Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = rolling window

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2291 KB  
Article
Forecasting Tibetan Plateau Lake Level Responses to Climate Change: An Explainable Deep Learning Approach Using Altimetry and Climate Models
by Atefeh Gholami and Wen Zhang
Water 2025, 17(16), 2434; https://doi.org/10.3390/w17162434 - 17 Aug 2025
Viewed by 430
Abstract
The Tibetan Plateau’s lakes, serving as critical water towers for over two billion people, exhibit divergent responses to climate change that remain poorly quantified. This study develops a deep learning framework integrating Synthetic Aperture Radar (SAR) altimetry from Sentinel-3A with bias-corrected CMIP6 (Coupled [...] Read more.
The Tibetan Plateau’s lakes, serving as critical water towers for over two billion people, exhibit divergent responses to climate change that remain poorly quantified. This study develops a deep learning framework integrating Synthetic Aperture Radar (SAR) altimetry from Sentinel-3A with bias-corrected CMIP6 (Coupled Model Intercomparison Project Phase 6) climate projections under Shared Socioeconomic Pathways (SSP) scenarios (SSP2-4.5 and SSP5-8.5, adjusted via quantile mapping) to predict lake-level changes across eight Tibetan Plateau (TP) lakes. Using a Feed-Forward Neural Network (FFNN) optimized via Bayesian optimization using the Optuna framework, we achieve robust water level projections (mean validation R2 = 0.861) and attribute drivers through Shapley Additive exPlanations (SHAP) analysis. Results reveal a stark north–south divergence: glacier-fed northern lakes like Migriggyangzham will rise by 13.18 ± 0.56 m under SSP5-8.5 due to meltwater inputs (temperature SHAP value = 0.41), consistent with the early (melt-dominated) phase of the IPCC’s ‘peak water’ framework. In comparison, evaporation-dominated southern lakes such as Langacuo face irreversible desiccation (−4.96 ± 0.68 m by 2100) as evaporative demand surpasses precipitation gains. Transitional western lakes exhibit “peak water” inflection points (e.g., Lumajang Dong’s 2060 maximum) signaling cryospheric buffer loss. These projections, validated through rigorous quantile mapping and rolling-window cross-validation, provide the first process-aware assessment of TP Lake vulnerabilities, informing adaptation strategies under the Sustainable Development Goals (SDGs) for water security (SDG 6) and climate action (SDG 13). The methodological framework establishes a transferable paradigm for monitoring high-altitude freshwater systems globally. Full article
Show Figures

Figure 1

33 pages, 10397 KB  
Article
Multi-AUV Dynamic Cooperative Path Planning with Hybrid Particle Swarm and Dynamic Window Algorithm in Three-Dimensional Terrain and Ocean Current Environment
by Bing Sun and Ziang Lv
Biomimetics 2025, 10(8), 536; https://doi.org/10.3390/biomimetics10080536 - 15 Aug 2025
Viewed by 470
Abstract
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization [...] Read more.
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization algorithm is prone to falling into local optimization in high-dimensional and complex marine environments. It is difficult to meet multiple constraint conditions, the particle distribution is uneven, and the adaptability to dynamic environments is poor. In response to these problems, a hybrid initialization method based on Chebyshev chaotic mapping, pre-iterative elimination, and boundary particle injection (CPB) is proposed, and the particle swarm optimization algorithm is improved by combining dynamic parameter adjustment and a hybrid perturbation mechanism. On this basis, the Dynamic Window Method (DWA) is introduced as the local path optimization module to achieve real-time avoidance of dynamic obstacles and rolling path correction, thereby constructing a globally and locally coupled hybrid path-planning framework. Finally, cubic spline interpolation is used to smooth the planned path. Considering factors such as path length, smoothness, deflection Angle, and ocean current kinetic energy loss, the dynamic penalty function is adopted to optimize the multi-AUV cooperative collision avoidance and terrain constraints. The simulation results show that the proposed algorithm can effectively plan the dynamic safe path planning of multiple AUVs. By comparing it with other algorithms, the efficiency and security of the proposed algorithm are verified, meeting the navigation requirements in the current environment. Experiments show that the IMOPSO–DWA hybrid algorithm reduces the path length by 15.5%, the threat penalty by 8.3%, and the total fitness by 3.2% compared with the traditional PSO algorithm. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

