Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,732)

Search Parameters:
Keywords = rock support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

25 pages, 7748 KiB  
Article
A Deep Learning Approach to Identify Rock Bolts in Complex 3D Point Clouds of Underground Mines Captured Using Mobile Laser Scanners
by Dibyayan Patra, Pasindu Ranasinghe, Bikram Banerjee and Simit Raval
Remote Sens. 2025, 17(15), 2701; https://doi.org/10.3390/rs17152701 - 4 Aug 2025
Abstract
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising [...] Read more.
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising risks in underground mining operations. Where manual surveying of rock bolts is challenging due to the low-light conditions in the underground mines and the time-intensive nature of the process, automated detection of rock bolts serves as a plausible solution. To that end, this study focuses on the automatic identification of rock bolts within medium- to large-scale 3D point clouds obtained from underground mines using mobile laser scanners. Existing techniques for automated rock bolt identification primarily rely on feature engineering and traditional machine learning approaches. However, such techniques lack robustness as these point clouds present several challenges due to data noise, varying environments, and complex surrounding structures. Moreover, the target rock bolts are extremely small objects within large-scale point clouds and are often partially obscured due to the application of reinforcement shotcrete. Addressing these challenges, this paper proposes an approach termed DeepBolt, which employs a novel two-stage deep learning architecture specifically designed for handling severe class imbalance for the automatic and efficient identification of rock bolts in complex 3D point clouds. The proposed method surpasses state-of-the-art semantic segmentation models by up to 42.5% in Intersection over Union (IoU) for rock bolt points. Additionally, it outperforms existing rock bolt identification techniques, achieving a 96.41% precision and 96.96% recall in classifying rock bolts, demonstrating its robustness and effectiveness in complex underground environments. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Figure 1

20 pages, 5875 KiB  
Article
Optimizing Rock Bolt Support for Large Underground Structures Using 3D DFN-DEM Method
by Nooshin Senemarian Isfahani, Amin Azhari, Hem B. Motra, Hamid Hashemalhoseini, Mohammadreza Hajian Hosseinabadi, Alireza Baghbanan and Mohsen Bazargan
Geosciences 2025, 15(8), 293; https://doi.org/10.3390/geosciences15080293 - 2 Aug 2025
Viewed by 173
Abstract
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, [...] Read more.
A systematic sensitivity analysis using three-dimensional discrete element models with discrete fracture networks (DEM-DFN) was conducted to evaluate underground excavation support in jointed rock masses at the CLAB2 site in Southeastern Sweden. The site features a joint network comprising six distinct joint sets, each with unique geometrical properties. The study examined 10 DFNs and 19 rock bolt patterns, both conventional and unconventional. It covered 200 scenarios, including 10 unsupported and 190 supported cases. Technical and economic criteria for stability were assessed for each support system. The results indicated that increasing rock bolt length enhances stability up to a certain point. However, multi-length rock bolt patterns with similar consumption can yield significantly different stability outcomes. Notably, the arrangement and properties of rock bolts are crucial for stability, particularly in blocks between bolting sections. These blocks remain interlocked in unsupported areas due to the induced pressure from supported sections. Although equal-length rock bolt patterns are commonly used, the analysis revealed that triple-length rock bolts (3, 6, and 9 m) provided the most effective support across all ten DFN scenarios. Full article
(This article belongs to the Special Issue Computational Geodynamic, Geotechnics and Geomechanics)
Show Figures

Figure 1

37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 175
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan
by Ronald Herrera, Daniel Garcés, Abdelmadjid Benrabah, Ahmad Al-Malabeh, Rafael Jordá-Bordehore and Luis Jordá-Bordehore
Appl. Mech. 2025, 6(3), 56; https://doi.org/10.3390/applmech6030056 - 31 Jul 2025
Viewed by 83
Abstract
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of [...] Read more.
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of the state of the art of these techniques worldwide, assessing their reliability and application context, and identifying the most suitable methodologies for determining the stability of the Al-Badia lava tube. The research was conducted through bibliographic analysis and rock mass characterization using empirical geomechanical classifications. Subsequently, the numerical boundary element method (BEM) was applied to compare the obtained results and model the stress–strain behavior of the cavity. The results allowed the classification of the Al-Badia lava tube into stable, transition, and unstable zones, using empirical support charts and determining the safety factors of the surrounding rock mass. The study site highlights that empirical methods are rather conservative, and numerical results align better with observed conditions. Full article
Show Figures

Figure 1

21 pages, 3510 KiB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 - 31 Jul 2025
Viewed by 169
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

