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Abstract: Drought stress poses a significant threat to rice production, necessitating the identification
of genes associated with drought tolerance. This study employed a combination of genome-wide
association study (GWAS) and linkage mapping to pinpoint seedling drought tolerance genes in
Japonica rice. Using the leaf rolling scale (LRS) as the phenotypic index, we assessed rice drought toler-
ance under polyethylene glycol-induced drought during the seedling stage. A lead SNP C8_28933410
by GWAS was identified, which was located within qLRS-8-1 identified by linkage mapping on
chromosome 8. Combing the LD block analyses and QTL interval, a 138.6 kb overlap interval was
considered as the candidate region. Haplotype analysis, qRT-PCR, sequence analysis, and mutant
phenotype verification led to the speculation that LOC_Os08g05520 is a candidate gene associated
with drought tolerance. Our findings provide a valuable reference for breeders aiming to enhance
rice drought tolerance.

Keywords: Japonica rice; GWAS; linkage mapping; drought tolerance; candidate genes

1. Introduction

Rice is one of the main staple food crops globally, sustaining over four billion people.
With increasing food demand due to industrialization and population growth, rice pro-
duction faces significant opportunities and challenges. Approximately half of the world’s
rice production is affected to some extent by arid conditions [1]. Therefore, there is an
urgent need for the development of drought-tolerant rice varieties in breeding programs.
Breeders commonly employ leaf rolling as a negative selection criterion, where a plant with
more rolled leaves under drought conditions is considered drought sensitive, serving as an
indicator of drought severity. Leaf rolling quantitative trait loci (QTL) have been studied
across different genetic backgrounds of rice. qLRS1.1, identified through meta-analysis,
was found to reside in the same genomic region related to the leaf rolling score (LRS) [2–4].
Furthermore, qLRI1-1, qLRI9-1, and qLRI10-1 were identified as the leaf rolling indices on
chromosomes 1, 9, and 10, which explained 18.8%, 6.7%, and 8.3% of the phenotypic vari-
ance, respectively [5]. Meta-QTLs found that qLRI9-1 was co-located with DRO1 (deeper
rooting 1) in the same region, which was a quantitative trait locus controlling root growth
angle and negatively regulated by auxin in rice [6]. To date, 35 rolled-leaf mutants in rice
have been identified, with several representative rolled-leaf genes successfully cloned, for
example, OsAGO7 (ZIP/Ago7) [7], OsCOW1/NAL7 (narrow leaf 7) [8], SLL1 (shallot-like
1) [9], ADL1 (adaxialized leaf 1) [10], LC2 (leaf inclination 2) [11], NRL1 (narrow and rolled
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leaf 1) [12,13], ACL1 (abaxially curled leaf 1) [14], ROC5 (rice outermost cell-specific gene
5) [15], CFL1 (curly flag leaf 1) [16], RL14 (rolling-leaf 14) [17], SRL1 (semi-rolled leaf 1) [18],
OsZHD1 (a zinc finger homeodomain 1) [19], OsMYB103L (R2R3-MYB transcription fac-
tor) [20], SLL2 (shallot-like 2) [21], REL1 (rolled and erect leaf 1) [22], and SRL2 (semi-rolled
leaf 2) [23]. While most cloned rolled-leaf genes are associated with rice vesicular cells, only
a few are related to the paraxial or distal polarity of rice leaf development.

The combination of genome-wide association study and linkage mapping provides a
novel approach for the dissection of complex traits in crops. Generally, the joint analysis of
these two methods enhances the reliability and accuracy of trait mapping. This has been
demonstrated in various crops, revealing traits such as plant height and ear position [24],
male inflorescence size [25], husk traits [26], Fusarium verticillioides seed rot resistance [27],
thermotolerance of seed-set [28], and flower time-related traits [29] in maize. Coincident
regions have also been identified for panicle traits in wheat [30]. Similarly, qAT11 has
been identified as a primary alkali tolerance QTL in rice [31]. These studies underscore
the feasibility of identifying QTLs or genes associated with seedling drought through the
integration of GWAS and linkage mapping.