17 pages, 2439 KB  
Article
Monte Carlo-Based VaR Estimation and Backtesting Under Basel III
by Yueming Cheng
Risks 2025, 13(8), 146; https://doi.org/10.3390/risks13080146 - 1 Aug 2025
Viewed by 556
Abstract
Value-at-Risk (VaR) is a key metric widely applied in market risk assessment and regulatory compliance under the Basel III framework. This study compares two Monte Carlo-based VaR models using publicly available equity data: a return-based model calibrated to historical portfolio volatility, and a [...] Read more.
Value-at-Risk (VaR) is a key metric widely applied in market risk assessment and regulatory compliance under the Basel III framework. This study compares two Monte Carlo-based VaR models using publicly available equity data: a return-based model calibrated to historical portfolio volatility, and a CAPM-style factor-based model that simulates risk via systematic factor exposures. The two models are applied to a technology-sector portfolio and evaluated under historical and rolling backtesting frameworks. Under the Basel III backtesting framework, both initially fall into the red zone, with 13 VaR violations. With rolling-window estimation, the return-based model shows modest improvement but remains in the red zone (11 exceptions), while the factor-based model reduces exceptions to eight, placing it into the yellow zone. These results demonstrate the advantages of incorporating factor structures for more stable exception behavior and improved regulatory performance. The proposed framework, fully transparent and reproducible, offers practical relevance for internal validation, educational use, and model benchmarking. Full article
Show Figures

Figure 1

41 pages, 6841 KB  
Article
Distributionally Robust Multivariate Stochastic Cone Order Portfolio Optimization: Theory and Evidence from Borsa Istanbul
by Larissa Margerata Batrancea, Mehmet Ali Balcı, Ömer Akgüller and Lucian Gaban
Mathematics 2025, 13(15), 2473; https://doi.org/10.3390/math13152473 - 31 Jul 2025
Viewed by 485
Abstract
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO [...] Read more.
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO employs data-driven cone selection calibrated to market regimes, along with coherent tail-risk operators that generalize Conditional Value-at-Risk to the multivariate setting. We derive a tractable second-order cone programming reformulation and demonstrate statistical consistency under empirical ambiguity sets. Empirically, we apply DR-MSCO to 23 Borsa Istanbul equities from 2021–2024, using a rolling estimation window and realistic transaction costs. Compared to classical mean–variance and standard distributionally robust benchmarks, DR-MSCO achieves higher overall and crisis-period Sharpe ratios (2.18 vs. 2.09 full sample; 0.95 vs. 0.69 during crises), reduces maximum drawdown by 10%, and yields endogenous diversification without exogenous constraints. Our results underscore the practical benefits of combining multivariate preference modeling with distributional robustness, offering institutional investors a tractable tool for resilient portfolio construction in volatile emerging markets. Full article
(This article belongs to the Special Issue Modern Trends in Mathematics, Probability and Statistics for Finance)
Show Figures

Figure 1

29 pages, 1020 KB  
Article
Energy Management of Industrial Energy Systems via Rolling Horizon and Hybrid Optimization: A Real-Plant Application in Germany
by Loukas Kyriakidis, Rushit Kansara and Maria Isabel Roldán Serrano
Energies 2025, 18(15), 3977; https://doi.org/10.3390/en18153977 - 25 Jul 2025
Viewed by 405
Abstract
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses [...] Read more.
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses on the short-term operational planning of an industrial energy supply system using the rolling horizon approach (RHA). The RHA offers an effective framework to handle uncertainties by repeatedly updating forecasts and re-optimizing over a moving time window, thereby enabling adaptive and responsive energy management. To solve the resulting nonlinear and constrained optimization problem at each RHA iteration, we propose a novel hybrid algorithm that combines Bayesian optimization (BO) with the Interior Point OPTimizer (IPOPT). While global deterministic and stochastic optimization methods are frequently used in practice, they often suffer from high computational costs and slow convergence, particularly when applied to large-scale, nonlinear problems with complex constraints. To overcome these limitations, we employ the BO–IPOPT, integrating the global search capabilities of BO with the efficient local convergence and constraint fulfillment of the IPOPT. Applied to a large-scale real-world case study of a food and cosmetic industry in Germany, the proposed BO–IPOPT method outperformed state-of-the-art solvers in both solution quality and robustness, achieving up to 97.25%-better objective function values at the same CPU time. Additionally, the influence of key parameters, such as forecast uncertainty, optimization horizon length, and computational effort per RHA iteration, was analyzed to assess their impact on system performance and decision quality. Full article
Show Figures

