Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Infusions and Fermented Beverages
2.3. Sampling
2.4. Determination of pH, Total Soluble Solids, and Total Acidity
2.5. Instrumental Colour
2.6. Total Phenolic Content
2.7. Sugar Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. pH Values, Total Acidity, and Total Soluble Solids
3.2. Instrumental Colour
3.3. Total Phenolic Content
3.4. Sugars—Kinetics of Sugar Consumption during Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez Leal, J.; Valenzuela Suárez, L.; Jayabalan, R.; Huerta Oros, J.; Escalante-Aburto, A. A Review on Health Benefits of Kombucha Nutritional Compounds and Metabolites. CyTA—J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling Microbial Ecology of Industrial-Scale Kombucha Fermentations by Metabarcoding and Culture-Based Methods. FEMS Microbiol. Ecol. 2017, 93, fix048. [Google Scholar] [CrossRef] [PubMed]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Savary, O.; Mounier, J.; Thierry, A.; Poirier, E.; Jourdren, J.; Maillard, M.B.; Penland, M.; Decamps, C.; Coton, E.; Coton, M. Tailor-Made Microbial Consortium for Kombucha Fermentation: Microbiota-Induced Biochemical Changes and Biofilm Formation. Food Res. Int. 2021, 147, 110549. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent Advances in Kombucha Tea: Microbial Consortium, Chemical Parameters, Health Implications and Biocellulose Production. Int. J. Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef]
- Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.L. Traditional Low-Alcoholic and Non-Alcoholic Fermented Beverages Consumed in European Countries: A Neglected Food Group. Nutr. Res. Rev. 2017, 30, 1–24. [Google Scholar] [CrossRef]
- Grand View Research Kombucha Market Size, Share & Trends Analysis Report by Product (Conventional, Hard), by Distribution Channel (on-Trade, off-Trade), by Region, and Segment Forecasts, 2022–2030. Market Analysis Reports. 2023. Available online: https://www.marketresearch.com/Grand-View-Research-v4060/Kombucha-Size-Share-Trends-Product-32234791/ (accessed on 16 June 2023).
- Chakravorty, S.; Bhattacharya, S.; Bhattacharya, D.; Sarkar, S.; Gachhui, R. Kombucha: A Promising Functional Beverage Prepared from Tea; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128152706. [Google Scholar]
- Morales, D. Biological Activities of Kombucha Beverages: The Need of Clinical Evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in Free-Radical Scavenging Ability of Kombucha Tea during Fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in Content of Organic Acids and Tea Polyphenols during Kombucha Tea Fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Zarei, M.; Gholami, A.; Lai, C.W.; Chiang, W.H.; Omidifar, N.; Bahrani, S.; Mazraedoost, S. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. Evid.-Based Complement. Altern. Med. 2020, 2020, 4397543. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Chemical Composition of Kombucha. Beverages 2022, 8, 45. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from Alternative Raw Materials—The Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Talawat, S.; Ahantharik, P.; Laohawiwattanakul, S.; Premsuk, A.; Ratanapo, S. Efficacy of Fermented Teas in Antibacterial Activity. Agric. Nat. Resour. 2006, 40, 925–933. [Google Scholar]
