Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = roburic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1298 KB  
Article
Evaluation of the Anticancer Activity of Medicinal Plants Predominantly Accumulating Ellagic Acid Compounds
by Domantas Armonavičius, Audrius Maruška, Baltramiejus Jakštys, Mantas Stankevičius, Tomas Drevinskas, Kristina Bimbiraitė-Survilienė, Modesta Čaplikaitė, Hirotaka Ihara, Makoto Takafuji, Elżbieta Skrzydlewska, Ona Ragažinskienė, Yutaka Kuwahara, Shoji Nagaoka, Vilma Kaškonienė, Saulius Šatkauskas and Arvydas Kanopka
Antioxidants 2025, 14(11), 1339; https://doi.org/10.3390/antiox14111339 - 6 Nov 2025
Cited by 2 | Viewed by 1263
Abstract
Cancer remains a major global health challenge, prompting the search for natural therapeutic agents with selective anticancer activity. This study investigated extracts from 12 medicinal plant species (a total of 21 samples) rich in phenolic compounds, particularly ellagic acid and its derivatives, to [...] Read more.
Cancer remains a major global health challenge, prompting the search for natural therapeutic agents with selective anticancer activity. This study investigated extracts from 12 medicinal plant species (a total of 21 samples) rich in phenolic compounds, particularly ellagic acid and its derivatives, to evaluate their antioxidant properties and ability to inhibit cancer cell viability. Spectrometric analysis and high-performance liquid chromatography (HPLC) with electrochemical detection (ED) and ultraviolet–visible (UV-VIS) detection were used for compound identification. The anticancer activity of plant extracts was tested using the MTS cell proliferation assay to determine anticancer activity on 4T1, A549, Caki-1, HCT116, and MCF7 cancer cell lines. The HEK-293 healthy cell line was used to determine extracts cytotoxicity. Study results indicate that black walnut (Juglans nigra L.), fireweed (Chamaenerion angustifolium L.), and pedunculate oak (Quercus robur L.) have the highest contents of bioactive compounds. Among tested extracts, fireweed showed the lowest IC50 values, thus the strongest anticancer activity against 4T1 cells (IC50 = 0.28 ± 0.01 RE (rutin equivalents) mg/g), while black walnut was most effective against Caki-1 and HCT116 (IC50 = 1.56 ± 0.01; 2.56 ± 0.02 RE mg/g). IC50 values are reported in rutin equivalents (RE) to maintain consistency with antioxidant normalization parameters used throughout the study. Extended incubation increased anticancer activity across most medicinal plant extracts, with fireweed and Canadian goldenrod demonstrating rapid and sustained potency already at 24 h. After 72 h, the most active fireweed extract inhibited approximately 104–190 million cancer cells per gram of dried plant material, demonstrating substantial antiproliferative activity consistent with the IC50 findings. Importantly, none of the extracts showed cytotoxicity to healthy HEK-293 cells. Overall, the findings highlight several plant species with significant anticancer potential, underscoring their promise as sources of natural bioactive compounds for future cancer prevention and treatment research. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

22 pages, 2732 KB  
Article
Anticancer Activity of Roburic Acid: In Vitro and In Silico Investigation
by Adrianna Gielecińska, Mateusz Kciuk, Somdutt Mujwar, Johannes A. Schmid and Renata Kontek
Int. J. Mol. Sci. 2025, 26(13), 6420; https://doi.org/10.3390/ijms26136420 - 3 Jul 2025
Cited by 1 | Viewed by 1373
Abstract
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction [...] Read more.
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction with TNF-α, as well as preventing the production of inflammatory mediators and cancer progression. In this study, we evaluated the biological activity of RA against a panel of human cancer cell lines—DLD-1, HT-29, and HCT-116 (colorectal), PC-3 (prostate), and BxPC-3 (pancreatic)—as well as two non-malignant lines: WI-38 (fibroblasts) and CCD-841 CoN (colon epithelium). RA exhibited a concentration-dependent inhibitory effect on cancer cell metabolic activity, with colorectal cancer cells showing relatively higher sensitivity, particularly at shorter incubation times. To distinguish between cytotoxic and cytostatic effects, we performed trypan blue exclusion combined with a cell density assessment, clonogenic assay, and BrdU incorporation assay. The results from these complementary assays confirmed that RA acts primarily through an antiproliferative mechanism rather than by inducing cytotoxicity. In addition, NF-κB reporter assays demonstrated that RA attenuates TNF-α-induced transcriptional activation at higher concentrations, supporting its proposed anti-inflammatory properties and potential to modulate pro-tumorigenic signaling. Finally, our in silico studies predicted that RA may interact with proteins such as CAII, CES1, EGFR, and PLA2G2A, implicating it in the modulation of pathways related to proliferation and cell survival. Collectively, these findings suggest that RA may serve as a promising scaffold for the development of future anticancer agents, particularly in the context of colorectal cancer. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

