Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,452)

Search Parameters:
Keywords = safety improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

29 pages, 2129 KiB  
Review
Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies
by Tiansi Wang, Haoran Liu, Wanlin Wang, Weiran Jiang, Yixiang Xu, Simeng Zhu and Qingliang Sheng
Processes 2025, 13(8), 2499; https://doi.org/10.3390/pr13082499 (registering DOI) - 7 Aug 2025
Abstract
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability [...] Read more.
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability of battery thermal runaway. These challenges include the limited heat dissipation capability of passive thermal management, the high energy consumption of active thermal management, and the ongoing optimization of material improvement methods. This paper systematically examines the mechanisms through which three main triggers—mechanical abuse, thermal abuse, and electrical abuse—affect the thermal runaway of lithium-ion batteries. It also reviews the advantages and limitations of passive and active thermal management techniques, battery management systems, and material improvement strategies for enhancing the thermal stability of batteries. Additionally, a comparison of the principles, characteristics, and innovative examples of various thermal management technologies is provided in tabular form. The study aims to offer a theoretical foundation and practical guidance for optimizing lithium-ion battery thermal management technologies, thereby promoting their development for high-safety and high-reliability applications. Full article
(This article belongs to the Section Energy Systems)
21 pages, 2909 KiB  
Article
Novel Fractional Approach to Concrete Creep Modeling for Bridge Engineering Applications
by Krzysztof Nowak, Artur Zbiciak, Piotr Woyciechowski, Damian Cichocki and Radosław Oleszek
Materials 2025, 18(15), 3720; https://doi.org/10.3390/ma18153720 (registering DOI) - 7 Aug 2025
Abstract
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, [...] Read more.
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, and 75% of cement mass) and air-entrainment. The results were used to calibrate fractal rheological models—Kelvin–Voigt and Huet–Sayegh—where the viscous element was replaced with a fractal element. These models showed high agreement with experimental data and improved the accuracy of creep prediction. Comparison with Eurocode 2 revealed discrepancies up to 64%, especially for slag-free concretes used in prestressed bridge structures. The findings highlight the important role of mineral additives in reducing creep strains and the need to consider individual mix characteristics in design calculations. In the context of modern bridge construction technologies, such as balanced cantilever or incremental launching, reliable modeling of early-age creep is particularly important. The proposed modeling approach may enhance the precision of long-term structural behavior analyses and contribute to improved safety and durability of concrete infrastructure. Full article
Show Figures

