oils from the Chaoyang Step-Fault Zone and Southern Slope Zone were geochemically analyzed to determine their origins. The hydrocarbon generation, migration, and accumulation processes were also determined using two-dimensional basin modeling. Crude oils from the low-step area show a close relationship with the source rocks of the first and second members of the Eocene Liushagang Formation (Els1 and Els2). The oils from the middle-step area and the Southern Slope Zone are derived from the local source rocks in those areas, in the third member of the Eocene Liushagang Formation (Els3). Hydrocarbons generated from the Els3 source rocks of the Southern Slope Zone migrated along sand bodies to the Els3 reservoir. The fault system of the Chaoyang Step-Fault Zone controls hydrocarbon migration and accumulation in the low-step and middle-step areas. The resource potential of the middle-step area is limited by its shallow burial depth. The low-step area is a more favorable exploration area due to its proximity to the source kitchen. Full article
Show Figures

Figure 1

16 pages, 5251 KiB  
Article
Identification of Picea mongolica LEA Gene Family Implicates PmLEA25 in Drought Resistance
by Yaping Wang, Jiaqi Li and Yu’e Bai
Forests 2024, 15(11), 1988; https://doi.org/10.3390/f15111988 - 11 Nov 2024
Viewed by 1044
Abstract
Picea mongolica is a rare and valuable tree species in China, having high tolerance for drought, cold, and sand burial. The late embryogenesis abundant protein (LEA protein) is a crucial transcription factor that plays a key role in both plant embryonic development and [...] Read more.
Picea mongolica is a rare and valuable tree species in China, having high tolerance for drought, cold, and sand burial. The late embryogenesis abundant protein (LEA protein) is a crucial transcription factor that plays a key role in both plant embryonic development and stress response. LEA genes have, however, not yet been reported in P. mongolica. In this study, through the analysis of genome data from Picea abies and transcriptome data from P. mongolica, a total of 49 PmLEAs were discovered and categorized into eight subfamilies based on their Pfam domain and phylogenetic relationship. RNA-Seq research revealed that 37 PmLEAs were differentially expressed at various stages of embryonic development. Using qRT-PCR, we found that most PmLEAs responded strongly to drought stress, with genes in the same subfamily exhibiting identical expression patterns. In particular, PmLEA25 is the most highly induced by drought treatment. Furthermore, we heterologously transformed PmLEA25 into Arabidopsis. The overexpression of PmLEA25 remarkably increased the germination rate, root length, and antioxidant capacity in Arabidopsis under drought treatment, compared with WT. The results serve as a point of reference for gaining a deeper comprehension of the function of PmLEA25 in the molecular process of stress resistance in P. mongolica. Additionally, they offer significant genetic materials for the purpose of breeding stress-resistant spruce species. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

35 pages, 14944 KiB  
Article
Simulating Compaction and Cementation of Clay Grain Coated Sands in a Modern Marginal Marine Sedimentary System
by James E. Houghton, Thomas E. Nichols and Richard H. Worden
Geosciences 2024, 14(10), 268; https://doi.org/10.3390/geosciences14100268 - 12 Oct 2024
Viewed by 1736
Abstract
Reservoir quality prediction in deeply buried reservoirs represents a complex challenge to geoscientists. In sandstones, reservoir quality is determined by the extent of compaction and cementation during burial. During compaction, porosity is lost through the rearrangement and fracture of rigid grains and the [...] Read more.
Reservoir quality prediction in deeply buried reservoirs represents a complex challenge to geoscientists. In sandstones, reservoir quality is determined by the extent of compaction and cementation during burial. During compaction, porosity is lost through the rearrangement and fracture of rigid grains and the deformation of ductile grains. During cementation, porosity is predominantly lost through the growth of quartz cement, although carbonate and clay mineral growth can be locally important. The degree of quartz cementation is influenced by the surface area of quartz available for overgrowth nucleation and thermal history. Clay grain coats can significantly reduce the surface area of quartz available for overgrowth nucleation, preventing extensive cementation. Using a coupled-effect compaction and cementation model, we have forward-modelled porosity evolution of surface sediments from the modern Ravenglass Estuary under different maximum burial conditions, between 2000 and 5000 m depth, to aid the understanding of reservoir quality distribution in a marginal marine setting. Seven sand-dominated sub-depositional environments were subject to five burial models to assess porosity-preservation in sedimentary facies. Under relatively shallow burial conditions (<3000 m), modelled porosity is highest (34 to 36%) in medium to coarse-grained outer-estuary sediments due to moderate sorting and minimal fine-grained matrix material. Fine-grained tidal flat sediments (mixed flats) experience a higher degree of porosity loss due to elevated matrix volumes (20 to 31%). Sediments subjected to deep burial (>4000 m) experience a significant reduction in porosity due to extensive quartz cementation. Porosity is reduced to 1% in outer estuary sediments that lack grain-coating clays. However, in tidal flat sediments with continuous clay grain coats, porosity values of up to 30% are maintained due to quartz cement inhibition. The modelling approach powerfully emphasises the value of collecting quantitative data from modern analogue sedimentary environments to reveal how optimum reservoir quality is not always in the coarsest or cleanest clastic sediments. Full article
Show Figures