In this study, we employed a joint analysis method to determine the genetic basis
of drought tolerance in rice seedlings. Our findings highlight LOC_Os08g05520 as a new
candidate gene crucial for drought tolerance in rice breeding.

2. Materials and Methods
2.1. Plant Materials

The natural population consisted of 295 Japonica rice varieties originating from the three
northeastern provinces of China, Russia, Japan, North Korea, and the Republic of Korea
This natural population was also used in previous studies [31,32]. The RIL (Recombinant
Inbred Lines) consists of 195 individuals constructed by KY131 (drought sensitive) and
XBJZ (drought tolerant).

2.2. Drought Tolerance Evaluation at the Seedling Stage

The rice kernels were dried in a 40 ◦C oven for 7 days to break dormancy [33]. The
seed surface was disinfected with 2.5% sodium hypochlorite for 30 min, rinsed with sterile
water three times, and then immersed in distilled water for 2 days at 30 ◦C in a dark
environment. Sixty seeds with the same bud length were divided into two parts and
cultured in chernozem soil, with 10 seeds per treatment for three replicates. The seeds
were grown in a light incubator at 27 ◦C during the day and 22 ◦C at night with a relative
humidity of 70%. At the two leaves and one core stage, Yoshida nutrient solution (pH = 5.5,
460.854 mg/L) was added to the control every 7 days. Simultaneously, Yoshida plus 20%
PEG-6000 nutrient solution (pH = 5.5, 460.854 mg/L) was used for treatment for 10 days.
After 10 days of drought stress, LRS was evaluated in three replicates based on the standard
evaluation system [34]. Leaf begins to fold (V-shaped) means LRS equals 1; deep leaf fold
(deep V) means LRS equals 3; the blade is U-shaped means LRS equals 5; blade edges
fastened together (O type) means LRS equals 7; and tightly crimped blade means LRS
equals 9. GWAS and linkage analyses were performed using the mean values of three
replicates of the LRS.

2.3. GWAS for Leaf Rolling

A total of 788,369 SNPs with minor allele frequency (MAF) ≥ 5% and missing
rate ≤ 20% were selected for GWAS [32]. Considering the group structure and kinship,
TASSEL 5.0 [35] was used for association analysis of the LRS using a mixed linear model
(MLM). The number of valid and independent SNPs was counted using GEC software
(http://pmglab.top/gec/#/download, accessed on 1 May 2021), considering p < 5.46 × 10−6

as the threshold to determine the significance of SNP marker association with LRS. If at
least two significant SNPs were located in the same LD (linkage disequilibrium) interval,
these SNPs were defined as the same QTL, and the SNP with the smallest p value was

http://pmglab.top/gec/#/download
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regarded as the lead SNP. Manhattan maps and Q-Q plots were created using the CMplot
package in R 3.3.2.

2.4. QTL Mapping for LRS

The linkage group was constructed using 527 bin markers and the 10 K Array genotype
technique at the MOLBREEDING Biotech Company. The total length of the genetic map
was 1875.6 cM, and the mean distance between the markers was 3.58 cM (Figure S1). QTL
mapping was performed using the inclusive composite interval mapping (ICIM) method
and QTL IciMapping Version 4.2 (https://isbreeding.caas.cn/rj/qtllcmapping/, accessed
on 1 May 2021). The threshold for QTL identification (LOD score) was set to 3.0, and the
step was set to 1 cM.