27 pages, 2951 KB  
Article
The Influence of Cynips quercusfolii on the Content of Biofunctional Plant Metabolites in Various Morphological Parts of Quercus robur
by Anna Przybylska-Balcerek and Kinga Stuper-Szablewska
Molecules 2025, 30(13), 2687; https://doi.org/10.3390/molecules30132687 - 21 Jun 2025
Cited by 1 | Viewed by 976
Abstract
English oak (Quercus robur) hosts over 200 species of galls formed by insect larvae, most notably the oak gall wasp (Cynips quercusfolii). These galls result from the abnormal growth of plant tissue in response to oviposition, acting as a [...] Read more.
English oak (Quercus robur) hosts over 200 species of galls formed by insect larvae, most notably the oak gall wasp (Cynips quercusfolii). These galls result from the abnormal growth of plant tissue in response to oviposition, acting as a shelter and nutrient source for the larvae. In addition, the galls trigger oxidative stress in the host plant, resulting in the increased production of reactive oxygen species (ROS). This stress response promotes the biosynthesis of antioxidant compounds, including phenolic acids, flavonoids, and tannins. To our knowledge, this is the first study to monitor seasonal changes in phenolic acids, flavonoids, and tannins in relation to C. quercusfolii infestation over a complete vegetation cycle using integrated UPLC profiling and statistical modeling PCA. For the first time, the contents of phenolic acids, flavonoids, and tannins were assessed throughout the vegetation cycle—from flowering to acorn fall. Results showed that galls affect the biochemical profile of the whole plant, suggesting a systemic response to local infection. The results provide new insights into oak defense responses and suggest that gall formation may be associated with systemic metabolic shifts potentially involved in stress mitigation. Furthermore, the study supports the further investigation of oak galls as a valuable source of polyphenols for pharmacological and industrial applications. Full article
(This article belongs to the Special Issue Metabolites of Biofunctional Interest from Plant Sources)
Show Figures

Figure 1

20 pages, 2316 KB  
Article
Antimicrobial Activity and Phytochemical Profiling of Natural Plant Extracts for Biological Control of Wash Water in the Agri-Food Industry
by Piotr Kanarek, Barbara Breza-Boruta and Marcin Stocki
Appl. Sci. 2025, 15(9), 5199; https://doi.org/10.3390/app15095199 - 7 May 2025
Cited by 3 | Viewed by 6557
Abstract
Water used in cleaning processes within the agri-food industry can be a vector for post-harvest contaminants, thus contributing to cross-contamination. The contamination risk is increased when water is not replaced between batches or when disinfection protocols are insufficient. Given the increasing focus in [...] Read more.
Water used in cleaning processes within the agri-food industry can be a vector for post-harvest contaminants, thus contributing to cross-contamination. The contamination risk is increased when water is not replaced between batches or when disinfection protocols are insufficient. Given the increasing focus in recent years on the potential of natural, non-invasive plant extracts to combat a variety of pathogens, including multidrug-resistant bacteria, environmental strains, and clinical isolates, this study aimed to evaluate the antibacterial activity of selected water-ethanol plant extracts against six opportunistic pathogens isolated from wash water in the agri-food industry, along with chromatographic analyses of the selected extracts. Plant extracts were obtained from the fruits, leaves, shoots, roots, and bark of 13 species. Antibacterial activity was assessed using the well diffusion method. The results indicated that antimicrobial activity was exhibited by six extracts: Tilia cordata Mill., Camellia sinensis, Quercus robur L., Betula pendula Roth, Rubus idaeus L., and Salix alba L. The extracts showed strain-dependent antimicrobial activity, with C. sinensis and R. idaeus up to 4.0 mm and 8.0 mm inhibition zones, respectively. P. aeruginosa and E. faecalis were the most susceptible strains, demonstrating the largest inhibition zones. In contrast, P. vulgaris and K. oxytoca were more resistant. The efficacy of the most active extracts can be linked to the presence of phytochemicals identified via GC-MS, including epicatechin, shikimic acid, quinic acid, gallic acid, and caffeine. These metabolites are known to interfere with bacterial cell structures and metabolic pathways. These studies may serve as a preliminary step toward the development of non-invasive water treatment methods for wash water. Full article
Show Figures

