Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = rolled leaf

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3145 KB  
Article
CRISPR/Cas9-Mediated Targeted Mutagenesis of GmAS1/2 Genes Alters Leaf Shape in Soybean
by Juan Xu, Mengyue Pan, Yu Zhu, Peiguo Wang, Liwei Jiang, Dami Xu, Xinyang Wang, Limiao Chen, Wei Guo, Hongli Yang and Dong Cao
Int. J. Mol. Sci. 2025, 26(19), 9657; https://doi.org/10.3390/ijms26199657 - 3 Oct 2025
Abstract
ASYMMETRIC LEAVES1 (AS1) and AS2 play essential roles in regulating leaf development in plants. However, their functional roles in soybean remain poorly understood. Here, we identified two members of the soybean AS1 gene family, GmAS1a and GmAS1c, which exhibit high [...] Read more.
ASYMMETRIC LEAVES1 (AS1) and AS2 play essential roles in regulating leaf development in plants. However, their functional roles in soybean remain poorly understood. Here, we identified two members of the soybean AS1 gene family, GmAS1a and GmAS1c, which exhibit high expression levels in stem and leaf tissues. Using the CRISPR/Cas9 system, we targeted four GmAS1 and three GmAS2 genes, generating mutant lines with distinct leaf development phenotypes, including wrinkling (refers to fine lines and creases on the leaf surface, like aged skin texture), curling (describes the inward or outward rolling of leaf edges, deviating from the typical flat shape), and narrow. We found that functional redundancy exists among the four GmAS1 genes in soybean. GmAS1 and GmAS2 cooperatively regulate leaf curling, leaf crinkling phenotypes, and leaf width in soybean, with functional redundancy also observed between these two genes. Transcriptome sequencing analysis of w3 mutant (as1b as1c as1d as2a as2b as2c) identified 1801 differentially expressed genes (DEGs), including 192 transcription factors (TFs). Gene ontology enrichment analysis revealed significant enrichment of DEGs in pathways associated with plant hormone biosynthesis and signal transduction. A detailed examination of the DEGs showed several genes involved in the development of leaf lateral organs, such as KNOX (SHOOT MERISTEMLESS (STM), KNAT1, KNAT2, and KNAT6), LOB (LBD25, LBD30), and ARP5, were down-regulated in w3/WT (wild-type) comparison. CRISPR/Cas9-mediated targeted mutagenesis of the GmAS1/2 genes significantly impairs leaf development and polarity establishment in soybean, providing valuable germplasm resources and a theoretical framework for future studies on leaf morphogenesis. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

18 pages, 5578 KB  
Article
Insights into Novel Viral Threats in Sweetpotato from Burkina Faso: Characterisation of Unexplored Pathogens
by Pakyendou E. Name, Ezechiel B. Tibiri, Fidèle Tiendrébéogo, Seydou Sawadogo, Florencia Djigma, Lassina Traoré, Angela O. Eni and Justin S. Pita
Viruses 2025, 17(9), 1222; https://doi.org/10.3390/v17091222 - 7 Sep 2025
Viewed by 1093
Abstract
Sweetpotato is a key staple crop in tropical and subtropical regions. Its vegetative propagation makes it a persistent reservoir, facilitating the emergence and spread of complex infections. Understanding its virome is crucial for disease management and food security. We investigated the sweetpotato virome [...] Read more.
Sweetpotato is a key staple crop in tropical and subtropical regions. Its vegetative propagation makes it a persistent reservoir, facilitating the emergence and spread of complex infections. Understanding its virome is crucial for disease management and food security. We investigated the sweetpotato virome in Burkina Faso using rolling circle amplification and Oxford Nanopore sequencing. Eight symptomatic leaf samples, previously undiagnosed using conventional methods, were analysed. Bioinformatic pipelines were employed followed by phylogenetic comparisons. Two viruses known to infect sweetpotato, namely sweet potato leaf curl virus (SPLCV) and sweet potato leaf curl deltasatellite 3 (SPLCD3), were consistently detected in all samples. Additionally, pepper yellow vein Mali virus (PepYVMV), cotton leaf curl Gezira alphasatellite (CLCuGeA) and cotton leaf curl Gezira betasatellite (CLCuGeB) were identified for the first time in this crop. Phylogenetic analysis confirmed their genetic proximity to isolates from tomato, okra and pepper. Their co-occurrence with SPLCV and SPLCD3 indicates a complex viral landscape that could influence disease severity. This study highlights the underestimated role of sweetpotato as a viral reservoir, influencing virus evolution and transmission. Further studies should assess their pathogenicity, co-infection dynamics and vector-mediated transmission to improve crop productivity. Full article
(This article belongs to the Special Issue Economically Important Viruses in African Crops)
Show Figures