Figure 1

21 pages, 1296 KB  
Article
Integrating the IoT and New Energy to Promote a Sustainable Low-Carbon Economy
by Yan Chen, Yuqi Hou and Jiayi Lyu
Sustainability 2025, 17(15), 6755; https://doi.org/10.3390/su17156755 - 24 Jul 2025
Viewed by 518
Abstract
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic [...] Read more.
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic interrelationship between China’s IoT index (IoT) and the New Energy Index (NEI). Quantitative analysis reveals significant time-varying characteristics and bidirectional causal complexity in the interaction between the IoT and new energy. The IoT has a dual-edged impact on the development of new sources of energy. In the long run, the IoT plays a dominant role in incentivizing new energy, helping to enhance its stability and economic value. However, during stages characterized by technological bottlenecks or resource competition, the high energy consumption of IoT infrastructure may suppress the investment returns of new energy. Simultaneously, new energy has both positive and negative impacts on the IoT. On the one hand, new energy provides low-cost, sustainable power to support the IoT, driving the construction of the IoT ecosystem. On the other hand, it may threaten the continuity of IoT power supply, and the complexity of standardization and regulation in the sector may constrain the development of the IoT. This study provides a fresh perspective on promoting the integration of digital technology and green energy, uncovering nonlinear trade-offs between innovation-driven growth and carbon reduction goals, and offering policy insights for cross-sectoral collaboration to achieve sustainability. Full article
(This article belongs to the Special Issue Advances in Low-Carbon Economy Towards Sustainability)
Show Figures

Figure 1

30 pages, 2139 KB  
Article
Volatility Modeling and Tail Risk Estimation of Financial Assets: Evidence from Gold, Oil, Bitcoin, and Stocks for Selected Markets
by Yilin Zhu, Shairil Izwan Taasim and Adrian Daud
Risks 2025, 13(7), 138; https://doi.org/10.3390/risks13070138 - 20 Jul 2025
Viewed by 1015
Abstract
As investment portfolios become increasingly diversified and financial asset risks grow more complex, accurately forecasting the risk of multiple asset classes through mathematical modeling and identifying their heterogeneity has emerged as a critical topic in financial research. This study examines the volatility and [...] Read more.
As investment portfolios become increasingly diversified and financial asset risks grow more complex, accurately forecasting the risk of multiple asset classes through mathematical modeling and identifying their heterogeneity has emerged as a critical topic in financial research. This study examines the volatility and tail risk of gold, crude oil, Bitcoin, and selected stock markets. Methodologically, we propose two improved Value at Risk (VaR) forecasting models that combine the autoregressive (AR) model, Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, Extreme Value Theory (EVT), skewed heavy-tailed distributions, and a rolling window estimation approach. The model’s performance is evaluated using the Kupiec test and the Christoffersen test, both of which indicate that traditional VaR models have become inadequate under current complex risk conditions. The proposed models demonstrate superior accuracy in predicting VaR and are applicable to a wide range of financial assets. Empirical results reveal that Bitcoin and the Chinese stock market exhibit no leverage effect, indicating distinct risk profiles. Among the assets analyzed, Bitcoin and crude oil are associated with the highest levels of risk, gold with the lowest, and stock markets occupy an intermediate position. The findings offer practical implications for asset allocation and policy design. Full article
Show Figures

Figure 1

14 pages, 3909 KB  
Article
Demonstrating In Situ Formation of Globular Microstructure for Thixotropic Printing of EN AW-4043 Aluminum Alloy
by Silvia Marola and Maurizio Vedani
Metals 2025, 15(7), 804; https://doi.org/10.3390/met15070804 - 17 Jul 2025
Viewed by 332
Abstract
This study explores the feasibility of generating a globular microstructure in situ during the thixotropic 3D printing of the EN AW-4043 alloy, starting from a conventional cold-rolled wire. Thermodynamic simulations using Thermo-Calc software were first conducted to identify the semi-solid processing window of [...] Read more.
This study explores the feasibility of generating a globular microstructure in situ during the thixotropic 3D printing of the EN AW-4043 alloy, starting from a conventional cold-rolled wire. Thermodynamic simulations using Thermo-Calc software were first conducted to identify the semi-solid processing window of the alloy, based on the evolution of liquid and solid fractions as a function of temperature. Guided by these results, thermal treatments were performed on cold-rolled wires to promote the formation of a globular microstructure. A laboratory-scale printing head prototype was then designed and built to test continuous heating and deposition conditions representative of a thixotropic additive manufacturing process. The results showed that a globular microstructure could be achieved in the cold-rolled EN AW-4043 wires by heating them at 590 °C for 5 min in a static muffle furnace. A similar effect was observed when continuously heating the wire while it flowed through the heated printing head. Preliminary deposition tests confirmed the viability of this approach and demonstrated that thixotropic 3D printing of EN AW-4043 alloy is achievable without the need for pre-globular feedstock. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