Figure 1

13 pages, 3279 KB  
Article
Exploration of Suitable Conditions for Shoot Proliferation and Rooting of Quercus robur L. in Plant Tissue Culture Technology
by Ting Wang, Hao Li, Jiujiu Zhao, Jinliang Huang, Yu Zhong, Zhenfeng Xu and Fang He
Life 2025, 15(3), 348; https://doi.org/10.3390/life15030348 - 23 Feb 2025
Cited by 7 | Viewed by 1649
Abstract
Quercus robur L., also referred to as “summer oak” or “English oak”, is an esthetically pleasing species, making it an excellent choice for street trees and gardens. Raising Quercus presents several challenges, including its long growth period, delayed germination, and inconsistent emergence. The [...] Read more.
Quercus robur L., also referred to as “summer oak” or “English oak”, is an esthetically pleasing species, making it an excellent choice for street trees and gardens. Raising Quercus presents several challenges, including its long growth period, delayed germination, and inconsistent emergence. The shoot proliferation and adventitious root formation of Q. robur are crucial for establishing a tissue culture regeneration system and are vital for the successful transplantation of seedlings. To address this, experiments were conducted to assess shoot proliferation and adventitious root formation in Q. robur using various media. The shoot proliferation time, shoot proliferation coefficient, number of rooting strips, and length indicators of roots were recorded. The results indicated that a combination of 0.3 mg/L 6-Benzylaminopurine (6-BA) and 100 mg/L cefotaxime (Cef) was optimal for shoot propagation, while a solution of 0.1 mg/L 1-Naphthaleneacetic acid (NAA) and 1/2 Murashige and Skoog Medium (1/2MS) medium was most effective for root induction. This study has identified the optimal conditions for adventitious root formation and shoot proliferation in Q. robur, providing a basis for further research into propagation, germplasm conservation and genetic transformation techniques. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 4864 KB  
Article
Selected Plant Extracts Regulating the Inflammatory Immune Response and Oxidative Stress: Focus on Quercus robur
by Rawan Nehme, Arthur Chervet, Caroline Decombat, Ola Habanjar, Lucie Longechamp, Amandine Rousset, Pierre Chalard, Mael Gainche, Francois Senejoux, Didier Fraisse, Edith Filaire, Jean-Yves Berthon, Mona Diab-Assaf, Laetitia Delort and Florence Caldefie-Chezet
Nutrients 2025, 17(3), 510; https://doi.org/10.3390/nu17030510 - 30 Jan 2025
Cited by 3 | Viewed by 2619
Abstract
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines [...] Read more.
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines secretion, NFκB activation, reactive oxygen species (ROS) production, inflammasome activation and arachidonic acid metabolism could be highlighted and addressed. Several plant materials have traditionally been used as effective and non-harmful anti-inflammatory agents. However, well-established scientific evidence is lacking, and their mechanisms of action remain unclear. The current article compares the effects of seven plant extracts, including Quercus robur L. (Oak), Plantago lanceolata L. (narrowleaf plantain), Plantago major L. (broadleaf plantain), Helichrysum stoechas L. (immortelle or helichrysum), Leontopodium nivale alpinum Cass. (edelweiss), Medicago sativa L. (alfafa) and Capsella bursa-pastoris Moench (shepherd’s purse) on different inflammatory pathways. Results: All of the plant extracts significantly affected ROS production, but their action on cytokine production was more variable. As the Quercus robur extract showed the highest efficacy in our models, it was subsequently assessed on several inflammatory signaling pathways. Quercus robur significantly decreased the secretion of IFNγ, IL-17a, IL-12, IL-2, IL-1β and IL-23 in stimulated human leucocytes, and the expression of TNFα, IL-6, IL-8, IL-1β and CXCL10 in M1-like macrophages. Additionally, a significant reduction in PGE2 secretion, COX2, NLRP3, caspase1 and STAT3 expression and NFκB p65 phosphorylation was observed. Conclusions: Our results clearly indicate that Quercus robur has a potent anti-inflammatory effect, making it a promising candidate for both the treatment and prevention of inflammation and related diseases, thereby promoting overall well-being. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 3204 KB  
Article
In Vitro Evaluation of the Anti-Chikungunya Virus Activity of an Active Fraction Obtained from Euphorbia grandicornis Latex
by José Angel Santiago-Cruz, Araceli Posadas-Mondragón, Angélica Pérez-Juárez, Norma Estela Herrera-González, José Miguel Chin-Chan, Joab Eli Aguilar-González and José Leopoldo Aguilar-Faisal
Viruses 2024, 16(12), 1929; https://doi.org/10.3390/v16121929 - 17 Dec 2024
Cited by 1 | Viewed by 1705
Abstract
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the [...] Read more.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of Euphorbia grandicornis. Therefore, a biodirected assay was carried out to find the molecules with anti-CHIKV activity. Extractions with hexane, dichloromethane, and methanol and subsequent purification by column chromatography were carried out to later evaluate cytotoxic activity by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and antiviral activity by plaque assay. Our findings show that unlike the others, methanolic extract has a low cytotoxic effect and a good anti-CHIKV effect (EC50 = 26.41 µg/mL), which increases when obtaining the purified active fraction (pAFeg1) (EC50 = 0.4835 µg/mL). Time-of-addition suggests that the possible mechanism of action of pAFeg1 could be inhibiting any of the non-structural proteins of CHIKV. In addition, both the cytotoxic and anti-CHIKV activity of pAFeg1 demonstrate selectivity since it killed cancer cells and could not inhibit DENV2. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