Graphical abstract

23 pages, 4511 KiB  
Article
Analysis of the Upper Limit of the Stability of High and Steep Slopes Supported by a Combination of Anti-Slip Piles and Reinforced Soil Under the Seismic Effect
by Wei Luo, Gequan Xiao, Zhi Tao, Jingyu Chen, Zhulong Gong and Haifeng Wang
Buildings 2025, 15(15), 2806; https://doi.org/10.3390/buildings15152806 (registering DOI) - 7 Aug 2025
Abstract
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading [...] Read more.
The reinforcement effect of single-reinforced soil support under external loading has limitations, and it is difficult for it to meet engineering stability requirements. Therefore, the stability analysis of slopes supported by a combination of anti-slip piles and reinforced soil under the seismic loading effect needs an in-depth study. Based on the upper-bound theorem of limit analysis and the strength-reduction technique, this study establishes an upper-bound stability model for high–steep slopes that simultaneously considers seismic action and the combined reinforcement of anti-slide piles and reinforced soil. A closed-form safety factor is derived. The theoretical results are validated against published data, demonstrating satisfactory agreement. Finally, the MATLAB R2022a sequential quadratic programming method is used to optimize the objective function, and the Optum G2 2023 software is employed to analyze the factors influencing slope stability due to the interaction between anti-slide piles and geogrids. The research indicates that the horizontal seismic acceleration coefficient kh exhibits a significant negative correlation with the safety factor Fs. Increases in the tensile strength T of the reinforcing materials, the number of layers n, and the length l all significantly improve the safety factor Fs of the reinforced-soil slope. Additionally, as l increases, the potential slip plane of the slope shifts backward. For slope support systems combining anti-slide piles and reinforced soil, when the length of the geogrid is the same, adding anti-slide piles can significantly improve the slope’s safety factor. As anti-slide piles move from the toe to the crest of the slope, the safety factor first decreases and then increases, indicating that the optimal reinforcement position for anti-slide piles should be in the middle to lower part of the slope body. The length of the anti-slip piles should exceed the lowest layer of the geogrid to more effectively utilize the blocking effect of the pile ends on the slip surface. The research findings can provide a theoretical basis and practical guidance for parameter optimization in high–steep slope support engineering. Full article
(This article belongs to the Section Building Structures)
44 pages, 4024 KiB  
Review
Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
by Zhanchao Li, Ebrahim Yahya Khailah, Xingyang Liu and Jiaming Liang
Buildings 2025, 15(15), 2803; https://doi.org/10.3390/buildings15152803 (registering DOI) - 7 Aug 2025
Abstract
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining [...] Read more.
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
29 pages, 4749 KiB  
Article
Experimental and Computational Analysis of Large-Amplitude Flutter in the Tacoma Narrows Bridge: Wind Tunnel Testing and Finite Element Time-Domain Simulation
by Bishang Zhang and Ledong Zhu
Buildings 2025, 15(15), 2800; https://doi.org/10.3390/buildings15152800 (registering DOI) - 7 Aug 2025
Abstract
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on [...] Read more.
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on H-shaped bluff sections and closed box girders using a high-precision five-component piezoelectric balance combined with a custom support system. Complementing these experiments, a finite element time-domain simulation framework was developed, incorporating experimentally derived nonlinear flutter derivatives. Validation was achieved through aeroelastic testing of a 1:110-scale model of the original Tacoma Narrows Bridge and corresponding numerical simulations. The results revealed Hopf bifurcation phenomena in H-shaped bluff sections, indicated by amplitude-dependent flutter derivatives and equivalent damping coefficients. The simulation results showed less than a 10% deviation from experimental and historical wind speed–amplitude data, confirming the model’s accuracy. Failure analysis identified suspenders as the critical failure components in the Tacoma collapse. This work develops a comprehensive performance-based design framework that improves the safety, robustness, and resilience of long-span suspension bridges against complex nonlinear aerodynamic effects while enabling cost-effective, targeted reinforcement strategies to advance modern bridge engineering. Full article
13 pages, 283 KiB  
Review
Integrating Peripheral Nerve Blocks in Multiple Trauma Care: Current Evidence and Clinical Challenges
by Liliana Mirea, Ana-Maria Dumitriu, Cristian Cobilinschi, Răzvan Ene and Raluca Ungureanu
J. Clin. Med. 2025, 14(15), 5598; https://doi.org/10.3390/jcm14155598 (registering DOI) - 7 Aug 2025
