Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = roof shading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3840 KiB  
Article
Evaluation of Incident Light Characteristics for Vehicle-Integrated Photovoltaics Installed on Roofs and Hoods Across All Types of Vehicles: A Case Study of Commercial Passenger Vehicles
by Shota Matsushita, Kenji Araki, Yasuyuki Ota and Kensuke Nishioka
Appl. Sci. 2025, 15(15), 8702; https://doi.org/10.3390/app15158702 (registering DOI) - 6 Aug 2025
Abstract
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs [...] Read more.
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs and hoods. Surface element data were collected from areas near the target locations (hood and roof), with shading effects taken into account. The calculations evaluated how the angle of incoming light impacts the intensity on specific parts of the vehicle, identifying which surfaces are most likely to receive maximum illumination. For example, the hood exhibited the highest incident light intensity when sunlight approached directly from the front at a solar altitude of 71°, reaching approximately 98% of the light intensity. These calculations enable the assessment of incident light intensity characteristics for various vehicle parts, including the hood and roof. Additionally, by utilizing database information, it is possible to calculate the incident light on vehicle surfaces at any given time and location. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 997
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 370
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

35 pages, 7539 KiB  
Article
Tomato Yield Under Different Shading Levels in an Agrivoltaic Greenhouse in Southern Spain
by Anna Kujawa, Julian Kornas, Natalie Hanrieder, Sergio González Rodríguez, Lyubomir Hristov, Álvaro Fernández Solas, Stefan Wilbert, Manuel Jesus Blanco, Leontina Berzosa Álvarez, Ana Martínez Gallardo, Adoración Amate González, Marina Casas Fernandez, Francisco Javier Palmero Luque, Manuel López Godoy, María del Carmen Alonso-García, José Antonio Carballo, Luis Fernando Zarzalejo Tirado, Cristina Cornaro and Robert Pitz-Paal
AgriEngineering 2025, 7(6), 178; https://doi.org/10.3390/agriengineering7060178 - 6 Jun 2025
Cited by 1 | Viewed by 2324
Abstract
Agrivoltaic greenhouses in southern Spain offer a sustainable way to manage excessive irradiance levels by generating renewable energy. This study presents a shading experiment on tomato cultivation in a raspa-y-amagado greenhouse in Almeria, southern Spain, during the 2023–2024 growing season. Photovoltaic modules were [...] Read more.
Agrivoltaic greenhouses in southern Spain offer a sustainable way to manage excessive irradiance levels by generating renewable energy. This study presents a shading experiment on tomato cultivation in a raspa-y-amagado greenhouse in Almeria, southern Spain, during the 2023–2024 growing season. Photovoltaic modules were mimicked by opaque plastic sheets that were arranged in a checkerboard pattern on the roof of the greenhouse. Two shading zones (30% and 50% roof cover ratio) were compared against an unshaded control zone. Microclimate, plant physiology, yield and quality were monitored during the study. The results show that shading influenced the microclimate, which directly impacted crop yield. The 30% and 50% shading zones resulted in 15% and 26% crop yield reductions, respectively. A preliminary, theoretical analysis of potential revenues of the photovoltaic yield showed that reductions in crop yield can be overcompensated by the energy generated by the PV system. For the summer crop cycle, a higher PV production and lower crop yield reductions can be expected. The economic advantage demonstrates the potential of agrivoltaic greenhouses in southern Spain. Full article
Show Figures