12 pages, 720 KB  
Article
Quantification of Bioactive Compounds by HPLC-ESI-MS/MS and Evaluation of Antioxidant and Enzyme Inhibitory Activities of Acorn Flour Extracts
by Laura Acquaticci, Agnese Santanatoglia, Elena Vittadini, Daniela Beghelli, Antonietta La Terza, Gokhan Zengin and Giovanni Caprioli
Antioxidants 2024, 13(12), 1526; https://doi.org/10.3390/antiox13121526 - 13 Dec 2024
Cited by 5 | Viewed by 2058
Abstract
This study provides the first comprehensive evaluation of the bioactive potential of acorn flour extracts (Quercus robur, Fagaceae) prepared at different temperatures (20, 60, 80 and 100 °C), focusing on polyphenolic content, antioxidant properties and enzyme inhibitory activities. Through HPLC-ESI-MS/MS analysis, [...] Read more.
This study provides the first comprehensive evaluation of the bioactive potential of acorn flour extracts (Quercus robur, Fagaceae) prepared at different temperatures (20, 60, 80 and 100 °C), focusing on polyphenolic content, antioxidant properties and enzyme inhibitory activities. Through HPLC-ESI-MS/MS analysis, 36 bioactive compounds were identified, with the extract at 60 °C showing the highest concentrations of key polyphenols, notably gallic acid (210,008.9 mg·kg−1) and ellagic acid (45,469.6 mg·kg−1). This extract also exhibited a high antioxidant activity and significant inhibition of glucosidase and acetylcholinesterase, suggesting potential benefits for diabetes management and neuroprotection. The results indicate that extraction temperature affects bioactivity, with the 60 °C extract standing out as a promising candidate for nutraceutical, pharmaceutical, and cosmeceutical applications due to its rich polyphenol profile and potent biological properties. Full article
Show Figures

Figure 1

14 pages, 11795 KB  
Article
Molecular Cloning of QwMYB108 Gene and Its Response to Drought Stress in Quercus wutaishanica Mayr
by Xuefei Zhao, Ying Sun, Yong Wang, Di Shao, Gang Chen, Yiren Jiang and Li Qin
Forests 2024, 15(9), 1557; https://doi.org/10.3390/f15091557 - 4 Sep 2024
Cited by 2 | Viewed by 1164
Abstract
Drought is a significant environmental limiting factor that restricts the growth of Quercus wutaishanica Mayr. The MYB transcription factor plays a wide role in controlling the growth of plants. In this study, the QwMYB108 gene was cloned and the bioinformatics was analyzed, and [...] Read more.
Drought is a significant environmental limiting factor that restricts the growth of Quercus wutaishanica Mayr. The MYB transcription factor plays a wide role in controlling the growth of plants. In this study, the QwMYB108 gene was cloned and the bioinformatics was analyzed, and we examined how QwMYB108 responded to various gradient drought stresses. The results demonstrated that QwMYB108 encoded 275 amino acids using an 828 bp open reading frame. Subcellular localization indicated that the gene was located in the nucleus. Phylogenetic analysis showed that QwMYB108 was close to Q. robur, and that the highest level of expression was found in leaves, which was significantly different from other tissues. The expression of QwMYB108 increased as the stress degree rose when drought stress was present, and there was a significant difference between severe drought stress and other gradient stress. In this study, the function of QwMYB108 in drought stress response was investigated, and the drought response function gene of Q. wutaishanica was further explored to provide a theoretical basis. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