25 pages, 6057 KB  
Article
Physical Implementation and Experimental Validation of the Compensation Mechanism for a Ramp-Based AUV Recovery System
by Zhaoji Qi, Lingshuai Meng, Haitao Gu, Ziyang Guo, Jinyan Wu and Chenghui Li
J. Mar. Sci. Eng. 2025, 13(7), 1349; https://doi.org/10.3390/jmse13071349 - 16 Jul 2025
Viewed by 335
Abstract
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation [...] Read more.
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation was designed and constructed. The system integrates attitude feedback provided by an attitude sensor and dual-motor actuation to achieve active roll and pitch compensation of the capture window. Based on the structural and geometric characteristics of the platform, a dual-channel closed-loop control strategy was proposed utilizing midpoint tracking of the capture window, accompanied by multi-level software limit protection and automatic centering mechanisms. The control algorithm was implemented using a discrete-time PID structure, with gain parameters optimized through experimental tuning under repeatable disturbance conditions. A first-order system approximation was adopted to model the actuator dynamics. Experiments were conducted under various disturbance scenarios and multiple control parameter configurations to evaluate the attitude tracking performance, dynamic response, and repeatability of the system. The results show that, compared to the uncompensated case, the proposed compensation mechanism reduces the MSE by up to 76.4% and the MaxAE by 73.5%, significantly improving the tracking accuracy and dynamic stability of the recovery window. The study also discusses the platform’s limitations and future optimization directions, providing theoretical and engineering references for practical AUV recovery operations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

30 pages, 1477 KB  
Article
Algebraic Combinatorics in Financial Data Analysis: Modeling Sovereign Credit Ratings for Greece and the Athens Stock Exchange General Index
by Georgios Angelidis and Vasilios Margaris
AppliedMath 2025, 5(3), 90; https://doi.org/10.3390/appliedmath5030090 - 15 Jul 2025
Viewed by 292
Abstract
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a [...] Read more.
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a multi-method analytical framework combining algebraic combinatorics and time-series econometrics. The methodology incorporates the construction of a directed credit rating transition graph, the partially ordered set representation of rating hierarchies, rolling-window correlation analysis, Granger causality testing, event study evaluation, and the formulation of a reward matrix with optimal rating path optimization. Empirical results indicate that credit rating announcements in Greece exert only modest short-term effects on the Athens Stock Exchange General Index, implying that markets often anticipate these changes. In contrast, sequential downgrade trajectories elicit more pronounced and persistent market responses. The reward matrix and path optimization approach reveal structured investor behavior that is sensitive to the cumulative pattern of rating changes. These findings offer a more nuanced interpretation of how sovereign credit risk is processed and priced in transparent and fiscally disciplined environments. By bridging network-based algebraic structures and economic data science, the study contributes a novel methodology for understanding systemic financial signals within sovereign credit systems. Full article
(This article belongs to the Special Issue Algebraic Combinatorics in Data Science and Optimisation)
Show Figures