Graphical abstract

15 pages, 2279 KB  
Article
Foliar Traits Drive Chlorophyll Fluorescence Variability in Chilean Sclerophyllous Species Under Early Outplanting Stress
by Sergio Espinoza, Carlos Magni, Marco Yáñez, Nicole Toro and Eduardo Martínez-Herrera
Plants 2025, 14(17), 2682; https://doi.org/10.3390/plants14172682 - 27 Aug 2025
Viewed by 482
Abstract
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under [...] Read more.
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under two watering regimes (2 L−1 seedling−1 week−1 for 5 months versus no irrigation). Chlorophyll a fluorescence rise kinetics (OJIP) and JIP test analysis were monitored from December 2021 to January 2022. The semi-deciduous Colliguaja odorifera (leaf angle of 65°) exhibited the highest performance in processes such as absorption and trapping photons, heat dissipation, electron transport, and level of photosynthetic performance (i.e., parameters PIABS FV/FM, FV/F0, and ΔVIP). In contrast, the evergreen Peumus boldus (leaf rolling) exhibited the opposite behavior for the same parameters. On the other hand, the deciduous Vachelia caven (small compound leaves and leaf angle of 15°) showed the lowest values for minimal and maximal fluorescence (F0 and FM) and the highest area above the OJIP transient (Sm) during the study period. Irrigation decreased Sm and the relative contribution of electron transport (parameter ΔVIP) by 22% and 17%, respectively, but no clear effects of the irrigation treatments were observed among species and dates of measurement. Overall, V. caven and C. odorifera exhibited the highest photosynthetic performance, whereas P. boldus seemed to be more prone to photoinhibition. We conclude that different foliar adaptations among species influence light protection mechanisms more than irrigation treatments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 10688 KB  
Article
Response Analysis of a Vehicle–Cargo Coupling Model Considering Frequency-Dependent Characteristics of Air Suspension
by Yi-Tong Zheng and Zhi-Wei Wang
Appl. Sci. 2025, 15(16), 8945; https://doi.org/10.3390/app15168945 - 13 Aug 2025
Viewed by 321
Abstract
Vehicle suspension significantly influences the safety of cargo transportation. This study presents a 14-degree-of-freedom vehicle–cargo coupling model that explicitly incorporates the frequency-dependent stiffness of air springs. Systematic parametric investigations of air spring orifice resistance, loading mass, and cargo stiffness reveal the following: (a) [...] Read more.
Vehicle suspension significantly influences the safety of cargo transportation. This study presents a 14-degree-of-freedom vehicle–cargo coupling model that explicitly incorporates the frequency-dependent stiffness of air springs. Systematic parametric investigations of air spring orifice resistance, loading mass, and cargo stiffness reveal the following: (a) Compared with leaf spring suspension, air suspension vehicles attenuated the first peak of acceleration power spectral density by over 50%, while slightly amplifying the second peak; (b) When replacing leaf spring suspension with air suspension, the upper-layer cargo exhibited significantly larger vibration reductions (14% vertical, 28% pitch) than the lower-layer cargo under identical cargo parameters. The roll angle should be controlled to prevent the cargo overturning when equipping air suspensions; (c) Under light loading conditions, the vertical vibration response in upper-layer cargo is amplified. This amplification can be effectively suppressed through two complementary approaches, i.e., employing low-stiffness cushion materials and reducing orifice resistance through tunable orifices, which collectively attenuate characteristic peaks in the frequency-domain response and comprehensively mitigate the vertical vibration of cargo. These findings provide guidance for designing transportation schemes for cargo in air suspension vehicles to enhance cargo safety. Full article
Show Figures