Figure 1

29 pages, 6510 KiB  
Article
Energy-Efficient Design of Immigrant Resettlement Housing in Qinghai: Solar Energy Utilization, Sunspace Temperature Control, and Envelope Optimization
by Bo Liu, Yu Liu, Qianlong Xin, Xiaomei Kou and Jie Song
Buildings 2025, 15(9), 1434; https://doi.org/10.3390/buildings15091434 - 24 Apr 2025
Cited by 1 | Viewed by 462
Abstract
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic [...] Read more.
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic field investigations and Rhinoceros modeling simulations of five representative rural residences across four villages. The key findings reveal that comprehensive building envelope retrofits achieve an 80% reduction in energy consumption. South-facing sunspaces demonstrate effective thermal buffering capacity, though their spatial depth exhibits negligible correlation with heating energy requirements. An optimized hybrid shading system combining roof overhangs and vertical louvers demonstrates critical efficacy in summer overheating mitigation, with vertical louvers demonstrating superior thermal and luminous regulation precision. Architectural orientation analysis identifies an optimal alignment within ±10° of true south, emphasizing the functional zoning principle of positioning primary living spaces in south-oriented ground floor areas while locating auxiliary functions in northeastern/northwestern zones. The integrated design framework synergizes three core components: passive solar optimization, climate-responsive shading mechanisms, and performance-enhanced envelope systems, achieving simultaneous improvements in energy efficiency and thermal comfort within resettlement housing constraints. This methodology establishes a replicable paradigm for climate-resilient rural architecture in high-altitude, solar-intensive cold regions, effectively reconciling community reconstruction needs with low-carbon development imperatives through context-specific technical solutions. Full article
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
A Bioclimatic Design Approach to the Energy Efficiency of Farm Wineries: Formulation and Application in a Study Area
by Verónica Jiménez-López, Anibal Luna-León, Gonzalo Bojórquez-Morales and Stefano Benni
AgriEngineering 2025, 7(4), 98; https://doi.org/10.3390/agriengineering7040098 - 1 Apr 2025
Viewed by 460
Abstract
Wineries require a significant energy demand for cooling interior spaces. As a result, designing energy-efficient winery buildings has become a crucial concern for winemaking countries. The objective of this study was to evaluate six winery building models with bioclimatic designs, located in the [...] Read more.
Wineries require a significant energy demand for cooling interior spaces. As a result, designing energy-efficient winery buildings has become a crucial concern for winemaking countries. The objective of this study was to evaluate six winery building models with bioclimatic designs, located in the Guadalupe Valley, Baja California, using data on thermal performances (indoor temperature and relative humidity) and energy consumption obtained through dynamic thermal simulation. A baseline winery building model was developed and then enhanced with bioclimatic strategies: a semi-buried building; an underground cellar; an underground cellar with the variants of a green roof, double roof, shaded walls, and polyurethane insulation. The last solution entailed the requirement of a reduction in cooling in the warm season by 98 MWh, followed by the one with a green roof, corresponding to 94 MWh. This study provides valuable insights into the effectiveness of different architectural approaches, offering guidelines for the design of functional buildings for wine production, besides presenting energy-efficient solutions for wineries tailored to the climatic conditions of the study region. These findings highlight the importance of a function-based and energy-efficient architectural design in the winemaking industry, which leads to the definition of buildings with a compact arrangement of the functional spaces and a fruitful integration of the landscape through a wise adoption of underground solutions. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

25 pages, 5719 KiB  
Article
Investigation of the Interaction of Water and Energy in Multipurpose Bio-Solar Green Roofs in Mediterranean Climatic Conditions
by Behrouz Pirouz, Seyed Navid Naghib, Karolos J. Kontoleon, Baiju S. Bibin, Hana Javadi Nejad and Patrizia Piro
Water 2025, 17(7), 950; https://doi.org/10.3390/w17070950 - 25 Mar 2025
Viewed by 606
Abstract
The advantages of green roofs and solar panels are numerous, but in dry periods, green roofs can place urban water resources under pressure, and the efficiency of solar panels can be affected negatively by high temperatures. In this context, our analysis investigated the [...] Read more.
The advantages of green roofs and solar panels are numerous, but in dry periods, green roofs can place urban water resources under pressure, and the efficiency of solar panels can be affected negatively by high temperatures. In this context, our analysis investigated the advantages of bio-solar green roofs and evaluated the impact of green roofs on solar panel electricity production and solar panels on green roof water consumption. The assessment was conducted through simulation in a selected case study located in Cosenza, a city with a Mediterranean climate, with solar panels covering 10% to 60% of the green roof. Analyses were performed on the power outputs of four kinds of photovoltaic panels: polycrystalline, monocrystalline, bifacial, and Passivated Emitter and Rear Contact (PERC). The energy production and shade frequencies were simulated using PVGIS 5.3 and PVSOL 2024 R3. The impact of photovoltaic (PV) shade on the water consumption of green roofs was evaluated by image processing of a developed code in MATLAB R2024b. Moreover, water–energy interconnections in bio-solar green roof systems were assessed using the developed dynamic model in Vensim PLE 10.2.1. The results revealed that the water consumption by the green roof was reduced by 30.8% with a bio-solar coverage area of 60%. However, the electricity production by the PV panel was enhanced by about 4% with bio-solar green roofs and was at its maximum at a coverage rate of 50%. This investigation demonstrates the benefits of bio-solar green roofs, which can generate more electricity and require less irrigation. Full article
Show Figures