12 pages, 1641 KiB  
Article
Intraspecific Variations in Ecomorphological Functional Traits of Montane Stream-Dwelling Frogs Were Driven by Their Microhabitat Conditions
by Xiwen Peng, Da Kang, Guangfeng Chen, Suwen Hu, Zijian Sun and Tian Zhao
Animals 2025, 15(15), 2243; https://doi.org/10.3390/ani15152243 - 30 Jul 2025
Viewed by 223
Abstract
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across [...] Read more.
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across elevation gradients in Tianping Mountain, China. Using morphological measurements and environmental variables collected from ten transects, we analyzed functional traits related to feeding and locomotion and assessed their associations with microhabitat variables. Significant trait differences between low- and high-elevation groups were detected only in Q. boulengeri, with high-elevation individuals exhibiting greater body mass and shorter hindlimbs. Redundancy analysis demonstrated that microhabitat variables, particularly air humidity, flow rate, and rock coverage, were linked to trait variations. For example, air humidity and flow rate significantly influenced Q. boulengeri’s body and limb proportions, while flow rate affected A. sinensis’s snout and limb morphology. In addition, sex and seasonal effects were also associated with trait variations. These results underscore amphibians’ phenotypic plasticity in response to the environment and highlight the role of microhabitat complexity in shaping traits. By linking habitat heterogeneity to eco-morphology, this study advocates for conservation strategies that preserve varied stream environments to support amphibian resilience amid environmental changes. Full article
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 193
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 310
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 282
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 127
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 8003 KiB  
Article
Study on Meso-Mechanical Evolution Characteristics and Numerical Simulation of Deep Soft Rock
by Anying Yuan, Hao Huang and Tang Li
Processes 2025, 13(8), 2358; https://doi.org/10.3390/pr13082358 - 24 Jul 2025
Viewed by 285
Abstract
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and [...] Read more.
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and particle flow code (PFC) numerical simulation to investigate the failure evolution characteristics and AE quantitative representation of soft rocks. Key findings include the following: Localized high-strain zones emerge on specimen surfaces before macroscopic crack visualization, with crack tip positions guiding both high-strain zones and crack propagation directions. Strong force chain evolution exhibits high consistency with the macroscopic stress response—as stress increases and damage progresses, force chains concentrate near macroscopic fracture surfaces, aligning with crack propagation directions, while numerous short force chains coalesce into longer chains. The spatial and temporal distribution characteristics of acoustic emissions were explored, and the damage types were quantitatively characterized, with ring-down counts demonstrating four distinct stages: sporadic, gradual increase, stepwise growth, and surge. Shear failures predominantly occurred along macroscopic fracture surfaces. At the same time, there is a phenomenon of acoustic emission silence in front of the stress peak in the surrounding rock of deep soft rock roadway, as a potential precursor indicator for engineering disaster early warning. These findings provide critical theoretical support for deep engineering disaster prediction. Full article
Show Figures

Figure 1

30 pages, 5617 KiB  
Article
Scale Considerations and the Quantification of the Degree of Fracturing for Geological Strength Index (GSI) Assessments
by Paul Schlotfeldt, Jose (Joe) Carvalho and Brad Panton
Appl. Sci. 2025, 15(15), 8219; https://doi.org/10.3390/app15158219 - 24 Jul 2025
Viewed by 225
Abstract
This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this [...] Read more.
This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this notion, a brief review is provided to demonstrate why it is imperative that scale is considered when using GSI in engineering design. The impact of scale and scale effects on the engineering response of a rock mass typically requires a definition of fracture intensity relative to the volume or size of rock mass under consideration and the relative scale of the project being built. In this research three volume scales are considered: the volume of a structural domain, a representative elemental REV, and unit volume. A theoretical framework is established that links these three volume scales together, how they are estimated, and how they relate to parameters used to estimate engineering behaviour. Analysis of data from several examples and case histories for real rock masses is presented that compares and validates the use of a new and innovative but practical method (a sphere of unit volume) to estimate fracture intensity parameters VFC or P30 (fractures/m3) and P32 (fracture area—m2/m3) that is included on the vertical axis of the volumetric V-GSI chart. The research demonstrates that the unit volume approach to calculating VFC and P32 used in the V-GSI system compares well with other methods of estimating these two parameters (e.g., discrete fracture network (DFN) modelling). The research also demonstrates the reliability of the VFC-correlated rating scale included on the vertical axis of the V-GSI chart for use in estimating first-order strength and deformability estimates for rock masses. This quantification does not negate or detract from geological logic implicit in the original graphical GSI chart. Full article
(This article belongs to the Special Issue Rock-Like Material Characterization and Engineering Properties)
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 195
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

21 pages, 4324 KiB  
Article
Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development
by Agnieszka Operacz, Bogusław Bielec, Tomasz Operacz, Agnieszka Zachora-Buławska and Karolina Migdał
Energies 2025, 18(15), 3922; https://doi.org/10.3390/en18153922 - 23 Jul 2025
Viewed by 178
Abstract
The global shift towards the use of renewable energy is essential to ensure sustainable development, and geothermal energy stands out as a suitable option that can support various cascading projects. Spent geothermal water (SGW) requires proper treatment to ensure that it does not [...] Read more.
The global shift towards the use of renewable energy is essential to ensure sustainable development, and geothermal energy stands out as a suitable option that can support various cascading projects. Spent geothermal water (SGW) requires proper treatment to ensure that it does not become an environmental burden. Typically, companies often face the dilemma of choosing between discharging spent geothermal water (SGW) into surface waters or injecting it into rock masses, and the economic and environmental impacts of the decision made determines the feasibility of geothermal plant development. In this study, we aimed to comprehensively assess the technical, economic, and environmental feasibility of SGW injection into rock masses. To this end, we employed a comprehensive analytical approach using the Chochołów GT-1 geothermal injection borehole in Poland as a reference case. We also performed drilling and hydrogeological testing, characterized rock samples in the laboratory, and corrected hydrodynamic parameters for thermal lift effects to ensure accurate aquifer characterization. The results obtained highlight the importance of correcting hydrogeological parameters for thermal effects, which if neglected can lead to a significant overestimation of the calculated hydrogeological parameters. Based on our analysis, we developed a framework for assessing SGW injection feasibility that integrates detailed hydrogeological and geotechnical analyses with environmental risk assessment to ensure sustainable geothermal resource exploitation. This framework should be mandatory for planning new geothermal power plants or complexes worldwide. Our results also emphasize the need for adequate SGW management so as to ensure that the benefits of using a renewable and zero-emission resource, such as geothermal energy, are not compromised by the low absorption capacity of rock masses or adverse environmental effects. Full article
Show Figures

Graphical abstract

Back to TopTop