Figure 1

19 pages, 7260 KB  
Article
Calibration of Parameters for Leaf-Stem-Cutting Model of Tuber Mustard (Brassica juncea L.) Based on Discrete Element Method
by Man Gu, Haiyang Shen, Weiwen Luo, Jie Ling, Bokai Wang, Fengwei Gu, Shumin Song, Liang Pan and Zhichao Hu
Agriculture 2025, 15(7), 773; https://doi.org/10.3390/agriculture15070773 - 2 Apr 2025
Viewed by 566
Abstract
The cutting of leaf stems is a critical step in the mechanized harvesting of tuber mustard (Brassica juncea L.). This study focuses on the calibration of parameters for the discrete element model of mustard leaf stems to visualize the cutting process and [...] Read more.
The cutting of leaf stems is a critical step in the mechanized harvesting of tuber mustard (Brassica juncea L.). This study focuses on the calibration of parameters for the discrete element model of mustard leaf stems to visualize the cutting process and facilitate numerical simulations. Intrinsic material properties were measured based on mechanical testing, and EDEM2022 simulation software was utilized to calibrate the model parameters. The Hertz–Mindlin (no-slip) model was employed to simulate the stacking angle of mustard leaf stems, and the contact parameters for the discrete element model were determined using a combination of two-level factorial design, steepest ascent, and CCD (central composite design) tests. The results showed that the coefficient of restitution, coefficient of static friction, and coefficient of rolling friction for the leaf stems were 0.45, 0.457, and 0.167, respectively, while for interactions between the leaf stems and the working parts, these values were 0.45, 0.55, and 0.175, respectively. Based on the Hertz–Mindlin with bonding model, the primary bonding parameters were calculated, and a BBD (Box–Behnken design) test was applied for optimization. The comparison between the simulation and experimental results showed that the relative error in the maximum shear force was within 5%, indicating that the calibrated model can serve as a reliable theoretical reference for the design and optimization of tuber mustard harvesting and cutting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 3301 KB  
Article
Cyclic Elasto-Plastic Behaviour of 51CrV4 Steel for Railway Parabolic Leaf Spring Design
by Vítor M. G. Gomes, Rita Dantas, José A. F. O. Correia and Abílio M. P. de Jesus
Appl. Sci. 2025, 15(5), 2549; https://doi.org/10.3390/app15052549 - 27 Feb 2025
Cited by 1 | Viewed by 560
Abstract
Parabolic leaf springs are components typically found in suspensions of freight railway rolling stock. These components are produced in high-strength alloyed steel, DIN 51CrV4, to resist severe loading and environmental conditions. Despite the material’s good mechanical characteristics, the geometric notches and high surface [...] Read more.
Parabolic leaf springs are components typically found in suspensions of freight railway rolling stock. These components are produced in high-strength alloyed steel, DIN 51CrV4, to resist severe loading and environmental conditions. Despite the material’s good mechanical characteristics, the geometric notches and high surface roughness that features its leaves might raise local stress levels to values above the elastic limit, with cyclic elasto-plastic behaviour models being more appropriate. In this investigation, the parameters of the Chaboche model combining the kinematic and isotropic hardening models are determined using experimental data previously obtained in strain-controlled cyclic tests. Once the parameters of the cyclic hardening model are determined, they are validated using a finite element approach considering the Chaboche cyclic plasticity model. As a result, the material properties specified in this investigation can be used in the fatigue mechanical design of parabolic leaf springs made with 51CrV4 (local approaches to notches and at surface roughness level) or even in other components produced with the same steel. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 15849 KB  
Article
Integrating Diurnal Physiological and Structural Variations in SIF for Enhanced Daily Drought Detection in Maize
by Jin Wang, Zhigang Liu, Hao Jiang, Peiqi Yang, Shan Xu, Tingrui Guo, Runfei Zhang, Dalei Han and Huarong Zhao
Remote Sens. 2025, 17(4), 565; https://doi.org/10.3390/rs17040565 - 7 Feb 2025
Viewed by 1342
Abstract
Daily water stress reflects the water stress status of crops on a specific day, which is crucial for studying drought progression and guiding precision irrigation. However, accurately monitoring the daily water stress remains challenging, particularly when eliminating the impact of historical stress and [...] Read more.
Daily water stress reflects the water stress status of crops on a specific day, which is crucial for studying drought progression and guiding precision irrigation. However, accurately monitoring the daily water stress remains challenging, particularly when eliminating the impact of historical stress and normal growth. Recent studies have demonstrated that the diurnal characteristics of the crop canopy obtained via remote sensing techniques can be used to assess daily water stress levels effectively. Remote sensing observations, such as the solar-induced chlorophyll fluorescence (SIF) and reflectance, offer information on the crop canopy structure, physiology, or their combination. However, the sensitivity of different structural, physiological, or combined remote sensing variables to the daily water stress remains unclear. We investigated this issue via continuous measurements of the active fluorescence, leaf rolling, and canopy spectra of maize under different irrigation conditions. The results indicated that with increasing water stress, vegetation exhibited significant coordinated diurnal variations in both structure and physiology. The influence of water stress was minimal in the morning but peaked at noon. The morning-to-noon ratio (NMR) of the apparent SIF yield (SIFy), in which only the effect of the photosynthetically active radiation (PAR) is eliminated and in which both structural and physiological information is incorporated, exhibited the highest sensitivity to water stress variations. This NMR of the SIFy was followed by the NMR of the normalized difference vegetation index (NDVI) and the NMR of the canopy fluorescence emission efficiency (ΦFcanopy) obtained via the fluorescence correction vegetation index (FCVI) method, which primarily reflect structural and physiological information, respectively. This study highlights the advantages of utilizing diurnal vegetation structural and physiological variations for monitoring daily water stress levels. Full article
Show Figures