Figure 1

23 pages, 6683 KiB  
Article
Optimization Study of Air-Based Cooling Photovoltaic Roofs: Experimental and Numerical Analysis
by Yi He, Yibing Xue and Yingge Zhang
Energies 2025, 18(5), 1168; https://doi.org/10.3390/en18051168 - 27 Feb 2025
Viewed by 764
Abstract
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems [...] Read more.
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems for PV roofs using experimental and numerical analyses, leveraging free natural convection for cooling. Experimental measurements included air inlet/outlet, PV panel, and roof surface temperatures. The primary parameters examined in Computational Fluid Dynamics (CFD) for the numerical study were the heights and widths of the air channels between the panels and the rooftop, with heights ranging from 25 mm to 75 mm and widths varying from 200 mm to 400 mm. There are good agreements between the numerical results and experimental measurements after model validation. The results reveal significant temperature non-uniformity across the surface of the PV panels, with a maximum temperature difference of 16.50 °C. The shading effect of the PV panels resulted in an average reduction in roof surface temperature by 12.90 °C. Parametric studies showed that changes in height had a more pronounced effect on cooling than in width. The optimal design was identified with a channel size of 75 mm × 400 mm, resulting in the lowest average PV panel temperature of 65.21 °C and enhanced temperature uniformity, with maximum efficiency reaching 11.54%. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 3740 KiB  
Article
Towards Sustainable and Climate-Resilient Cities: Mitigating Urban Heat Islands Through Green Infrastructure
by Pinar Mert Cuce, Erdem Cuce and Mattheos Santamouris
Sustainability 2025, 17(3), 1303; https://doi.org/10.3390/su17031303 - 6 Feb 2025
Cited by 15 | Viewed by 5460
Abstract
Rapidly increasing construction and agglomeration in urban areas have made the urban heat island (UHI) problem a turning point for the world, as a result of notably rising earth temperature every year. UHI and its impacts on climate are somewhat linked to weather-related [...] Read more.
Rapidly increasing construction and agglomeration in urban areas have made the urban heat island (UHI) problem a turning point for the world, as a result of notably rising earth temperature every year. UHI and its impacts on climate are somewhat linked to weather-related matters, natural disasters and disease outbreaks. Given the challenges posed by urbanisation and industrialisation in achieving sustainability, it is crucial to adopt intelligent and decisive measures to mitigate the adverse outcomes of UHI. Greenery surfaces have long been a significant focus of scientific research and policy development, reflecting their pivotal role in combating urban heat islands and promoting sustainable urban environments. This study critically reviews the potential of green infrastructure, including green roofs, facades, shrubs, and trees, so as to minimise UHI impacts in severe urban contexts. By synthesising findings from a wide range of empirical studies, it highlights key outcomes such as reductions in surface temperatures by up to 2 °C and improvements in outdoor thermal comfort indices by over 10 °C under specific conditions. Additionally, the paper introduces a comprehensive framework for integrating greenery systems into urban planning, combining passive cooling, air quality enhancement, and energy efficiency strategies. The findings reveal that extensive green roofs, in particular, are highly effective in reducing indoor cooling demands, while strategically placed trees offer significant shading and evapotranspiration benefits. This work provides actionable insights for policymakers and urban planners to boost sustainable and climate-resilient cities whilst addressing gaps in current research related to the long-term performance and cost-effectiveness of green infrastructure solutions. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