Abstract
Pain management in multiple trauma patients presents a complex clinical challenge due to competing priorities such as hemodynamic instability, polypharmacy, coagulopathy, and the urgency of life-saving interventions. In this context, peripheral nerve blocks (PNBs) are increasingly recognized as a valuable asset for their [...] Read more.
Pain management in multiple trauma patients presents a complex clinical challenge due to competing priorities such as hemodynamic instability, polypharmacy, coagulopathy, and the urgency of life-saving interventions. In this context, peripheral nerve blocks (PNBs) are increasingly recognized as a valuable asset for their role in managing pain in patients with multiple traumatic injuries. By reducing reliance on systemic opioids, PNBs support effective pain control and facilitate early mobilization, aligning with enhanced recovery principles. This narrative review summarizes current evidence on the use of PNBs in the context of polytrauma, focusing on their analgesic efficacy, integration within multimodal analgesia protocols, and contribution to improved functional outcomes. Despite these advantages, clinical application is limited by specific concerns, including the potential to mask compartment syndrome, the risk of nerve injury or local anesthetic systemic toxicity (LAST), and logistical barriers in acute trauma settings. Emerging directions in the field include the refinement of ultrasound-guided PNB techniques, the expanded use of continuous catheter systems, and the incorporation of fascial plane blocks for anatomically complex or multisite trauma. Parallel efforts are focusing on the development of decision-making algorithms, improved risk stratification tools, and integration into multimodal analgesic pathways. There is also growing emphasis on standardized clinical protocols, simulation-based training, and patient education to enhance safety and consistency in practice. As evidence continues to evolve, the long-term impact of PNBs on functional recovery, quality of life, and healthcare utilization must be further explored. With thoughtful implementation, structured training, and institutional support, PNBs may evolve into a cornerstone of modern trauma analgesia. Full article
(This article belongs to the Special Issue Anesthesia and Intensive Care in Orthopedic and Trauma Surgery)
18 pages, 822 KiB  
Systematic Review
Virtual Care Perceptions and Experiences of Older Adults During COVID-19 in Canada: A Systematic Review
by Donna Gao, Angela Xu and Lixia Yang
Healthcare 2025, 13(15), 1937; https://doi.org/10.3390/healthcare13151937 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Older adults (65+) are the fastest growing age group in Canada, comprising 18.8% of the country’s population. During the COVID-19 pandemic, use of virtual care, including telehealth and tele-medicine, increased dramatically among older adults in Canada who often face higher health [...] Read more.
Background/Objectives: Older adults (65+) are the fastest growing age group in Canada, comprising 18.8% of the country’s population. During the COVID-19 pandemic, use of virtual care, including telehealth and tele-medicine, increased dramatically among older adults in Canada who often face higher health risks, mobility limitations, and many barriers to accessing healthcare. Despite the rapid expansion in virtual care, no systematic review has focused specifically on virtual care among older adults in Canada. This review aims to explore the factors influencing virtual care adoption and the experiences of older Canadians during the pandemic through a systematic review. Methods: Conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, the review involved a comprehensive search of PubMed, Scopus, ESCBOHost, and Web of Science on 2 May 2025, yielding 281 unique citations. After screening and applying eligibility criteria, 15 studies employing quantitative, qualitative, or mixed-methods designs, with sample sizes ranging from 15 to 2,282,798, were included and appraised using the Mixed Methods Appraisal Tool (MMAT). Results: The review identified three domains of factors and the ways in which each factor shapes older adults’ virtual care experiences: (1) personal factors influencing virtual care use and demand (e.g., age, education, language, income, immigration status, community sizes), (2) resource factors impacting virtual care adoption (e.g., technology access, support), and (3) varying virtual care experiences among older adults (e.g., in assessment and communication efficacy, privacy, care quality, convenience, safety, and costs). Conclusions: This review highlights the complexities of virtual care engagement among older adults and underscores the need for inclusive, tailored strategies to improve the accessibility and effectiveness of virtual care delivery in both pandemic and post-pandemic contexts. Full article
(This article belongs to the Special Issue Aging and Older Adults’ Healthcare)
Show Figures