Graphical abstract

17 pages, 3315 KB  
Article
Application of the Gradient-Boosting with Regression Trees to Predict the Coefficient of Friction on Drawbead in Sheet Metal Forming
by Sherwan Mohammed Najm, Tomasz Trzepieciński, Salah Eddine Laouini, Marek Kowalik, Romuald Fejkiel and Rafał Kowalik
Materials 2024, 17(18), 4540; https://doi.org/10.3390/ma17184540 - 15 Sep 2024
Cited by 2 | Viewed by 1633
Abstract
Correct design of the sheet metal forming process requires knowledge of the friction phenomenon occurring in various areas of the drawpiece. Additionally, the friction at the drawbead is decisive to ensure that the sheet flows in the desired direction. This article presents the [...] Read more.
Correct design of the sheet metal forming process requires knowledge of the friction phenomenon occurring in various areas of the drawpiece. Additionally, the friction at the drawbead is decisive to ensure that the sheet flows in the desired direction. This article presents the results of experimental tests enabling the determination of the coefficient of friction at the drawbead and using a specially designed tribometer. The test material was a DC04 carbon steel sheet. The tests were carried out for different orientations of the samples in relation to the sheet rolling direction, different drawbead heights, different lubrication conditions and different average roughnesses of the countersamples. According to the aim of this work, the Features Importance analysis, conducted using the Gradient-Boosted Regression Trees algorithm, was used to find the influence of several parameter features on the coefficient of friction. The advantage of gradient-boosted decision trees is their ability to analyze complex relationships in the data and protect against overfitting. Another advantage is that there is no need for prior data processing. According to the best of the authors’ knowledge, the effectiveness of gradient-boosted decision trees in analyzing the friction occurring in the drawbead in sheet metal forming has not been previously studied. To improve the accuracy of the model, five MinLeafs were applied to the regression tree, together with 500 ensembles utilized for learning the previously learned nodes, noting that the MinLeaf indicates the minimum number of leaf node observations. The least-squares-boosting technique, often known as LSBoost, is used to train a group of regression trees. Features Importance analysis has shown that the friction conditions (dry friction of lubricated conditions) had the most significant influence on the coefficient of friction, at 56.98%, followed by the drawbead height, at 23.41%, and the sample width, at 11.95%. The average surface roughness of rollers and sample orientation have the smallest impact on the value of the coefficient of friction at 6.09% and 1.57%, respectively. The dispersion and deviation observed for the testing dataset from the experimental data indicate the model’s ability to predict the values of the coefficient of friction at a coefficient of determination of R2 = 0.972 and a mean-squared error of MSE = 0.000048. It was qualitatively found that in order to ensure the optimal (the lowest) coefficient of friction, it is necessary to control the friction conditions (use of lubricant) and the drawbead height. Full article
Show Figures