- Battikh, H.; Bakhrouf, A.; Ammar, E. Antimicrobial Effect of Kombucha Analogues. LWT—Food Sci. Technol. 2012, 47, 71–77. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J.-B. Production and Characterization of a Novel Beverage from Laver (Porphyra Dentata) through Fermentation with Kombucha Consortium. Food Chem. 2021, 350, 129274. [Google Scholar] [CrossRef]
- Zubaidah, E.; Yurista, S.; Rahmadani, N.R. Characteristic of Physical, Chemical, and Microbiological Kombucha from Various Varieties of Apples. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012040. [Google Scholar] [CrossRef]
- Silva, K.A.; Uekane, T.M.; de Miranda, J.F.; Ruiz, L.F.; da Motta, J.C.B.; Silva, C.B.; Pitangui, N.D.S.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha Beverage from Non-Conventional Edible Plant Infusion and Green Tea: Characterization, Toxicity, Antioxidant Activities and Antimicrobial Properties. Biocatal. Agric. Biotechnol. 2021, 34, 102032. [Google Scholar] [CrossRef]
- Klawpiyapamornkun, T.; Uttarotai, T.; Wangkarn, S.; Sirisa-ard, P.; Kiatkarun, S.; Tragoolpua, Y.; Bovonsombut, S. Enhancing the Chemical Composition of Kombucha Fermentation by Adding Indian Gooseberry as a Substrate. Fermentation 2023, 9, 291. [Google Scholar] [CrossRef]
- Zubaidah, E.; Dewantari, F.J.; Novitasari, F.R.; Srianta, I.; Blanc, P.J. Potential of Snake Fruit (Salacca zalacca (Gaerth.) Voss) for the Development of a Beverage through Fermentation with the Kombucha Consortium. Biocatal. Agric. Biotechnol. 2018, 13, 198–203. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Enhancement of the Antioxidant and Starch Hydrolase Inhibitory Activities of King Coconut Water (Cocos nucifera Var. Aurantiaca) by Fermentation with Kombucha “Tea Fungus”. Int. J. Food Sci. Technol. 2016, 51, 490–498. [Google Scholar] [CrossRef]
- Nyero, A.; Achaye, I.; Odongo, W.; Anywar, G.; Malinga, G.M. Wild and Semi-Wild Edible Plants Used by the Communities of Acholi Sub-Region, Northern Uganda. Ethnobot. Res. Appl. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Valorization of Wild Edible Plants as Food Ingredients and Their Economic Value. Foods 2023, 12, 1012. [Google Scholar] [CrossRef]
- FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants; FAO: Rome, Italy, 2017. [Google Scholar]
- Sharrock, S.; Oldfield, S.; Wilson, O. Plant Conservation Report 2014: A Review of Progress towards the Global Strategy for Plant Conservation 2011–2020; CBD Technical Series; Secretariat of the Convention on Biological Diversity: Montréal, QC, Canada; Botanic Gardens Conservation International: Richmond, UK, 2014. [Google Scholar]
- Hubert, F.; Grimm, G.W.; Jousselin, E.; Berry, V.; Franc, A.; Kremer, A. Multiple Nuclear Genes Stabilize the Phylogenetic Backbone of the Genus Quercus. Syst. Biodivers. 2014, 12, 405–423. [Google Scholar] [CrossRef]
- Eaton, E.; Caudullo, G.; Oliveira, S.; de Rigo, D. Quercus Robur and Quercus Petraea in Europe. In European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016; pp. 160–163. [Google Scholar]
- Gómez, E.G.; Taboada, A.R.; Sieso, J.P. Knocking down Acorns: The Survival of Prehistoric Harvesting Technique in the Mediterranean Forest. Complutum 2020, 31, 159–176. [Google Scholar] [CrossRef]