26 pages, 9118 KiB  
Article
Optimization of Residential Indoor Thermal Environment by Passive Design and Mechanical Ventilation in Tropical Savanna Climate Zone in Nigeria, Africa
by Tianyu Xi, Salanke Umar Sa’ad, Xinyu Liu, Haibo Sun, Ming Wang and Fei Guo
Energies 2025, 18(3), 450; https://doi.org/10.3390/en18030450 - 21 Jan 2025
Cited by 4 | Viewed by 1803
Abstract
Thermal comfort is a fundamental goal of architecture aiming at protecting individuals from harsh weather conditions. In Nigeria’s savanna climate zone, such as Kaduna, poor indoor thermal comfort leads to over-reliance on air-conditioning systems. There is limited research on the application of passive [...] Read more.
Thermal comfort is a fundamental goal of architecture aiming at protecting individuals from harsh weather conditions. In Nigeria’s savanna climate zone, such as Kaduna, poor indoor thermal comfort leads to over-reliance on air-conditioning systems. There is limited research on the application of passive design strategies in the Nigerian savanna climate, which creates a barrier to their widespread implementation in residential buildings. In response to the increased awareness of climate change and the need for sustainable design, this study explores the potential of passive design strategies, focusing on the combination of rooftop insulation and reflective materials with mechanical ventilation as a means of improving indoor thermal comfort solutions. This study conducted a 3-day field experiment of typical dwellings in Kaduna, a major city in the Nigerian savanna climate zone. The data collected from this experiment served as the basis for a simulation study using EnergyPlus software, which tested and evaluated 3 different strategies: passive design (roof insulation + reflective materials), mechanical ventilation, and a combination of passive design and mechanical ventilation. This study highlights the potential for passive design strategies to provide a more sustainable, cost-effective solution, reducing dependence on air conditioning while supporting indoor comfort. Additionally, the research methodology and insights gained offer a basis for developing future building codes in Nigeria that emphasize sustainable practices. Such codes would guide architects, builders, and policymakers in designing homes that respond to local climate needs and align with broader sustainability goals. Further research could explore additional passive measures, including advanced window technologies, shading, and natural ventilation, to maximize sustainable residential design potential in tropical savanna climates. Full article
(This article belongs to the Special Issue The Application of Weather and Climate Research in the Energy Sector)
Show Figures

Figure 1

25 pages, 13246 KiB  
Article
Optimization of the Dynamic External Shading Control for Railway Stations in China Based on Energy Use Intensity (EUI) of Lighting and HVAC Systems
by Haijun Zhang and Pengcheng Jiang
Buildings 2024, 14(12), 3886; https://doi.org/10.3390/buildings14123886 - 4 Dec 2024
Viewed by 1020
Abstract
Railway stations are normally designed with glazing façades and skylights to achieve aesthetic requirements and facilitate visual permeability, but this design can lead to significant energy consumption. The implementation of dynamic external shading systems together with appropriate control strategies can significantly reduce the [...] Read more.
Railway stations are normally designed with glazing façades and skylights to achieve aesthetic requirements and facilitate visual permeability, but this design can lead to significant energy consumption. The implementation of dynamic external shading systems together with appropriate control strategies can significantly reduce the energy consumption of HVAC systems. This study numerically investigated the lighting and cooling energy consumption of railway stations equipped with external shading systems under various climatic zones, window-to-wall ratios (WWRs), skylight-to-roof ratios (SRRs) and roller-shade performance. The study shows that lighting energy consumption varies most significantly when the shading activation threshold is set between 50 and 200 W/m2. The dynamic shading thresholds are influenced by natural lighting and solar heat gain, with the strategy changing from using natural light to reducing solar gain as the SRR increases. This study also provides the optimal activation thresholds and energy-saving rates for railway station buildings in different climatic zones using external roller shades for different external window scenarios. In Guangzhou, using roller shade A in a railway station under the maximum external window scenario achieves energy savings of 36.41%, while in Shanghai and Beijing, the energy savings are 18.12% and 23.13%, respectively. These results provide guidance for the use of dynamic external shading in railway stations in China and for the achievement of energy-reduction targets in the transport and building industries. Full article
Show Figures