2.5. Haplotype Analysis and Quantitative Real Time PCR

In this study, the co-localisation intervals between GWAS and linkage mapping were
regarded as important QTLs. In GWAS, if a significant site is a false positive, the site can
be visually judged by LD block analysis. LDBlockShow was a fast and convenient tool
for visualization LD and haplotype blocks based on variant call format files. To rule out
false positive sites, the lead SNPs ± 2 Mb as a block were analysed by LDBlockShow [36].
SNPs with non-synonymous mutations (including the promoter region 1500 bp before
ATG and exons of candidate genes) were downloaded from the Rice SNP-Seek Database
(https://snp-seek.irri.org/_snp.zul, accessed on 1 May 2021). Haplotype analysis was
performed on 295 japonica rice varieties using Origin Pro 2019b software, and the database
which was utilized was “GWAS for Leaf Rolling in 2.3”. The expression of candidate
genes in the leaves was evaluated using qRT-PCR. After 24 h of drought stress with 20%
PEG-6000, fresh leaves of KY131 and XBJZ were sampled under 20% PEG-6000 and control
conditions. Total RNA was extracted using the TranZol Up RNA Kit (Trans Gen Biotech,
Beijing, China). cDNA was synthesised from the total RNA using the HiFiScript cDNA
Synthesis Kit (Cwbio, Beijing, China). qRT-PCR analysis was performed using a Roche
LightCycler96 (Roche, Basel, Switzerland). All primer sequences are listed in Table S1.
Relative gene expression quantity was calculated using the 2−∆∆Ct method [37].

2.6. Prediction of Candidate Genes and Sequence Alignment

Based on the results of haplotype and gene expression analyses, LOC_Os08g05520
was predicted to be a candidate gene. Thereafter, the candidate gene was cloned by PCR,
and at the same time, sequencing was completed in KY131 and XBJZ. SnapGene software
(https://www.snapgene.com/, accessed on 1 May 2021) was used for sequence alignment.

2.7. Acquisition of LOC_Os08g05520 Mutants

The mutant seeds of the T1 generation with a ZH11 genetic background were obtained
from BIOGLE GENETECH (http://www.biogle.cn/, accessed on 1 May 2021), which was
created using CRISPR/Cas9 in August 2020. During the next two seasons, the T1 seeds
were planted in the field for seed propagation and separation. Finally, two homozygous T3
generation lines (named CR1 and CR2) were selected in October 2022, which had sufficient
seeds for drought tolerance identification.

In osmotic stress, ZH11 wild, CR1, and CR2 were planted in two rows in one pool
under two conditions (20% PEG-6000 treatment and control) for 10 days at the two leaves
and one core stage. LRS was investigated with three repeats. In addition to osmotic stress,
we analysed the differences in LRS between the mutants and wild type using the water
deprivation method. The control was cultured under normal conditions. For the drought
treatment, the plants were deprived of water for 20 days at the three-leaf stage. LRS and
plant height were investigated with three repeats after 20 days’ cultivation. The mutant
and wild plants were then transplanted into pots for recovery culturing under the same
cultivation conditions as those used in field production. At the maturity stage, plant heights,
tillering numbers, effective panicle numbers, grain numbers per spike, thousand-grain

https://isbreeding.caas.cn/rj/qtllcmapping/
https://snp-seek.irri.org/_snp.zul
https://www.snapgene.com/
http://www.biogle.cn/


Agriculture 2024, 14, 603 4 of 15

weights, and yields per plant were measured in triplicate in the treatment and control
groups. Significance analysis (p < 0.05) and mapping were performed using the Origin
software package (OriginLab origin 2019b).

3. Results
3.1. Phenotypic Variation

The mean values, standard deviations, and ranges for the natural population and
195 RILs are listed in Table S2. LRS varied significantly among the 295 accessions, ranging
from 1.0 to 9.0, with a mean value of 5.0. The mean LRS for the 195 RILs was 4.7, with a
range from 1.0 to 9.0. The frequency distribution of leaf rolling among the 295 accessions
and the RIL population is shown in Figure 1a,b. The parents’ performance under normal
conditions and drought stress is illustrated in Figure 1c,d. The LRS of the parents under
drought treatment was graded as 3.0 and 7.0, respectively. The distribution of phenotypic
values basically conforms to normal distribution both in the natural and linkage population.
All these prove that leaf rolling character belongs to quantitative character inheritance.
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Figure 1. LRS variation of 295 accessions, RILs, parental performance under normal and drought con-
ditions. (a) LRS distribution in natural populations. (b) LRS distribution in RILs. (c) performance of
two parents under normal condition for 10 days at the two leaves and one core stage. (d) performance
of two parents under 20% PEG-6000 stress for 10 days at the two leaves and one core stage.