- García Gómez, E. Bellotas Comestibles, No Solo de Encina. Foresta 2015, 64, 30–35. [Google Scholar]
- Sõukand, R.; Stryamets, N.; Fontefrancesco, M.F.; Pieroni, A. The Importance of Tolerating Interstices: Babushka Markets in Ukraine and Eastern Europe and Their Role in Maintaining Local Food Knowledge and Diversity. Heliyon 2020, 6, e03222. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; González-Laredo, R.F.; Vázquez-Cabral, B.D.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Gamboa-Gómez, C.I.; Flores-Rueda, A.G. Oak Leaves as a New Potential Source for Functional Beverages: Their Antioxidant Capacity and Monomer Flavonoid Composition; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128163979. [Google Scholar]
- Vázquez-Cabral, B.D.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Herrera, S.M.; González-Laredo, R.F.; Moreno-Jiménez, M.R.; Córdova-Moreno, I.T.S. Chemical and Sensory Evaluation of a Functional Beverage Obtained from Infusions of Oak Leaves (Quercus resinosa) Inoculated with the Kombucha Consortium under Different Processing Conditions. Nutrafoods 2014, 13, 169–178. [Google Scholar] [CrossRef]
- Vázquez-Cabral, B.D.; Larrosa-Pérez, M.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Rutiaga-Quiñones, J.G.; Gamboa-Gómez, C.I.; Rocha-Guzmán, N.E. Oak Kombucha Protects against Oxidative Stress and Inflammatory Processes. Chem. Biol. Interact. 2017, 272, 1–9. [Google Scholar] [CrossRef]
- Vazquez-Cabral, D.; Valdez-Fragoso, A.; Rocha-Guzman, N.E.; Moreno-Jimenez, M.R.; Gonzalez-Laredo, R.F.; Morales-Martinez, P.S.; Rojas-Contreras, J.A.; Mujica-Paz, H.; Gallegos-Infante, J.A. Effect of Pulsed Electric Field (PEF)-Treated Kombucha Analogues from Quercus obtusata Infusions on Bioactives and Microorganisms. Innov. Food Sci. Emerg. Technol. 2016, 34, 171–179. [Google Scholar] [CrossRef]
- Gamboa-Gómez, C.I.; Simental-Mendía, L.E.; González-Laredo, R.F.; Alcantar-Orozco, E.J.; Monserrat-Juarez, V.H.; Ramírez-España, J.C.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E. In Vitro and in Vivo Assessment of Anti-Hyperglycemic and Antioxidant Effects of Oak Leaves (Quercus convallata and Quercus arizonica) Infusions and Fermented Beverages. Food Res. Int. 2017, 102, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Botheju, W.S.; Amarathunge, K.S.P.; Abeysinghe, I.S.B. Thin Layer Drying Characteristics of Fresh Tea Leaves. J. Natl. Sci. Found. 2011, 39, 61–67. [Google Scholar] [CrossRef]
- Nielsen, S.S. (Ed.) Food Analysis; Food Science Texts Series; Springer: Boston, MA, USA, 2010; ISBN 978-1-4419-1477-4. [Google Scholar]
- AOAC. Official Methods of AOAC; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Zou, C.; Li, R.Y.; Chen, J.X.; Wang, F.; Gao, Y.; Fu, Y.Q.; Xu, Y.Q.; Yin, J.F. Zijuan Tea-Based Kombucha: Physicochemical, Sensorial, and Antioxidant Profile. Food Chem. 2021, 363, 130322. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Deba-Rementeria, S.; Zugazua-Ganado, M.; Estrada, O.; Regefalk, J.; Vázquez-Araújo, L. Characterization of Salt-Preserved Orange Peel Using Physico-Chemical, Microbiological, and Sensory Analyses. LWT 2021, 148, 111769. [Google Scholar] [CrossRef]
- Brian, N. Special Report. Kombucha Brewing under the Food and Drug Administration Model Food Code: Risk Analysis and Processing Guidance. J. Environ. Health 2013, 76, 8–11. [Google Scholar]