Figure 1

23 pages, 7000 KiB  
Article
Bridge Damage Identification Using Time-Varying Filtering-Based Empirical Mode Decomposition and Pre-Trained Convolutional Neural Networks
by Shenghuan Zeng, Jian Cui, Ding Luo and Naiwei Lu
Sensors 2025, 25(15), 4869; https://doi.org/10.3390/s25154869 (registering DOI) - 7 Aug 2025
Abstract
Structural damage identification provides a theoretical foundation for the operational safety and preventive maintenance of in-service bridges. However, practical bridge health monitoring faces challenges in poor signal quality, difficulties in feature extraction, and insufficient damage classification accuracy. This study presents a bridge damage [...] Read more.
Structural damage identification provides a theoretical foundation for the operational safety and preventive maintenance of in-service bridges. However, practical bridge health monitoring faces challenges in poor signal quality, difficulties in feature extraction, and insufficient damage classification accuracy. This study presents a bridge damage identification framework integrating time-varying filtering-based empirical mode decomposition (TVFEMD) with pre-trained convolutional neural networks (CNNs). The proposed method enhances the key frequency-domain features of signals and suppresses the interference of non-stationary noise on model training through adaptive denoising and time–frequency reconstruction. TVFEMD was demonstrated in numerical simulation experiments to have a better performance than the traditional EMD in terms of frequency separation and modal purity. Furthermore, the performances of three pre-trained CNN models were compared in damage classification tasks. The results indicate that ResNet-50 has the best optimal performance compared with the other networks, particularly exhibiting better adaptability and recognition accuracy when processing TVFEMD-denoised signals. In addition, the principal component analysis visualization results demonstrate that TVFEMD significantly improves the clustering and separability of feature data, providing clearer class boundaries and reducing feature overlap. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
21 pages, 510 KiB  
Review
IoT and Machine Learning for Smart Bird Monitoring and Repellence: Techniques, Challenges, and Opportunities
by Samson O. Ooko, Emmanuel Ndashimye, Evariste Twahirwa and Moise Busogi
IoT 2025, 6(3), 46; https://doi.org/10.3390/iot6030046 (registering DOI) - 7 Aug 2025
Abstract
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and [...] Read more.
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and ineffective over time. Advances in artificial intelligence (AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detection and repellence. This study reviews recent developments (2020–2025) in AI-driven bird detection and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and edge-based environments. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was used, with 267 studies initially identified and screened from key scientific databases. A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection, and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve detection accuracy in diverse environments. Repellence strategies include sound-based deterrents, visual deterrents, predator-mimicking visuals, and adaptive AI-integrated systems. Deployment success depends on edge compatibility, power efficiency, and dataset quality. The limitations of current studies include species-specific detection challenges, data scarcity, environmental changes, and energy constraints. Future research should focus on tiny and lightweight AI models, standardised multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision agriculture and ecological monitoring. Full article
Show Figures

Figure 1

14 pages, 514 KiB  
Case Report
Thallium Exposure Secondary to Commercial Kale Chip Consumption: California Case Highlights Opportunities for Improved Surveillance and Toxicological Understanding
by Asha Choudhury, Jefferson Fowles, Russell Bartlett, Mark D. Miller, Timur Durrani, Robert Harrison and Tracy Barreau
Int. J. Environ. Res. Public Health 2025, 22(8), 1235; https://doi.org/10.3390/ijerph22081235 (registering DOI) - 7 Aug 2025
Abstract
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels [...] Read more.
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels noted among a mother (peak 5.6 µg/g creatinine; adult reference: ≤0.4 µg/g creatinine) and her three young children (peak 10.5 µg/g creatinine; child reference: ≤0.8 µg/g creatinine). Objectives: This case report identifies questions raised after a public health investigation linked a household’s thallium exposure to a commercially available food product. We provide an overview of the public health investigation. We then explore concerns, such as gaps in toxicological data and limited surveillance of thallium in the food supply, which make management of individual and population exposure risks challenging. Methods: We highlight findings from a cross-agency investigation, including a household exposure survey, sampling of possible environmental and dietary exposures (ICP-MS analysis measured thallium in kale chips at 1.98 mg/kg and 2.15 mg/kg), and monitoring of symptoms and urine thallium levels after the source was removed. We use regulatory and research findings to describe the challenges and opportunities in characterizing the scale of thallium in our food supply and effects of dietary exposures on health. Discussion: Thallium can bioaccumulate in our food system, particularly in brassica vegetables like kale. Thallium concentration in foods can also be affected by manufacturing processes, such as dehydration. We have limited surveillance data nationally regarding this metal in our food supply. Dietary reviews internationally show increased thallium intake in toddlers. Limited information is available about low-dose or chronic exposures, particularly among children, although emerging evidence shows that there might be risks associated at lower levels than previously thought. Improved toxicological studies are needed to guide reference doses and food safety standards. Promising action towards enhanced monitoring of thallium is being pursued by food safety agencies internationally, and research is underway to deepen our understanding of thallium toxicity. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