3.2. GWAS for LRS in Natural Population

The GWAS results are showed in Manhattan and Q-Q plots in Figure 2a,b, respectively.
Eight SNPs were significantly associated with leaf rolling (Table 1). These SNPs were
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located on chromosomes 1, 4, 7, and 8, with R2 values ranging from 10.11% to 14.16%. While
sporadically distributed on chromosomes 1, 4, and 7, they exhibited a significant association
with leaf rolling. Notably, on chromosome 8, four SNPs were distributed in clusters that
were significantly associated with leaf rolling, indicating linkage disequilibrium among
these SNPs. The bottom left corner of the Q-Q plots showed that the model was reasonable,
and the top right corner showed that the correlation sites were found.
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(a) Manhattan plots for leaf rolling scale. (b) Quantile-quantile (Q-Q) plots for leaf rolling scale.

Table 1. Lead SNPs for LRS identified by GWAS.

Trait Lead SNP Chr. Position p Value R2 (%) QTL in
Previous Study

LRS

Chr1_10152936 1 10152936 7.86 × 10−7 12.2
Chr4_32975130 4 32975130 3.42 × 10−6 10.86 qRL-4-1 [38]

Chr7_15152008 7 15152008 2.11 × 10−6 10.11 qRL-7 [39],
qRI7a [40]

Chr8_1427905 8 1427905 5.22 × 10−7 14.16

qRL-8-1 [39]
Chr8_1941918 8 1941918 1.95 × 10−6 11.37
Chr8_2154790 8 2154790 1.66 × 10−6 12.8
Chr8_2933410 8 2933410 1.84 × 10−6 11.42

Chr8_11324046 8 11324046 2.45 × 10−6 11.16

R2 (%): Phenotypic variance explained.

3.3. Linkage Mapping for LRS in RIL Population

Two QTLs associated with LRS were localised on chromosomes 4 and 8 (Table 2; Figure
S1), with LOD values of 5.32 and 3.94, respectively. qLRS-4-1 was located between markers
C4_32680431 and C4_33516075, elucidating 14.69% of the phenotypic variation. In addition,
qLRS-8-1 was located between markers C8_2397444 and C8_3005090, accounting for 9.94%
of the phenotypic variation.

Table 2. QTLs for leaf rolling identified by linkage mapping.

QTLs Left Marker Right Marker Chr. LOD R2 (%) Additive Effect Known QTLs Known Genes

qLRS-4-1 C4_32680431 C4_33516075 4 5.32 14.69 −0.78 qRL-4-1 [38] OsJAZ1 [41]
qLRS-8-1 C8_2397444 C8_3005090 8 3.94 9.94 −0.64 qRL-8-1 [39] OsMYB103L [20]

R2 (%): Phenotypic variance explained.
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3.4. Haplotype Analysis of Candidate Genes

By comparing the results of GWAS and linkage analysis, the lead SNPs Chr4_32975130
and Chr8_2933410 were located in the qLRS-4-1 and qLRS-8-1 intervals, respectively
(Figure 3a,b). LDBlockShow analysis revealed 57 candidate genes between C4_32792207
and C4_33164790 (Table S3) and 22 candidate genes between C8_2866488 and C8_3016330
(Table S4). 57 candidate genes include 41 expressed proteins, eight retrotransposon proteins,
one putative protein, and seven known functional genes. Twenty-two candidate genes
include 21 expression proteins and one retrotransposon protein. Based on the overlapping
region of the linkage mapping, the range was further narrowed from 149.8 kb to 138.6 kb.
Haplotype analysis of these genes was performed, revealing significant differences in
the haplotypes of four genes (LOC_Os04g55150, LOC_Os04g55190, LOC_Os08g05520, and
LOC_Os08g05610) compared to those of LRS (Figure 4e–h). Among the four candidate
genes, there were totals of 231, 234, 227, and 261 varieties with haplotypes, respectively.
Among these genes, except for three non-synonymous mutations in LOC_Os04g55150 in
the untranslated regions, all other non-synonymous mutations were in exons (Figure 4a–d).
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Figure 3. Co-localisation results for the LRS interval obtained through linkage mapping and
GWAS. (a) Drought tolerance QTLs were mapped to the interval between markers C4_32680431
and C4_33516075 using linkage mapping. LDBlockShow narrowed down the candidate region to
372.5 kb. (b) Drought tolerance QTLs were mapped to the interval between markers C8_2397444
and C8_3005090 using linkage mapping. LDBlockShow further narrowed the candidate region to
149.8 kb. By intercepting the co-localisation interval, the candidate region was further narrowed to
138.6 kb between markers C8_2866488 and C8_3005090.
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Figure 4. Structure and haplotype analysis of four candidate genes. (a–d) represent the gene
structure and the variety number of haplotype combinations of LOC_Os04g55150, LOC_Os04g55190,
LOC_Os08g05520, and LOC_Os08g05610. (e–h) represent the haplotype analysis of LOC_Os04g55150,
LOC_Os04g55190, LOC_Os08g05520, and LOC_Os08g05610. * p < 0.05, based on ANOVA.