Figure 1

27 pages, 2997 KB  
Review
Drought Stress Tolerance in Rice: Physiological and Biochemical Insights
by Aysha Siddika Jarin, Md. Moshiul Islam, Al Rahat, Sujat Ahmed, Pallab Ghosh and Yoshiyuki Murata
Int. J. Plant Biol. 2024, 15(3), 692-718; https://doi.org/10.3390/ijpb15030051 - 21 Jul 2024
Cited by 22 | Viewed by 7816
Abstract
Rice (Oryza sativa L.), an important food crop, necessitates more water to complete its life cycle than other crops. Therefore, there is a serious risk to rice output due to water-related stress. Drought stress results in morphological changes, including the inhibition of [...] Read more.
Rice (Oryza sativa L.), an important food crop, necessitates more water to complete its life cycle than other crops. Therefore, there is a serious risk to rice output due to water-related stress. Drought stress results in morphological changes, including the inhibition of seed germination, reduced seeding growth, leaf area index, flag leaf area, increased leaf rolling, as well as the decrement of yield traits, such as plant height, plant biomass, number of tillers, and 1000-grain yield. Stress also causes the formation of reactive oxygen species (ROS) such as O2, H2O2, and OH, which promote oxidative stress in plants and cause oxidative damage. The process of oxidative degradation owing to water stress produces cell damage and a reduction in nutrient intake, photosynthetic rate, leaf area, RWC, WUE, and stomatal closure, which may be responsible for the decrement of the transpiration rate and plant dry matter under decreasing soil moisture. Plants have the ability to produce antioxidant species that can either be enzymatic (SOD, POD, CAT, GPX, APX) or non-enzymatic (AsA, GSH) in nature to overcome oxidative stress. During drought, several biochemical osmoprotectants, like proline, polyamines, and sugars, can be accumulated, which can enhance drought tolerance in rice. To meet the demands of an ever-growing population with diminishing water resources, it is necessary to have crop varieties that are highly adapted to dry environments, and it may also involve adopting some mitigation strategies. This study aims to assess the varying morphological, physiological, and biochemical responses of the rice plant to drought, and the various methods for alleviating drought stress. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

14 pages, 2002 KB  
Article
Chromosome-Level Genome Assembly of Apoderus dimidiatus Voss (Coleoptera: Attelabidae): Insights into Evolution and Behavior
by Meng Xie, Yuhao Yao, Yuling Feng, Lei Xie, Chuyang Mao, Jinwu He, Xueyan Li and Qingyong Ni
Insects 2024, 15(6), 431; https://doi.org/10.3390/insects15060431 - 6 Jun 2024
Viewed by 1598
Abstract
Attelabidae insects have attracted much attention due to their unique leaf rolling behavior before oviposition. However, the lack of genomic data makes it difficult to understand the molecular mechanism behind their behavior and their evolutionary relationship with other species. To address this gap, [...] Read more.
Attelabidae insects have attracted much attention due to their unique leaf rolling behavior before oviposition. However, the lack of genomic data makes it difficult to understand the molecular mechanism behind their behavior and their evolutionary relationship with other species. To address this gap, we utilized Illumina and Nanopore sequencing platforms along with Hi-C technology to establish a highly accurate whole genome of A. dimidiatus at the chromosome level. The resulting genome size was determined to be 619.26 Mb, with a contig N50 of 50.89 Mb and GC content of 33.89%. Moreover, a total of 12,572 genes were identified, with 82.59% being functionally annotated, and 64.78% designated as repeat sequences. Our subsequent phylogenetic tree analysis revealed that Attelabidae’s divergence from Curculionidae occurred approximately 161.52 million years ago. Furthermore, the genome of A. dimidiatus contained 334 expanded gene families and 1718 contracted gene families. In addition, using Phylogenetic Analysis by Maximum Likelihood (PAML), we identified 106 rapidly evolved genes exhibiting significant signals and 540 positively selected genes. Our research endeavors to serve as an invaluable genomic data resource for the study of Attelabidae, offering fresh perspectives for the exploration of its leaf rolling behavior. Full article
(This article belongs to the Special Issue Phylogeny and Morphological Evolution of Hemiptera)
Show Figures