14 pages, 1763 KB  
Article
Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood
by Ofélia Anjos, Carlos A. L. Antunes, Sheila Oliveira-Alves, Sara Canas and Ilda Caldeira
Fermentation 2024, 10(5), 253; https://doi.org/10.3390/fermentation10050253 - 13 May 2024
Cited by 1 | Viewed by 2072
Abstract
There is a trend towards the commercialisation of strawberry tree fruit spirit (AUS) with wood ageing, motivated by its favourable sensory characteristics. Additionally, further studies are necessary to elucidate the optimal conditions regarding ageing time and toasting level. This study evaluated the changes [...] Read more.
There is a trend towards the commercialisation of strawberry tree fruit spirit (AUS) with wood ageing, motivated by its favourable sensory characteristics. Additionally, further studies are necessary to elucidate the optimal conditions regarding ageing time and toasting level. This study evaluated the changes in colour and low molecular weight compounds (LMWC) of AUS aged for three and six months using oak wood (Quercus robur L.) with light, medium and medium plus toasting levels. For this purpose, phenolic acids (gallic, ellagic, ferulic and syringic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic aldehydes (furfural, 5-hydroxymethylfurfural and 5-methylfurfural) were quantified using the HPLC method. Chromatic characteristics, colour sensory analysis and total polyphenol index were also analysed. Fourier transform near-infrared spectroscopy (FT-NIR) was used to discriminate between samples. The results emphasized the favourable effect of oak wood contact on enhancing the colour and enriching AUS with low molecular weight compounds (LMWC). AUS aged in medium toasted wood exhibits high levels of total phenolic index, 5-hydroxymethylfurfural, furfural, coniferaldehyde, sinapaldehyde, sum LMWC and chromatic characteristics b* and C. Concentrations of syringaldehyde, ellagic acid, vanillin and syringic acid and a lighter colour (a* chromaticity coordinates) are higher in AUS aged with slightly more toasted wood. Nearly all analysed parameters showed an increase with ageing time. The FT-NIR technique allowed for the differentiation of aged AUS, focusing more on ageing time than on toasting level. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