Figure 1

25 pages, 9228 KiB  
Article
A New Methodology for Estimating the Potential for Photovoltaic Electricity Generation on Urban Building Rooftops for Self-Consumption Applications
by Edisson Villa-Ávila, Paul Arévalo, Danny Ochoa-Correa, Michael Villa-Ávila, Emilia Sempértegui-Moscoso and Francisco Jurado
Smart Cities 2024, 7(6), 3798-3822; https://doi.org/10.3390/smartcities7060146 - 4 Dec 2024
Cited by 2 | Viewed by 2034
Abstract
As the world increasingly embraces renewable energy as a sustainable power source, accurately assessing of solar energy potential becomes paramount. Photovoltaic (PV) systems, especially those integrated into urban rooftops, offer a promising solution to address the challenges posed by aging energy grids and [...] Read more.
As the world increasingly embraces renewable energy as a sustainable power source, accurately assessing of solar energy potential becomes paramount. Photovoltaic (PV) systems, especially those integrated into urban rooftops, offer a promising solution to address the challenges posed by aging energy grids and rising fossil fuel prices. However, optimizing the placement of PV panels on rooftops remains a complex task due to factors like building shape, location, and the surrounding environment. This study introduces the Roof-Solar-Max methodology, which aims to maximize the placement of PV panels on urban rooftops while avoiding shading and panel overlap. Leveraging geographic information systems technology and 3D models, this methodology provides precise estimates of PV generation potential. Key contributions of this research include a roof categorization model, identification of PV-ready rooftops, optimal spatial distribution of PV panels, and innovative evaluation technology. Practical implementation in a real urban setting demonstrates the methodology’s utility for decision making in the planning and development of solar energy systems in urban areas. The main findings highlight substantial potential for PV energy generation in the studied urban area, with capacities reaching up to 444.44 kW. Furthermore, implementing PV systems on residential rooftops has proven to be an effective strategy for reducing CO2 emissions and addressing climate change, contributing to a cleaner and more sustainable energy mix in urban environments. Full article
Show Figures

Figure 1

31 pages, 12784 KiB  
Article
Developing an Optimized Energy-Efficient Sustainable Building Design Model in an Arid and Semi-Arid Region: A Genetic Algorithm Approach
by Ahmad Walid Ayoobi and Mehmet Inceoğlu
Energies 2024, 17(23), 6095; https://doi.org/10.3390/en17236095 - 3 Dec 2024
Cited by 7 | Viewed by 1876
Abstract
The building sector is a major contributor to resource consumption, energy use, and greenhouse gas emissions. Sustainable architecture offers a solution, leveraging Building Energy Modeling (BEM) for early-stage design optimization. This study explores the use of genetic algorithms for optimizing sustainable design strategies [...] Read more.
The building sector is a major contributor to resource consumption, energy use, and greenhouse gas emissions. Sustainable architecture offers a solution, leveraging Building Energy Modeling (BEM) for early-stage design optimization. This study explores the use of genetic algorithms for optimizing sustainable design strategies holistically. A comprehensive analysis and optimization model was developed using genetic algorithms to individually optimize various sustainable strategies. The optimized strategies were then applied to a pre-existing building in Kabul City, a region facing significant environmental challenges. To enhance accuracy, this study integrated energy simulations with Computational Fluid Dynamics (CFD). This research combines genetic algorithms with energy simulation and CFD analysis to optimize building design for a specific climate. Furthermore, it validates the optimized strategies through a real-world case study building. Optimizing the Window-to-Wall Ratio (WWR) and shading devices based on solar exposure significantly improved the building’s energy performance. South (S)-facing single windows and specific combinations of opposing and adjacent windows emerged as optimal configurations. The strategic optimization of building component materials led to substantial energy savings: a 58.6% reduction in window energy loss, 78.3% in wall loss, and 69.5% in roof loss. Additionally, the optimized pre-existing building achieved a 48.1% reduction in cooling demand, a 97.5% reduction in heating demand, and an overall energy reduction of 84.4%. Improved natural ventilation and controlled solar gain led to a 72.2% reduction in peak-month CO2 emissions. While this study focused on applicable passive design strategies, the integration of advanced technologies like Phase Change Materials (PCMs), kinetic shading devices, and renewable energy systems can further improve building performance and contribute to achieving net-zero buildings. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 12901 KiB  
Article
Model to Improve Classrooms’ Visual Comfort Using Waste-Based Shading and Its Validation in Mediterranean Schools
by Xinmiao Mo, Oriol Pons-Valladares and Sara Isabel Ortega Donoso
Sustainability 2024, 16(23), 10176; https://doi.org/10.3390/su162310176 - 21 Nov 2024
Cited by 2 | Viewed by 1359
Abstract
European non-residential buildings constructed before building energy codes consume more energy and resources than new buildings. Existing educational buildings comprise 17% of this outdated stock. These buildings can be retrofitted to create a conducive learning environment that can improve students’ comfort. The refurbishment [...] Read more.
European non-residential buildings constructed before building energy codes consume more energy and resources than new buildings. Existing educational buildings comprise 17% of this outdated stock. These buildings can be retrofitted to create a conducive learning environment that can improve students’ comfort. The refurbishment of facades is a common solution to improve the energy performance of schools when the aim is to improve the daylighting comfort. This study develops a methodology to optimize facade renovation solutions including (1) preparation, (2) simulations of the simplified model using local shading, and (3) modeling a realistic optimized facade design. This study evaluates visual comfort by considering multiple-dimensional metrics such as useful daylight illuminance (UDI), annual sunlight exposure (ASE), illuminance uniformity, and the daylighting factor. The three parameters of the louvres on which this study focuses are the distance from the new facade to the exterior wall, the blade degrees, and slat spacing. The methodology was first applied to improve the facade proposal with reused roof tiles from the project Waste-based Intelligent Solar-control-devices for Envelope Refurbishment (WiSeR). The results illustrate that implementing these solutions efficiently improves the indoor visual comfort in the classroom while avoiding overheating issues. For a constant-gaps surface, a shading distribution with alternated gaps gives better results for the aforementioned light metrics. Specifically, the most suitable values are a 7 cm distance from the new shading system to the existing wall, slat degrees at 0, and louvre spacing at 21 cm. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