Figure 1

17 pages, 6229 KB  
Article
RIP5 Interacts with REL1 and Negatively Regulates Drought Tolerance in Rice
by Qiuxin Zhang, Dan He, Jingjing Zhang, Hui He, Guohua Guan, Tingting Xu, Weiyan Li, Yan He and Zemin Zhang
Cells 2024, 13(11), 887; https://doi.org/10.3390/cells13110887 - 21 May 2024
Cited by 2 | Viewed by 1931
Abstract
Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress [...] Read more.
Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress by eliminating reactive oxygen species (ROS) levels and triggering the abscisic acid (ABA) response. However, the mechanism through which REL1 regulates drought tolerance by removing ROS is unclear. In this study, we identified REL1 interacting protein 5 (RIP5) and found that it directly combines with REL1 in the chloroplast. We found that RIP5 was strongly expressed in ZH11 under drought-stress conditions, and that the rip5-ko mutants significantly improved the tolerance of rice plants to drought, whereas overexpression of RIP5 resulted in greater susceptibility to drought. Further investigation suggested that RIP5 negatively regulated drought tolerance in rice by decreasing the content of ascorbic acid (AsA), thereby reducing ROS clearance. RNA sequencing showed that the knockout of RIP5 caused differential gene expression that is chiefly associated with ascorbate and aldarate metabolism. Furthermore, multiple experimental results suggest that REL1 is involved in regulating drought tolerance by inhibiting RIP5. Collectively, our findings reveal the importance of the inhibition of RIP5 by REL1 in affecting the rice’s response to drought stress. This work not only explains the drought tolerance mechanism of rice, but will also help to improve the drought tolerance of rice. Full article
(This article belongs to the Special Issue Cell Biology of Drought and Heat Stress Responses in Plants)
Show Figures

Figure 1

21 pages, 7418 KB  
Article
Fatigue Crack Propagation of 51CrV4 Steels for Leaf Spring Suspensions of Railway Freight Wagons
by Vítor M. G. Gomes, Grzegorz Lesiuk, José A. F. O. Correia and Abílio M. P. de Jesus
Materials 2024, 17(8), 1831; https://doi.org/10.3390/ma17081831 - 16 Apr 2024
Cited by 6 | Viewed by 1516
Abstract
Leaf springs are critical components for the railway vehicle safety in which they are installed. Although these components are produced in high-strength alloyed steel and designed to operate under cyclic loading conditions in the high-cyclic fatigue region, their failure is still possible, which [...] Read more.
Leaf springs are critical components for the railway vehicle safety in which they are installed. Although these components are produced in high-strength alloyed steel and designed to operate under cyclic loading conditions in the high-cyclic fatigue region, their failure is still possible, which can lead to economic and human catastrophes. The aim of this document was to precisely characterise the mechanical crack growth behaviour of the chromium–vanadium alloyed steel representative of leaf springs under cyclic conditions, that is, the crack propagation in mode I. The common fatigue crack growth prediction models (Paris and Walker) considering the effect of stress ratio and parameters such as propagation threshold, critical stress intensity factor and crack closure ratio were also determined using statistical methods, which resulted in good approximations with respect to the experimental results. Lastly, the fracture surfaces under the different test conditions were analysed using SEM, with no significant differences to declare. As a result of this research work, it is expected that the developed properties and fatigue crack growth prediction models can assist design and maintenance engineers in understanding fatigue behaviour in the initiation and propagation phase of cracks in leaf springs for railway freight wagons. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (Volume II))
Show Figures