Figure 1

20 pages, 7205 KiB  
Article
Study on the Effect of Liquefiable Overburden Foundations of Rockfill Dams Based on a Pore Pressure Model
by Zhuxin Li, Hao Zou, Shengqi Jian, Zhongxu Li, Hengxing Lin, Xiang Yu and Minghao Li
Water 2024, 16(18), 2649; https://doi.org/10.3390/w16182649 - 18 Sep 2024
Cited by 2 | Viewed by 1148
Abstract
China’s southwestern region boasts abundant hydropower resources. However, the area is prone to frequent strong earthquakes. The areas surrounding dam sites typically have deep overburden, and the liquefaction of saturated sand foundations by earthquakes poses significant safety risks to the construction of high [...] Read more.
China’s southwestern region boasts abundant hydropower resources. However, the area is prone to frequent strong earthquakes. The areas surrounding dam sites typically have deep overburden, and the liquefaction of saturated sand foundations by earthquakes poses significant safety risks to the construction of high dams in the southwest. The effects of liquefaction and reinforcing measures on the foundations of rockfill dams on liquefiable overburden under seismic action are currently the subject of somewhat unsystematic investigations. The paper utilizes the total stress and effective stress methods, based on the equivalent linear model, to perform numerical simulations on the overburden foundations of rockfill dams. The study explores how factors such as dam height, overburden thickness, liquefiable layer depth, liquefiable layer thickness, ground motion intensity, and seismic wave characteristics affect the liquefaction of the overburden foundations. Additionally, it examines how rockfill dams impact the dynamic response, considering the liquefaction effects in the overburden. The results show that although the total stress method, which ignores the cumulative evolution of pore pressure during liquefaction, can reveal the basic response trend of the dam, its results in predicting the acceleration response are significantly biased compared to those of the effective stress method, which comprehensively considers the cumulative changes in liquefaction pore pressure. Specifically, when the effect of soil liquefaction is considered, the predicted acceleration response is reduced compared to that when liquefaction is not considered, with the reduction ranging from 4% to 30%; with increases in the thickness and burial depth of the liquefiable layer, the effective stress method considering liquefaction significantly reduces the predicted peak acceleration; the effect of liquefiable soil on the attenuation of the speed response is more sensitive to the low-frequency portion of the seismic wave. The study’s findings are a significant source of reference for the planning and building of rockfill dams on liquefiable overburden. Full article
(This article belongs to the Special Issue Research Advances in Hydraulic Structure and Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 4539 KiB  
Article
The Effect of Soil Type and Moisture on the Development of Forensically Important Megaselia scalaris and Dohrniphora cornuta (Diptera: Phoridae)
by Wei Han, Dianxing Feng and Yanan Tang
Insects 2024, 15(9), 666; https://doi.org/10.3390/insects15090666 - 1 Sep 2024
Cited by 1 | Viewed by 1279
Abstract
Necrophagous phorid flies are common insects found on buried corpses, and their developmental data play a crucial role in estimating the post-burial interval (PBI). This study aimed to investigate the effects of soil type and moisture content on some life cycle parameters of [...] Read more.
Necrophagous phorid flies are common insects found on buried corpses, and their developmental data play a crucial role in estimating the post-burial interval (PBI). This study aimed to investigate the effects of soil type and moisture content on some life cycle parameters of two forensically important insects, Megaselia scalaris (Loew, 1866) and Dohrniphora cornuta (Bigot, 1857) (Diptera: Phoridae). Larval and pupal survival, development time, and larval body length of M. scalaris and D. cornuta were observed in three different soil types (loamy sand, sandy loam A, and sandy loam B) with six moisture contents (0%, 20%, 40%, 60%, 80%, and 100%). The results indicated that soil types, soil moisture, and their interaction significantly influenced the growth and development of both species, with moisture being the most influential factor. In each soil, 20% and 40% moisture contents were more suitable for their growth and development. Both the development time and maximum larval body length were significantly different among soil types and moisture contents. The larval period of both species lasted the longest in all soils with 0% moisture content. Additionally, a regression analysis of the relationship between larval body length and development time was performed at different moisture contents in three soils. This study expanded our knowledge of the factors that influence the development of necrophagous insects and provided some reference data for applications of M. scalaris and D. cornuta in PBI estimation. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

Back to TopTop