36 pages, 2683 KiB  
Systematic Review
Physics-Informed Surrogate Modelling in Fire Safety Engineering: A Systematic Review
by Ramin Yarmohammadian, Florian Put and Ruben Van Coile
Appl. Sci. 2025, 15(15), 8740; https://doi.org/10.3390/app15158740 - 7 Aug 2025
Abstract
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address [...] Read more.
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address these concerns, physics-informed surrogate modelling (PISM) integrates physical laws into machine learning models, enhancing their accuracy, robustness, and interpretability. This systematic review synthesises existing applications of PISM in FSE, classifies the strategies used to embed physical knowledge, and outlines key research challenges. A comprehensive search was conducted across Google Scholar, ResearchGate, ScienceDirect, and arXiv up to May 2025, supported by backward and forward snowballing. Studies were screened against predefined criteria, and relevant data were analysed through narrative synthesis. A total of 100 studies were included, covering five core FSE domains: fire dynamics, wildfire behaviour, structural fire engineering, material response, and heat transfer. Four main strategies for embedding physics into machine learning were identified: feature engineering techniques (FETs), loss-constrained techniques (LCTs), architecture-constrained techniques (ACTs), and offline-constrained techniques (OCTs). While LCT and ACT offer strict enforcement of physical laws, hybrid approaches combining multiple strategies often produce better results. A stepwise framework is proposed to guide the development of PISM in FSE, aiming to balance computational efficiency with physical realism. Common challenges include handling nonlinear behaviour, improving data efficiency, quantifying uncertainty, and supporting multi-physics integration. Still, PISM shows strong potential to improve the reliability and transparency of machine learning in fire safety applications. Full article
Show Figures

Figure 1

14 pages, 702 KiB  
Article
Patient Safety Culture of Hospitals in Southern Laos: A Cross-Sectional Study Using the Hospital Survey on Patient Safety Culture
by Miho Sodeno, Moe Moe Thandar, Somchanh Thounsavath, Olaphim Phouthavong, Masahiko Hachiya and Yasunori Ichimura
Healthcare 2025, 13(15), 1934; https://doi.org/10.3390/healthcare13151934 - 7 Aug 2025
Abstract
Background: Patient safety culture is critical for enhancing the quality and safety of healthcare. Studies in low- and middle-income countries have reported challenges in developing patient safety culture, especially in implementing nonpunitive responses to errors and event reporting. However, evidence from Laos remains [...] Read more.
Background: Patient safety culture is critical for enhancing the quality and safety of healthcare. Studies in low- and middle-income countries have reported challenges in developing patient safety culture, especially in implementing nonpunitive responses to errors and event reporting. However, evidence from Laos remains limited. Objectives: This study aimed to assess patient safety culture in hospitals in southern Laos, using a validated survey tool to identify strengths and areas of improvement. Methods: A cross-sectional study using purposive sampling was conducted in four provincial and twenty-three district hospitals in southern Laos. Healthcare workers on patient safety committees responded to the Hospital Survey on Patient Safety Culture. The positive response rate was analyzed. Bivariate tests (chi-square/Fisher’s exact) were applied to compare positive response rates between hospital types and professions. Results: A total of 253 valid responses (75.5%) were analyzed. “Organizational Learning–Continuous Improvement” scored over 75% in both provincial and district hospitals. In contrast, “Nonpunitive Response to Error” and “Frequency of Events Reported” were scored <20% on average. Provincial hospitals scored significantly higher than district hospitals in supervisory support and handoffs. Conclusions: This study illustrated strengths in organizational learning while identifying nonpunitive responses and event reporting as critical areas of improvement for hospitals in Laos. To improve patient safety, hospitals in Laos must promote a culture in which errors can be reported without fear of blame. Strengthening leadership support and reporting systems is essential. These findings can inform strategies to enhance patient safety in other low-resource healthcare settings. Full article
Show Figures