19 pages, 3960 KB  
Article
Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation
by Adam Bogacz, Dorota Kasowska, Paweł Telega and Agnieszka Dradrach
Forests 2024, 15(4), 593; https://doi.org/10.3390/f15040593 - 25 Mar 2024
Cited by 1 | Viewed by 3061
Abstract
Fly ashes produced in huge amounts during coal combustion requires proper management. The purpose of this study was to determine the impact of fly ash from burning hard coal used in large doses (250, 500, 1000 and 2000 t ha−1) on [...] Read more.
Fly ashes produced in huge amounts during coal combustion requires proper management. The purpose of this study was to determine the impact of fly ash from burning hard coal used in large doses (250, 500, 1000 and 2000 t ha−1) on soil properties and vegetation of fresh mixed coniferous forest within 43 years from the ash application. The experiment was established in the Podzols in the forest habitat of Czułów, Katowice Forest district, Upper Silesia, Poland. Eight tree species were planted in ridges created by ploughing: Pinus sylvestris, P. nigra, Larix decidua, Betula pendula, Quercus robur, Q., Acer pseudoplatanus and Fagus sylvatica. The changes in soil morphology caused significant transformations in the physical and chemical properties of the soil such as soil texture, pH, macronutrients (P, K and Mg) content and C:N ratio. Increasing of ash doses changed the granulometric composition of the soil levels from loamy sand (250 t/ha−1) to silt loam (2000 t ha−1). Initially, the acidic Podzols were alkalized under the influence of the fly ash and then acidified, possibly due to the impact of accumulated litter layers, and the reaction of organic soil horizons changed from strongly acidic (250–1000 t ha−1) to alkalis (2000 t/ha−1). The macronutrients content increased in proportion to the fly ash dose, but the subsequent acidification resulted in a gradual decrease in the macronutrients share in the soil layers. The value of the C:N ratio grew after the ash application and then it gradually reduced, even by half. The transformations of soil horizons’ properties also increased the capacity of the soil sorption complex (CEC). All these processes led to a change in the trophic status of the habitat expressed by the soil habitat index (SIG) and the initial coniferous forest site can be classified as a mixed forest habitat even with the lowest ash dose used. The composition of plant communities developed forty years after the ash application was similar at the lower ash doses and the most frequent and abundant tree species were L. decidua, P. nigra and P. silvestris. B. pendula was previously co-dominant, but it was eliminated from the tree stands during the experiment. Planted trees characteristic of late stages of succession, such as Q. robur, Q. rubra, F. sylvatica and A. pseudoplatanus either did not survive or remained in very low quantities. The herb and moss layers developed in the process of spontaneous colonization, and together with the trees led to phytostabilisation of the bare substrates. After acidification of the topsoil horizons, the herb layers consisted mostly of coniferous, mixed, and deciduous forest species, and the most frequent or abundant were Lysimachia europea and Pteridium aquilinum. The moss layers were represented by coniferous forest flora. At the ash dose of 2000 t ha−1, Tilia cordata settled in one of the seral stages of spontaneous succession and this species dominated in the community and formed a dense tree stand. After the soil acidification, a shift from calcicole to calcifuge plant strategy took place among species of the herbaceous layer. The transformations of plant communities’ composition occurred in relation to changes in the soil properties. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 1062 KB  
Article
The Antioxidant Activity of Wild-Growing Plants Containing Phenolic Compounds in Latvia
by Renāte Teterovska, Inga Sile, Artūrs Paulausks, Liga Kovalcuka, Rudīte Koka, Baiba Mauriņa and Dace Bandere
Plants 2023, 12(24), 4108; https://doi.org/10.3390/plants12244108 - 8 Dec 2023
Cited by 15 | Viewed by 3269
Abstract
Ethnobotanical reports from Latvia show that Tanacetum vulgare, Calluna vulgaris, Quercus robur, Artemisa absinthium, and Artemisia vulgaris contain phenolic compounds that have antioxidant properties, which can be beneficial in the treatment and prophylaxis of many diseases. The aim of [...] Read more.
Ethnobotanical reports from Latvia show that Tanacetum vulgare, Calluna vulgaris, Quercus robur, Artemisa absinthium, and Artemisia vulgaris contain phenolic compounds that have antioxidant properties, which can be beneficial in the treatment and prophylaxis of many diseases. The aim of this study was to characterize the phenolic compounds and antioxidant properties of these plants. Plant extracts were prepared using ethanol or acetone and then freeze-dried. Their total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) were determined and characterized by HPLC. Their antioxidant properties were determined using a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. C. vulgaris herb and T. vulgare leaf extracts contained the highest amounts of flavonoids, but the bark of Q. robur had mostly tannins and phenolic acids. A. absinthium and A. vulgaris had the lowest amounts of polyphenols. When compared using extraction solvents, all acetone extracts had more TPC, more TFC, and better antioxidant activity. All plants contained chlorogenic acid, which contributes to antioxidant properties. The analysed plant extracts could be used in future studies to develop medicinal products with antioxidant properties. Full article
(This article belongs to the Special Issue Antioxidant Activity of Medicinal and Aromatic Plants 2023)
Show Figures