Figure 1

18 pages, 721 KB  
Article
An Adaptive Holt–Winters Model for Seasonal Forecasting of Internet of Things (IoT) Data Streams
by Samer Sawalha and Ghazi Al-Naymat
IoT 2025, 6(3), 39; https://doi.org/10.3390/iot6030039 - 10 Jul 2025
Viewed by 460
Abstract
In various applications, IoT temporal data play a crucial role in accurately predicting future trends. Traditional models, including Rolling Window, SVR-RBF, and ARIMA, suffer from a potential accuracy decrease because they generally use all available data or the most recent data window during [...] Read more.
In various applications, IoT temporal data play a crucial role in accurately predicting future trends. Traditional models, including Rolling Window, SVR-RBF, and ARIMA, suffer from a potential accuracy decrease because they generally use all available data or the most recent data window during training, which can result in the inclusion of noisy data. To address this critical issue, this paper proposes a new forecasting technique called Adaptive Holt–Winters (AHW). The AHW approach utilizes two models grounded in an exponential smoothing methodology. The first model is trained on the most current data window, whereas the second extracts information from a historical data segment exhibiting patterns most analogous to the present. The outputs of the two models are then combined, demonstrating enhanced prediction precision since the focus is on the relevant data patterns. The effectiveness of the AHW model is evaluated against well-known models (Rolling Window, SVR-RBF, ARIMA, LSTM, CNN, RNN, and Holt–Winters), utilizing various metrics, such as RMSE, MAE, p-value, and time performance. A comprehensive evaluation covers various real-world datasets at different granularities (daily and monthly), including temperature from the National Climatic Data Center (NCDC), humidity and soil moisture measurements from the Basel City environmental system, and global intensity and global reactive power from the Individual Household Electric Power Consumption (IHEPC) dataset. The evaluation results demonstrate that AHW constantly attains higher forecasting accuracy across the tested datasets compared to other models. This indicates the efficacy of AHW in leveraging pertinent data patterns for enhanced predictive precision, offering a robust solution for temporal IoT data forecasting. Full article
Show Figures

Figure 1

17 pages, 2514 KB  
Article
Forecasting Transient Fuel Consumption Spikes in Ships: A Hybrid DGM-SVR Approach
by Junhao Chen and Yan Peng
Eng 2025, 6(7), 151; https://doi.org/10.3390/eng6070151 - 3 Jul 2025
Viewed by 295
Abstract
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient [...] Read more.
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient peaks that conventional models often fail to capture accurately, particularly the abrupt peaks. In this study, a hybrid prediction model, DGM-SVR, is presented, combining a rolling dynamic grey model (DGM (1,1)) with support vector regression (SVR). The DGM (1,1) adapts to the dynamic fuel consumption baseline and trends via a rolling window mechanism, while the SVR learns and predicts the residual sequence generated by the DGM, specifically addressing the high-amplitude fuel spikes triggered by maneuvers. Validated on a simulated dataset reflecting typical fuel spike characteristics during high-speed maneuvers, the DGM-SVR model demonstrated superior overall prediction accuracy (MAPE and RMSE) compared to standalone DGM (1,1), moving average (MA), and SVR models. Notably, DGM-SVR reduced the test set’s MAPE and RMSE by approximately 21% and 34%, respectively, relative to the next-best DGM model, and significantly improved the predictive accuracy, magnitude, and responsiveness in predicting fuel consumption spikes. The findings indicate that the DGM-SVR hybrid strategy effectively fuses DGM’s trend-fitting strength with SVR’s proficiency in capturing spikes from the residual sequence, offering a more reliable and precise method for dynamic ship fuel consumption forecasting, with considerable potential for ship energy efficiency management and intelligent operational support. This study lays a foundation for future validation on real-world operational data. Full article
Show Figures

Figure 1

15 pages, 3904 KB  
Article
Forecasting the Regional Demand for Medical Workers in Kazakhstan: The Functional Principal Component Analysis Approach
by Berik Koichubekov, Bauyrzhan Omarkulov, Nazgul Omarbekova, Khamida Abdikadirova, Azamat Kharin and Alisher Amirbek
Int. J. Environ. Res. Public Health 2025, 22(7), 1052; https://doi.org/10.3390/ijerph22071052 - 30 Jun 2025
Viewed by 479
Abstract
The distribution of the health workforce affects the availability of health service delivery to the public. In practice, the demographic and geographic maldistribution of the health workforce is a long-standing national crisis. In this study, we present an approach based on Functional Principal [...] Read more.
The distribution of the health workforce affects the availability of health service delivery to the public. In practice, the demographic and geographic maldistribution of the health workforce is a long-standing national crisis. In this study, we present an approach based on Functional Principal Component Analysis (FPCA) of data to identify patterns in the availability of health workers across different regions of Kazakhstan in order to forecast their needs up to 2033. FPCA was applied to the data to reduce dimensionality and capture common patterns across regions. To evaluate the forecasting performance of the model, we employed rolling origin cross-validation with an expanding window. The resulting scores were forecasted one year ahead using Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) methods. LSTM showed higher accuracy compared to ARIMA. The use of the FPCA method allowed us to identify national and regional trends in the dynamics of the number of doctors. We identified regions with different growth rates, highlighting where the most and least intensive growth is taking place. Based on the FPSA, we have predicted the need for doctors in each region in the period up to 2033. Our results show that the FPCA can serve as a significant tool for analyzing the situation relating to human resources in healthcare and be used for an approximate assessment of future needs for medical personnel. Full article
Show Figures