Figure 1

8 pages, 449 KiB  
Article
Feasibility and Postoperative Outcome After Duet Procedure for Reversible Multifocality in Eyes with Co-Pathologies
by Barbara S. Brunner, Martin Dirisamer, Nikolaus Luft, Stefan Kassumeh and Siegfried G. Priglinger
J. Clin. Med. 2025, 14(15), 5583; https://doi.org/10.3390/jcm14155583 - 7 Aug 2025
Abstract
Objectives: To evaluate the safety and efficacy of the simultaneous implantation of a monofocal capsular bag-fixated and a trifocal supplementary sulcus-fixated intraocular lens (duet procedure) in eyes with co-existing pathologies undergoing cataract or refractive lens surgery. Methods: In total, 80 eyes [...] Read more.
Objectives: To evaluate the safety and efficacy of the simultaneous implantation of a monofocal capsular bag-fixated and a trifocal supplementary sulcus-fixated intraocular lens (duet procedure) in eyes with co-existing pathologies undergoing cataract or refractive lens surgery. Methods: In total, 80 eyes of 40 consecutive patients, who underwent refractive lens exchange or cataract surgery and received the duet procedure due to minor co-pathologies, were included in this retrospective case series. Preoperative assessment comprised slit-lamp biomicroscopy, optical biometry, posterior-segment optical coherence tomography, corneal endothelial specular microscopy, corneal tomography, manifest refraction and distance and near visual acuity testing. Three months postoperatively, uncorrected distance (UDVA) and uncorrected near visual acuity (UNVA) were recorded. Results: The preoperative manifest refractive spherical equivalent (MRSE) was −0.31 ± 4.29 diopters (D), with a mean refractive astigmatism of −0.80 ± 0.60 D. At three months postoperatively, monocular UDVA and binocular UNVA significantly improved from 0.52 ± 0.42 logMAR and 0.32 ± 0.27 logMAR to 0.05 ± 0.09 logMAR and −0.03 ± 0.10 logMAR, respectively (both p < 0.0001). Conclusions: Reversible multifocality provided by the duet procedure appears to be a feasible option in eyes with mild co-existing pathologies, as it yields satisfactory visual and refractive outcomes with high safety. Full article
Show Figures

Figure 1

11 pages, 1167 KiB  
Article
Efficacy of Noofen 250 mg Capsules for the Management of Anxious–Neurotic Symptoms in Patients with Adjustment Disorder
by Elmārs Tērauds, Guna Dansone and Yulia Troshina
J. Clin. Med. 2025, 14(15), 5570; https://doi.org/10.3390/jcm14155570 - 7 Aug 2025
Abstract
Background: This study aimed to evaluate the efficacy and safety of Noofen® (Phenibut) in patients with Adjustment Disorder (AjD) and to assess the usability of the ADNM-20 (Adjustment Disorder New Module 20-item questionnaire) in routine clinical practice. This is the first study [...] Read more.
Background: This study aimed to evaluate the efficacy and safety of Noofen® (Phenibut) in patients with Adjustment Disorder (AjD) and to assess the usability of the ADNM-20 (Adjustment Disorder New Module 20-item questionnaire) in routine clinical practice. This is the first study of Noofen® in patients with AjD conducted in Latvia, and it also represents one of the first implementations of the ADNM-20 scale in routine clinical settings, where its applicability has not yet been widely established. Methods: A non-interventional observational study was conducted across several general practice offices in Latvia. Patients aged 18–70 with clinical symptoms of AjD, an ADNM-20 total score ≥ 30, and a new prescription for Noofen® 250 mg three times daily for at least three weeks (per routine practice) were included. Exclusion criteria ruled out concomitant psychiatric or severe somatic conditions and use of medications or interventions that could affect AjD symptoms. Patients completed the ADNM-20 before and after treatment, and score changes were evaluated. Results: Ninety patients (65 women, 25 men; mean age 48 ± 12 years) completed the study. At baseline, 56.7% had high AjD symptom severity, with work-related stressors most frequently reported as triggers. After three weeks of Noofen® treatment, ADNM-20 total scores decreased significantly (mean reduction 14.8 ± 11.3 points, p < 0.001), with greater improvement in core vs. accessory symptoms. Symptom severity shifted, with the proportion of high-severity patients decreasing 2.5-fold, and 14.4% scoring below the AjD diagnostic threshold post-treatment. Noofen® was well tolerated. ADNM-20 showed good sensitivity to symptom change but remained vulnerable to human error during scoring. Conclusions: Noofen® significantly reduced AjD symptoms, particularly sleep disturbance, restlessness, and anxiety, and was well tolerated. The ADNM-20 questionnaire proved useful in clinical practice and should be considered for routine use to better recognize and monitor AjD. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

Back to TopTop