3.5. Gene Expression and Sequence Analysis of Candidate Genes

The expression of the four genes in the leaves was evaluated using qRT-PCR, and
the results from the average of three replicates are shown in Figure 5. Under control
conditions, no differences were observed in the expression levels of the four genes between
the parents. However, under drought treatment, the expression levels of two genes showed
significant differences between the parents (Figure 5a,c). There were no differences between
LOC_Os04g55190 and LOC_Os08g05610 (Figure 5b,d). Taking the fact that KY131 is drought-
sensitive and the variety XBJZ is drought-tolerant into consideration, LOC_Os04g55150 and
LOC_Os08g05520 can be regarded as the candidate genes. Specifically, the expression of
LOC_Os08g05520 in XBJZ was significantly upregulated under drought stress compared to
that in KY131 (Figure 5c).

LOC_Os04g55150 and LOC_Os08g05520 were sequenced in KY131 and XBJZ, re-
spectively, revealing no differences between the parental sequences of LOC_Os04g55150
(Figure S2). Nevertheless, compared with the sequence of KY131, LOC_Os08g05520 in XBJZ
exhibited a 1 bp (A→C) mutation in the promoter region and a 2 bp deletion (A and T) in
the first exon. Considering differences in parental drought resistance, we hypothesised that
LOC_Os08g05520 was a candidate gene for drought resistance in rice. LOC_Os08g05520
encodes a MYB-like DNA binding domain containing protein that has been previously
reported to affect stem degradation in rice [20].
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Figure 5. Expression differences of the four candidate genes under normal conditions and 20%
PEG stress after 24 h cultivation. (a) LOC_Os04g55150 expressed under normal conditions and
20% PEG-6000 stress. (b) LOC_Os04g55190 expressed under normal conditions and 20% PEG-
6000 stress. (c) LOC_Os08g05520 expressed under normal conditions and 20% PEG-6000 stress.
(d) LOC_Os08g05610 expressed under normal conditions and 20% PEG-6000 stress. ** p < 0.01,
*** p < 0.001, Students’ t test.

3.6. Drought Tolerant Function Verification by Mutant

To further confirm the function of LOC_Os08g05520 under drought conditions, we
generated two homozygous mutant lines (designated as CR1 and CR2). Compared to the
wild-type sequences, CR1 exhibited an 8 bp knockout at the target site, while CR2 featured
an A base insertion (Figure 6a). Under control conditions, no discernible differences were
observed in the growth of mutant and wild-type rice seedlings (Figure 6b). However, under
drought treatment conditions, the mutant plants CR1 and CR2 demonstrated enhanced
drought tolerance, as evidenced by an average LRS of 1.8 and 2.0, respectively, in contrast to
an average LRS of 7.1 in the wild type (Figure 6c,d). This finding underscores the significant
contribution of LOC_Os08g05520 knockout to the improvement of drought tolerance in rice.