- Rahmani, R.; Beaufort, S.; Villarreal-Soto, S.A.; Taillandier, P.; Bouajila, J.; Debouba, M. Kombucha Fermentation of African Mustard (Brassica tournefortii) Leaves: Chemical Composition and Bioactivity. Food Biosci. 2019, 30, 100414. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Leonarski, E.; Guimarães, A.C.; Cesca, K.; Poletto, P. Production Process and Characteristics of Kombucha Fermented from Alternative Raw Materials. Food Biosci. 2022, 49, 101841. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid Contents and the Effect of Fermentation Condition of Kombucha Tea Beverages on Physicochemical, Microbiological and Sensory Properties. CYTA—J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef]
- Torán-Pereg, P.; del Noval, B.; Valenzuela, S.; Martinez, J.; Prado, D.; Perisé, R.; Arboleya, J.C. Microbiological and Sensory Characterization of Kombucha SCOBY for Culinary Applications. Int. J. Gastron. Food Sci. 2021, 23, 100314. [Google Scholar] [CrossRef]
- Yıkmış, S.; Tuğgüm, S. Evaluation of Microbiological, Physicochemical and Sensorial Properties of Purple Basil Kombucha Beverage. Turk. J. Agric.—Food Sci. Technol. 2019, 7, 1321–1327. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Colour Measurements by Computer Vision for Food Quality Control—A Review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Chu, S.C.; Chen, C. Effects of Origins and Fermentation Time on the Antioxidant Activities of Kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Kayisoglu, S.; Coskun, F. Determination of Physical and Chemical Properties of Kombucha Teas Prepared with Different Herbal Teas. Food Sci. Technol. 2021, 41, 393–397. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. Value-Added Tea (Camellia sinesis) as a Functional Food Using the Kombucha ‘Tea Fungus’. Chiang Mai J. Sci. 2018, 45, 136–146. [Google Scholar]
- Bhattacharya, S.; Gachhui, R.; Sil, P.C. Effect of Kombucha, a Fermented Black Tea in Attenuating Oxidative Stress Mediated Tissue Damage in Alloxan Induced Diabetic Rats. Food Chem. Toxicol. 2013, 60, 328–340. [Google Scholar] [CrossRef]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Godočíková, L.; Árvay, J.; Kačániová, M. Kombucha Tea Beverage: Microbiological Characteristic, Antioxidant Activity, and Phytochemical Composition. Acta Aliment. 2019, 48, 324–331. [Google Scholar] [CrossRef]
- Kallel, L.; Desseaux, V.; Hamdi, M.; Stocker, P.; Ajandouz, E.H. Insights into the Fermentation Biochemistry of Kombucha Teas and Potential Impacts of Kombucha Drinking on Starch Digestion. Food Res. Int. 2012, 49, 226–232. [Google Scholar] [CrossRef]
- Teixeira Oliveira, J.; Machado da Costa, F.; Gonçalvez da Silva, T.; Dotto Simões, G.; dos Santos Pereira, E.; Quevedo da Costa, P.; Andreazza, R.; Cavalheiro Schenkel, P.; Pieniz, S. Green Tea and Kombucha Characterization: Phenolic Composition, Antioxidant Capacity and Enzymatic Inhibition Potential. Food Chem. 2023, 408, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Kim, D.M.; Lee, C.Y. Effects of Heat Processing and Storage on Flavanols and Sensory Qualities of Green Tea Beverage. J. Agric. Food Chem. 2000, 48, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A