Figure 1

17 pages, 4222 KB  
Article
Determination of Morpho-Physiological Traits for Assessing Drought Tolerance in Sugarcane
by Warodom Wirojsirasak, Patcharin Songsri, Nakorn Jongrungklang, Sithichoke Tangphatsornruang, Peeraya Klomsa-ard and Kittipat Ukoskit
Plants 2024, 13(8), 1072; https://doi.org/10.3390/plants13081072 - 11 Apr 2024
Cited by 5 | Viewed by 2138
Abstract
Drought is a significant constraint to sugarcane productivity. Therefore, understanding how different varieties of sugarcane respond to drought stress can facilitate breeding programs and set up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-physiological traits to distinguish 40 [...] Read more.
Drought is a significant constraint to sugarcane productivity. Therefore, understanding how different varieties of sugarcane respond to drought stress can facilitate breeding programs and set up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-physiological traits to distinguish 40 sugarcane genotypes categorized into four groups based on significant differences in cane yield under non-stressed conditions and reduction of cane yield under drought-stressed conditions. The study was conducted during the formative stage in a greenhouse, encompassing both control and drought conditions. Drought treatments resulted in significant changes and differences in the mean values of various morpho-physiological traits. The hierarchical clustering analysis, utilizing stay-green traits such as higher chlorophyll fluorescence ratio (Fv/Fm), leaf chlorophyll content (SPAD), leaf relative water content (RWC), and lower leaf rolling score (LR), leaf drying score (LD), and drought recovery score (DR), successfully grouped 40 sugarcane genotypes into four major clusters, similar to the previously categorized groups. Correlation analysis showed significant relationships among cane yield, reduction of cane yield under drought conditions, and the stay-green traits. Our results demonstrated that morpho-physiological traits contributing to the “stay-green” phenotypes could be useful as selection criteria for drought tolerance in sugarcane. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

15 pages, 5392 KB  
Article
The Identification of Drought Tolerance Candidate Genes in Oryza sativa L. ssp. Japonica Seedlings through Genome-Wide Association Study and Linkage Mapping
by Tao Liu, Shuangshuang Li, Haoqiang Du, Jingnan Cui, Shanbin Xu, Jingguo Wang, Hualong Liu, Detang Zou, Wenhe Lu and Hongliang Zheng
Agriculture 2024, 14(4), 603; https://doi.org/10.3390/agriculture14040603 - 10 Apr 2024
Cited by 3 | Viewed by 2713
Abstract
Drought stress poses a significant threat to rice production, necessitating the identification of genes associated with drought tolerance. This study employed a combination of genome-wide association study (GWAS) and linkage mapping to pinpoint seedling drought tolerance genes in Japonica rice. Using the leaf [...] Read more.
Drought stress poses a significant threat to rice production, necessitating the identification of genes associated with drought tolerance. This study employed a combination of genome-wide association study (GWAS) and linkage mapping to pinpoint seedling drought tolerance genes in Japonica rice. Using the leaf rolling scale (LRS) as the phenotypic index, we assessed rice drought tolerance under polyethylene glycol-induced drought during the seedling stage. A lead SNP C8_28933410 by GWAS was identified, which was located within qLRS-8-1 identified by linkage mapping on chromosome 8. Combing the LD block analyses and QTL interval, a 138.6 kb overlap interval was considered as the candidate region. Haplotype analysis, qRT-PCR, sequence analysis, and mutant phenotype verification led to the speculation that LOC_Os08g05520 is a candidate gene associated with drought tolerance. Our findings provide a valuable reference for breeders aiming to enhance rice drought tolerance. Full article
(This article belongs to the Special Issue Agricultural Crops Subjected to Drought and Salinity Stress)
Show Figures

Figure 1

10 pages, 7418 KB  
Article
Characterization and Mapping of a Rolling Leaf Mutant Allele rlT73 on Chromosome 1BL of Wheat
by Lin Huang, Meijuan Gan, Wenzhuo Zhao, Yanling Hu, Lilin Du, Yuqin Li, Kanghui Zeng, Dandan Wu, Ming Hao, Shunzong Ning, Zhongwei Yuan, Lihua Feng, Lianquan Zhang, Bihua Wu and Dengcai Liu
Int. J. Mol. Sci. 2024, 25(7), 4103; https://doi.org/10.3390/ijms25074103 - 7 Apr 2024
Cited by 1 | Viewed by 1808
Abstract
Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf [...] Read more.
Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29–318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement. Full article
(This article belongs to the Special Issue Advances in Breeding and Genetics of Wheat Crops: 2nd Edition)
Show Figures

Figure 1

Back to TopTop