The performances of the wild type, CR1, and CR2 in the three-leaf stage after 20 d
of water deprivation are shown in Figure 7. Under normal conditions, no significant
differences in plant height or LRS were observed among the wild type, CR1, and CR2,
indicating that the mutants and wild type had a consistent phenotype. The average LRS
of the wild type was 2.6 under normal conditions, whereas it was 6.6 after 20 d of water
deprivation. Under normal conditions, the average plant height of the wild type was
37.4 cm, but it was 28.6 cm after 20 d of water deprivation. After water deprivation, the
LRS of the wild type differed significantly from those of CR1 and CR2 (p < 0.001), as shown
in Figure 8a. No difference in LRS was observed between CR1 and CR2, which had a mean
LRS of 2.2 that was higher than the mean LRS under normal conditions. After 20 d of water
deprivation, the difference in plant height between the wild type and CR1 was significant
(p < 0.05), the difference between wild type and CR2 was highly significant (p < 0.01), and
no significant difference was observed between CR1 and CR2 (Figure 8b). Thus, the growth
of the wild type was strongly affected by water deprivation, which caused the LRS of the
leaves to increase and the plant height to decrease. The mutants (CR1 and CR2) were less
affected by water deprivation, and their LRS and plant heights were similar to those of the
control group.
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Figure 6. Sequence comparison of wild type and mutants, and phenotypic differences between 20%
PEG-6000 and normal conditions. (a) DNA sequence comparison between ZH11, CR1, and CR2.
(b) ZH11 wild, CR1, and CR2 planted in two rows in one pool under control conditions for 10 days.
(c) ZH11 wild, CR1, and CR2 planted in two rows in one pool under 20% PEG-6000 treatment for
10 days. (d) Significant differences in LRS of wild type, CR1, and CR2 (** p < 0.01, Students’ t test).
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3.7. Comparison of Yield and Yield Components

To verify whether water deprivation and recovery had an effect on the final rice yields
of the mutants, we continued to track the plant heights, yields, and yield-component traits
of CR1, CR2, and the wild type after recovery and under normal conditions. Under normal
conditions, no significant differences in plant height, tillering number, effective panicle
number, grain number per spike, thousand-grain weight, or yield per plant were observed
among the wild type, CR1, and CR2. According to the average phenotype and variation
amplitude, mutants CR1 and CR2 exhibited high consistencies with the wild type. In
the water deprivation recovery group, the differences between the wild type and CR1
and between the wild type and CR2 were significant or extremely significant (p < 0.05,
p < 0.01, and p < 0.001), whereas the difference between CR1 and CR2 was not significant.
Thus, the water deprivation treatment had larger effects on plant height, tillering number,
effective panicle number, grain number per spike, thousand-grain weight, and yield per
plant in the wild type, but had little effect on the growth and development of CR1 and CR2
(Figure 9a–f).
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Figure 9. Comparison of plant height, yield, and yield component traits of wild type and mutants
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(b) Tiller number. (c) Effective panicle number. (d) Grain number per spike. (e) Thousand grain
weight. (f) Yield per plant. *, **, and *** represent the significance of ANOVA at p < 0.05, p < 0.01, and
p < 0.001, respectively.

4. Discussion

The rice seedling stage is sensitive to drought stress, inhibiting vegetative growth
and yield. Targeting highly drought-tolerant cultivars with drought-related genes is the
most promising method for improving modern crop breeding [42]. This study selected
LRS, which has been used for drought tolerance screening [43]. LRS values exhibited a
continuous approximately normal distribution. It presents a typical genetic pattern of
quantitative traits and is controlled by multiple genes. The identification of these QTLs is
beneficial for drought tolerance in the marker-assisted breeding selection of rice.