Figure 1

14 pages, 1651 KB  
Article
Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas
by Olaia Estrada, Lucía Gayoso, Gorka Ortega and Blanca del Noval
Fermentation 2023, 9(10), 863; https://doi.org/10.3390/fermentation9100863 - 22 Sep 2023
Cited by 2 | Viewed by 1817
Abstract
Wild edible plants (WEPs) can be utilised as a substrate to develop novel types of fermented beverages. The aim of this study was to investigate the potential of incorporating Quercus spp. leaves as a substrate to develop new varieties of kombuchas. The physicochemical [...] Read more.
Wild edible plants (WEPs) can be utilised as a substrate to develop novel types of fermented beverages. The aim of this study was to investigate the potential of incorporating Quercus spp. leaves as a substrate to develop new varieties of kombuchas. The physicochemical properties of kombuchas elaborated with Quercus robur (KQR) and Quercus pyrenaica (KQP) leaves’ infusion were compared with traditional black tea kombuchas (KBT). Total acidity (TA), pH, total soluble solids (TSSs), instrumental colour, total phenolic compounds (TPCs), sucrose, fructose, and glucose were analysed for the three types of infusions and kombuchas at 0, 3, 7, 10, and 14 fermentation days. The results revealed that the type of substrate and the fermentation time significantly influenced the biochemical changes that occurred during 14 days. KQP and KQR turned out to be significantly brighter (L*: 53.91 ± 0.12 and 55.66 ± 0.23, respectively) than KBT (L*: 48.79 ± 0.34) and had significantly lower sucrose content (22.06 ± 0.79 g L−1 and 45.69 ± 1.61, respectively) than KBT (59.28 ± 2.25 g L−1). KBT showed significantly higher content of total polyphenols (1.50 ± 0.05 g GAE L−1) than KQR (0.76 ± 0.09 g GAE L−1) and KQP (0.51 ± 0.04 g GAE L−1) after 14 days of fermentation. Regarding the kinetics of sugars, sucrose reduction was significantly lower in KBT samples (11.36 g L−1) than in KQP and KQR samples (47.01 and 28.31 g L−1, respectively) at the end of fermentation. These results suggest that higher content of TPC may slow down the fermentation process. Quercus spp. leaves may be a viable alternative substrate for developing analogues of kombucha with WEPs and for adding gastronomic and sustainable value. Full article
Show Figures

Figure 1

19 pages, 5072 KB  
Article
Mass Spectrometric Fingerprint Mapping Reveals Species-Specific Differences in Plant Polyphenols and Related Bioactivities
by Suvi Vanhakylä and Juha-Pekka Salminen
Molecules 2023, 28(17), 6388; https://doi.org/10.3390/molecules28176388 - 31 Aug 2023
Cited by 6 | Viewed by 2378
Abstract
Plant species show large variation in the composition and content of their tannins and other polyphenols. These large metabolites are not easy to measure accurately, but they are important factors for species bioactivity and chemotaxonomy. Here, we used an automated group-specific UHPLC-DAD-MS/MS tool [...] Read more.
Plant species show large variation in the composition and content of their tannins and other polyphenols. These large metabolites are not easy to measure accurately, but they are important factors for species bioactivity and chemotaxonomy. Here, we used an automated group-specific UHPLC-DAD-MS/MS tool to detect and quantify eight most common polyphenol groups in 31 chemically diverse plant species representing many types of growth forms and evolutionary ages. Ten replicate plants were used for each species and two polyphenol-related bioactivities, i.e., protein precipitation capacity and oxidative activity were measured in all samples as well. By the help of a novel 2D fingerprint mapping tool we were able to visualize the qualitative and quantitative differences between the species in hydrolysable tannins (galloyl and hexahydroxydiphenoyl derivatives), proanthocyanidins (procyanidins and prodelphinidins), flavonols (kaempferol, quercetin and myricetin derivatives) and quinic acid derivatives together with the two bioactivities. The highest oxidative activities were found with species containing ellagitannins (e.g., Quercus robur, Geranium sylvaticum, Lythrum salicaria and Chamaenerion angustifolium) or prodelphinidin-rich proanthocyanidins (e.g., Ribes alpinum, Salix phylicifolia and Lysimachia vulgaris). The best species with high protein precipitation capacity were rich in gallotannins (Acer platanoides and Paeonia lactiflora) or oligomeric ellagitannins (e.g., Comarum palustre, Lythrum salicaria and Chamaenerion angustifolium). These types of tools could prove their use in many types of screening experiments and might reveal even unusually active polyphenol types directly from the crude plant extracts. Full article
(This article belongs to the Special Issue Research of Phenolic Compounds from Natural Source)
Show Figures

Figure 1

21 pages, 3390 KB  
Article
A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak
by Marko Kebert, Saša Kostić, Srđan Stojnić, Eleonora Čapelja, Anđelina Gavranović Markić, Martina Zorić, Lazar Kesić and Victor Flors
Int. J. Mol. Sci. 2023, 24(8), 7510; https://doi.org/10.3390/ijms24087510 - 19 Apr 2023
Cited by 21 | Viewed by 3711
Abstract
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant’s defense mechanisms and metabolism of carbon, nitrogen, [...] Read more.
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant’s defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study’s main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak. Full article
Show Figures

Figure 1

Back to TopTop