Figure 1

23 pages, 3205 KB  
Article
The Dynamic Bidirectional Causality Between Carbon Pricing and Green Technology Innovation in China: A Sub-Sample Time-Varying Approach
by Yumei Guan, Chiwei Su and Tao Guan
Sustainability 2025, 17(12), 5371; https://doi.org/10.3390/su17125371 - 11 Jun 2025
Viewed by 553
Abstract
This study examined the dynamic relationship between China’s carbon pricing (CP) and green technology innovation (GTI) using monthly data from August 2013 to February 2025 through sub-sample rolling-window Granger causality tests. The results revealed a time-varying bidirectional relationship where CP significantly promotes GTI [...] Read more.
This study examined the dynamic relationship between China’s carbon pricing (CP) and green technology innovation (GTI) using monthly data from August 2013 to February 2025 through sub-sample rolling-window Granger causality tests. The results revealed a time-varying bidirectional relationship where CP significantly promotes GTI during periods when innovation offset effects dominate (such as from July to October 2021 and October 2023 to March 2024), but inhibits GTI when compliance cost effects prevail (as observed from February to June 2022). Conversely, GTI alternately suppressed CP from June to November 2017 and enhanced it from February to July 2024. These patterns demonstrate that the interaction between CP and GTI is critically shaped by three key factors: policy synergy between carbon markets and complementary environmental regulations, international competitive pressures from carbon border mechanisms, and financial market capacity to support green investments. Based on these findings, we propose a comprehensive policy framework that includes expanding emissions trading to heavy industries, implementing dynamic CP stabilization mechanisms, introducing innovation-linked quota incentives with 1.1 to 1.5 multipliers, and developing integrated green financial instruments. This framework can effectively align CP with GTI to accelerate China’s low-carbon transition while maintaining industrial competitiveness. Full article
Show Figures

Figure 1

12 pages, 486 KB  
Article
Understanding External Peak Demands in Elite vs. Non-Elite Male Basketball Players
by Yoel Antoranz, Enrique Alonso-Pérez-Chao, Carlos Mª Tejero-González, Hugo Salazar, Juan del Campo-Vecino and Sergio L. Jiménez-Sáiz
Sports 2025, 13(6), 179; https://doi.org/10.3390/sports13060179 - 9 Jun 2025
Viewed by 738
Abstract
Background: Understanding the physical demands of basketball at different competitive levels is essential for optimizing training and performance. While elite players are often assumed to experience the highest physical loads, evidence comparing peak external demands (PDs) between elite and non-elite athletes using time-window [...] Read more.
Background: Understanding the physical demands of basketball at different competitive levels is essential for optimizing training and performance. While elite players are often assumed to experience the highest physical loads, evidence comparing peak external demands (PDs) between elite and non-elite athletes using time-window analysis is limited. Therefore, the aim of this study was to examine how player level (Elite vs. Non-Elite) influences the external PDs experienced by male basketball players. Methods: This study examined PlayerLoad™ (PL) PDs in elite (n = 10) and non-elite (n = 11) male basketball players during the 2023–2024 season. Players were monitored using inertial measurement units (IMUs) during official and friendly matches (elite = 8 games; non-elite = 29 games). Peak PL values were computed using rolling averages across 30-s, 1-min, and 3-min time windows. Linear mixed-effects models were employed to examine differences between groups, adjusting for age and match nature. A secondary analysis was carried out including only friendly matches. Results: Non-elite players exhibited significantly higher PL PDs across all the time windows (p < 0.001), with effect sizes ranging from small to very large in the main analysis (ES = −0.41 to −2.11) and from very large to extremely large in the secondary analysis (ES = −2.68 to −5.06). Differences were more pronounced in longer durations. These results suggest that non-elite athletes sustain higher physical loads, possibly due to less efficient movement patterns and lower tactical regulation. Conclusions: Elite players display lower peak external loads than their non-elite counterparts, likely due to superior cognitive, tactical, and perceptual abilities that enhance movement economy. Training programs should incorporate tasks that combine physical intensity with decision-making demands to foster efficiency and potentially reduce injury risk. Full article
(This article belongs to the Special Issue Strategies to Improve Modifiable Factors of Athletic Success)
Show Figures

Figure 1

Back to TopTop