Parent-based QTL mapping and GWAS are effective and accurate tools for the detec-
tion of QTLs for complex traits in crops [44]. The combination of the two methods can
effectively improve the breadth and accuracy of QTL detection. The combination of linkage
mapping and GWAS has achieved great success in gene mining for complex quantitative
traits in rice. For example, a linkage mapping and GWAS joint strategy have been used to
identify QTLs associated with grain shape and weight, which revealed the co-detection
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of the QTLs qGLE-12-1 and qGLE-12-2 (Chromosome 12), qGTE-3-1 (Chromosome 3), and
qGWL-5-1 and qLWRL-5-1 (Chromosome 5), associated with grain length, width, and length-
width ratio [45]. Similar research strategies have been applied to salinity tolerance at the
seedling stage, resulting in the identification of a 195-kb region on chromosome 12 which
was selected as the candidate interval based on the overlapping regions in the GWAS
and the linkage mapping [46]. These studies demonstrate that the integration of linkage
mapping and GWAS provides an excellent method for identifying QTL and molecular
markers for rapid breeding deployment. In this study, a lead SNP C8_28933410 by GWAS
was identified, which was located within qLRS-8-1 identified by linkage mapping on chro-
mosome 8. Combing the LD block analyses and QTL interval, a 138.6 kb overlap interval
was considered as the candidate region.

In this study, eight lead SNPs and two QTLs were identified for leaf rolling scale.
In previous studies, some loci were located within the same interval or overlapped with
known QTLs. For example, OsJAZ1, which negatively regulates drought resistance in
the seedling and reproductive stages of rice by negatively regulating ABA and jasmonic
acid signaling [41], was within the qLRS-4-1 identified by linkage mapping. qLRS-4-1
was also located in the same interval as qRL-4-1 [38], identified between RM5473 and
RM348. Chr4_32975130 was also detected by GWAS in qRL-4-1 cells, further confirming
this candidate region. Similarly, qLRS-8-1 was located at a smaller location interval than
qRL-8-1 [39], between RM1235 and RM331. Another important finding was that the five
lead SNPs on chromosome 8 were distributed in qRL-8-1. OsMYB103L [20] controlled
leaf curling and mechanical strength in rice within qLRS-8-1 was identified by linkage
mapping. In our study, GWAS identified two new drought-tolerant QTLs, Chr1_10152936
and Chr7_15152008.

Here, we found that LOC_Os08g05520 is a novel functional gene associated with
drought tolerance in rice. LOC_Os08g05520 encodes an R2R3-MYB transcription factor,
influencing leaf rolling and mechanical strength in rice, namely OsMYB103L. OsMYB103L
interacts with SLR1 (slender rice 1), an inhibitory factor in GA signaling, and is involved in
the GA-mediated regulation of the cellulose synthesis pathway. In addition, OsMYB103L
directly binds to and regulates the expression of the CESA4, CESA7, CESA9, and BC1
promoters. GA mediates cellulose synthesis and secondary wall formation via the SLR1-
MYB103L-CESAs pathway [47]. Researchers have found that the expression levels of several
cellulose synthase genes (CESAs) significantly increased, similar to the cellulose content in
OsMYB103L overexpressing lines. The knockdown of OsMYB103L by RNA interference
leads to the opposite phenotype [20,47,48]. Therefore, we speculate that OsMYB103L may
regulate the cellulose content and expression levels of several CESAs to affect drought
tolerance in rice.

5. Conclusions

In conclusion, our study successfully identified LOC_Os08g05520 as a pivotal candi-
date gene associated with drought tolerance in japonica rice seedlings. The findings present
a valuable resource for breeders aiming to improve their drought tolerance in rice varieties.
Looking ahead, further research could develop into elucidating the specific mechanisms
by which LOC_Os08g05520 confers drought tolerance, providing deeper insights into the
molecular pathways involved. Additionally, exploring other candidate genes and pathways
may offer a more comprehensive understanding of the complex genetic basis of drought
tolerance in rice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agriculture14040603/s1, Figure S1: The genetic and linkage group of
RIL population. Figure S2: Sequence comparison of LOC_Os08g05520 between parents. Table S1:
Primers for qRT-PCR in this study. Table S2: Descriptive statistics for leaf rolling scale in the parents,
195 recombinant inbred lines (RILs), and 295 rice accessions. Table S3: Summary of functional
annotation results for genes in the candidate region on chromosome 4. Table S4: Summary of
functional annotation results for genes in the candidate region on chromosome 8.
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