Review of Substrates, Regulations, Composition, and Biological Properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Almajano, M.P.; Carbó, R.; Jiménez, J.A.L.; Gordon, M.H. Antioxidant and Antimicrobial Activities of Tea Infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Lopes, D.R.; Santos, L.O.; Prentice-Hernández, C. Antioxidant and Antibacterial Activity of a Beverage Obtained by Fermentation of Yerba-Maté (Ilex paraguariensis) with Symbiotic Kombucha Culture. J. Food Process. Preserv. 2021, 45, e15101. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
L* | a* | b* | C | H | ΔE* | ||
---|---|---|---|---|---|---|---|
KBT | Infusion | 44.14 ± 0.55 a | 8.15 ± 0.33 a | 31.56 ± 0.25 a | 32.59 ± 0.29 a | 1.32 ± 0.01 a | |
0 | 48.88 ± 0.29 b | 3.03 ± 0.24 b | 29.86 ± 0.28 b | 30.01 ± 0.30 b | 1.47 ± 0.01 b | 7.18 | |
3 | 48.78 ± 0.25 b | 2.99 ± 0.20 b | 28.83 ± 0.11 c | 28.99 ± 0.13 c | 1.47 ± 0.01 b | 7.45 | |
7 | 49.32 ± 0.18 c | 2.38 ± 0.31 c | 27.09 ± 0.32 d | 27.19 ± 0.34 d | 1.48 ± 0.01 c | 8.95 | |
10 | 49.67 ± 0.26 c | 2.25 ± 0.29 c | 26.56 ± 0.39 e | 26.66 ± 0.41 e | 1.49 ± 0.01 c | 9.50 | |
14 | 48.79 ± 0.34 b | 1.60 ± 0.28 d | 24.92 ± 0.50 f | 24.98 ± 0.51 f | 1.51 ± 0.01 d | 10.41 | |
KQP | Infusion | 51.11 ± 0.06 a | −0.48 ± 0.15 a | 20.90 ± 0.52 a | 20.91 ± 0.52 a | −1.55 ± 0.01 a | |
0 | 53.95 ± 0.17 b | −1.54 ± 0.05 b | 16.70 ± 0.96 b | 16.77 ± 0.95 b | −1.48 ± 0.01 b | 5.18 | |
3 | 54.29 ± 0.31 c | −1.78 ± 0.05 d | 15.72 ± 1.45 bc | 15.82 ± 1.44 bc | −1.46 ± 0.01 c | 6.21 | |
7 | 54.00 ± 0.15 b | −1.69 ± 0.08 c | 15.47 ± 1.14 c | 15.56 ± 1.15 c | −1.46 ± 0.00 c | 6.27 | |
10 | 54.06 ± 0.13 b | −1.84 ± 0.08 d | 14.93 ± 1.04 cd | 15.04 ± 1.04 cd | −1.45 ± 0.01 d | 6.80 | |
14 | 53.91 ± 0.12 b | −1.60 ± 0.05 bc | 14.37 ± 0.66 d | 14.46 ± 0.66 d | −1.46 ± 0.00 c | 7.20 | |
KQR | Infusion | 50.78 ± 1.21 a | −0.19 ± 0.12 a | 20.59 ± 0.80 a | 20.60 ± 0.80 a | −1.56 ± 0.01 a | |
0 | 55.16 ± 0.42 bc | −1.78 ± 0.12 d | 15.58 ± 0.15 b | 15.69 ± 0.14 b | −1.46 ± 0.01 b | 6.85 | |
3 | 54.52 ± 0.54 b | −1.77 ± 0.10 cd | 14.16 ± 0.55 c | 14.28 ± 0.55 c | −1.45 ± 0.01 c | 7.60 | |
7 | 55.15 ± 0.21 bc | −1.72 ± 0.07 cd | 14.29 ± 0.18 c | 14.39 ± 0.19 c | −1.45 ± 0.00 bc | 7.82 | |
10 | 54.77 ± 0.46 b | −1.59 ± 0.09 b | 14.29 ± 0.36 c | 14.38 ± 0.35 c | −1.46 ± 0.01 b | 7.59 | |
14 | 55.66 ± 0.23 c | −1.65 ± 0.09 bc | 13.94 ± 0.36 c | 14.04 ± 0.35 c | −1.45 ± 0.01 bc | 8.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada, O.; Gayoso, L.; Ortega, G.; del Noval, B. Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas. Fermentation 2023, 9, 863. https://doi.org/10.3390/fermentation9100863
Estrada O, Gayoso L, Ortega G, del Noval B. Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas. Fermentation. 2023; 9(10):863. https://doi.org/10.3390/fermentation9100863
Chicago/Turabian StyleEstrada, Olaia, Lucía Gayoso, Gorka Ortega, and Blanca del Noval. 2023. "Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas" Fermentation 9, no. 10: 863. https://doi.org/10.3390/fermentation9100863
APA StyleEstrada, O., Gayoso, L., Ortega, G., & del Noval, B. (2023). Quercus robur and pyrenaica: The Potential of Wild Edible Plants for Novel Kombuchas. Fermentation, 9(10), 863. https://doi.org/10.3390/fermentation9100863