22 pages, 1159 KiB  
Article
Energetic Analysis of Passive Solar Strategies for Residential Buildings with Extreme Summer Conditions
by Stephanny Nogueira, Ana I. Palmero-Marrero, David Borge-Diez, Emin Açikkalp and Armando C. Oliveira
Appl. Sci. 2024, 14(22), 10761; https://doi.org/10.3390/app142210761 - 20 Nov 2024
Cited by 2 | Viewed by 1391
Abstract
This study investigates the implementation of passive design strategies to improve the thermal environment in the extremely hot climates of Brazil, Portugal, and Turkey. Given the rising cooling demands due to climate change, optimizing energy efficiency in buildings is essential. Using the Trace [...] Read more.
This study investigates the implementation of passive design strategies to improve the thermal environment in the extremely hot climates of Brazil, Portugal, and Turkey. Given the rising cooling demands due to climate change, optimizing energy efficiency in buildings is essential. Using the Trace 3D Plus v6.00.106 software, typical residential buildings for each country were simulated to assess various passive solutions, such as building orientation, wall and roof modifications, glazing optimization options, window-to-wall ratio (WTWR) reduction, shading, and natural ventilation. The findings highlight that Brazil experienced the higher discomfort temperatures compared to Mediterranean climates, with indoor air temperatures exceeding 28 °C all year round and remaining between 34 °C and 37 °C for nearly 40% of the time. Building orientation had a minimal impact near the equator, while Mediterranean climates benefited from an up to 10% variation in energy demand. Thermal insulation combined with white exterior paint resulted in Şanlıurfa experiencing annual energy savings of up to 26%. Optimal roof solutions yielded a 19% demand reduction in Évora, while WTWR reduction and double-colored glazing achieved up to a 35% reduction in Évora and 19% in other regions. Combined strategies achieved energy demand reductions of 44% for Évora, 40% for Şanlıurfa, and 32% for Teresina. The study emphasizes the need for integrated, climate-specific passive solutions, showing their potential to enhance both energy efficiency and the thermal environment in residential buildings across diverse hot climates. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Comfort in Buildings)
Show Figures

Figure 1

Back to TopTop