Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = robot kinematics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1105 KB  
Article
MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-Based Motion Capture Data
by Mahmoud Bekhit, Ahmad Salah, Ahmed Salim Alrawahi, Tarek Attia, Ahmed Ali, Esraa Eldesouky and Ahmed Fathalla
Information 2025, 16(10), 851; https://doi.org/10.3390/info16100851 - 1 Oct 2025
Abstract
Motion capture (MoCap) data derived from wearable Inertial Measurement Units is essential to applications in sports science and healthcare robotics. However, a significant amount of the potential of this data is limited due to missing data derived from sensor limitations, network issues, and [...] Read more.
Motion capture (MoCap) data derived from wearable Inertial Measurement Units is essential to applications in sports science and healthcare robotics. However, a significant amount of the potential of this data is limited due to missing data derived from sensor limitations, network issues, and environmental interference. Such limitations can introduce bias, prevent the fusion of critical data streams, and ultimately compromise the integrity of human activity analysis. Despite the plethora of data imputation techniques available, there have been few systematic performance evaluations of these techniques explicitly for the time series data of IMU-derived MoCap data. We address this by evaluating the imputation performance across three distinct contexts: univariate time series, multivariate across players, and multivariate across kinematic angles. To address this limitation, we propose a systematic comparative analysis of imputation techniques, including statistical, machine learning, and deep learning techniques, in this paper. We also introduce the first publicly available MoCap dataset specifically for the purpose of benchmarking missing value imputation, with three missingness mechanisms: missing completely at random, block missingness, and a simulated value-dependent missingness pattern simulated at the signal transition points. Using data from 53 karate practitioners performing standardized movements, we artificially generated missing values to create controlled experimental conditions. We performed experiments across the 53 subjects with 39 kinematic variables, which showed that discriminating between univariate and multivariate imputation frameworks demonstrates that multivariate imputation frameworks surpassunivariate approaches when working with more complex missingness mechanisms. Specifically, multivariate approaches achieved up to a 50% error reduction (with the MAE improving from 10.8 ± 6.9 to 5.8 ± 5.5) compared to univariate methods for transition point missingness. Specialized time series deep learning models (i.e., SAITS, BRITS, GRU-D) demonstrated a superior performance with MAE values consistently below 8.0 for univariate contexts and below 3.2 for multivariate contexts across all missing data percentages, significantly surpassing traditional machine learning and statistical methods. Notable traditional methods such as Generative Adversarial Imputation Networks and Iterative Imputers exhibited a competitive performance but remained less stable than the specialized temporal models. This work offers an important baseline for future studies, in addition to recommendations for researchers looking to increase the accuracy and robustness of MoCap data analysis, as well as integrity and trustworthiness. Full article
(This article belongs to the Section Information Processes)
19 pages, 6890 KB  
Article
Design and Experimental Validation of a Novel Parallel Compliant Ankle for Quadruped Robots
by Zisen Hua, Yongxiang Cheng and Xuewen Rong
Biomimetics 2025, 10(10), 659; https://doi.org/10.3390/biomimetics10100659 - 1 Oct 2025
Abstract
In this study, a novel compliant ankle structure with three passive degrees of freedom for quadruped robots is presented. First, this paper introduced the bionic principle and structural implementation method of the passively compliant ankle, with a particular focus on the configuration and [...] Read more.
In this study, a novel compliant ankle structure with three passive degrees of freedom for quadruped robots is presented. First, this paper introduced the bionic principle and structural implementation method of the passively compliant ankle, with a particular focus on the configuration and working principle of the elastic adjustment element. Then, the kinematic model of the ankle and mathematic model of the elastic element, comprising mechanical and pneumatic model, was established by using appropriate theory. Finally, a test rig of the ankle was carried out to verify its actual function. The research results show that: (1) The ankle structure demonstrates excellent stability, maintaining its upright posture even under unreliable foot–ground interactions. (2) Compared to traditional structure, the single-leg module incorporating the proposed design exhibits smoother forward stepping under an appropriate pre-inflation pressure, with its actual motion trajectory showing closer agreement with the planned one; (3) The parallel topology enables a notable reduction in the driving torque of each joint in the leg during motion, thereby improving the energy efficiency of robots. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
16 pages, 1681 KB  
Article
Theoretical Study of a Pneumatic Device for Precise Application of Mineral Fertilizers by an Agro-Robot
by Tormi Lillerand, Olga Liivapuu, Yevhen Ihnatiev and Jüri Olt
AgriEngineering 2025, 7(10), 320; https://doi.org/10.3390/agriengineering7100320 - 1 Oct 2025
Abstract
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system [...] Read more.
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system to determine plant coordinates. Its operating principle is based on accumulating a single dose of fertilizer in a chamber and delivering it precisely to the plant’s root zone using a directed airflow. The study includes a theoretical investigation of fertilizer movement inside the applicator tube under the influence of airflow and rotational motion of the tube. A mathematical model has been developed to describe both the relative and translational motion of the fertilizer. The equations, which account for frictional forces, inertia, and air pressure, enable the determination of optimal structural and kinematic parameters of the device depending on operating conditions and the properties of the applied material. The use of numerical methods to solve the developed mathematical model allows for synchronization of the device’s operating time parameters with the movement of the agricultural robot along the crop rows. The obtained results and the developed device improve the accuracy and speed of fertilizer application, minimize fertilizer consumption, and reduce soil impact, making the proposed device a promising solution for precision agriculture. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

17 pages, 4058 KB  
Article
Medical Imaging-Based Kinematic Modeling for Biomimetic Finger Joints and Hand Exoskeleton Validation
by Xiaochan Wang, Cheolhee Cho, Peng Zhang, Shuyuan Ge and Jiadi Chen
Biomimetics 2025, 10(10), 652; https://doi.org/10.3390/biomimetics10100652 - 1 Oct 2025
Abstract
Hand rehabilitation exoskeletons play a critical role in restoring motor function in patients with stroke or hand injuries. However, most existing designs rely on fixed-axis assumptions, neglecting the rolling–sliding coupling of finger joints that causes instantaneous center of rotation (ICOR) drift, leading to [...] Read more.
Hand rehabilitation exoskeletons play a critical role in restoring motor function in patients with stroke or hand injuries. However, most existing designs rely on fixed-axis assumptions, neglecting the rolling–sliding coupling of finger joints that causes instantaneous center of rotation (ICOR) drift, leading to kinematic misalignment and localized pressure concentrations. This study proposes the Instant Radius Method (IRM) based on medical imaging to continuously model ICOR trajectories of the MCP, PIP, and DIP joints, followed by the construction of an equivalent ICOR through curve fitting. Crossing-type biomimetic kinematic pairs were designed according to the equivalent ICOR and integrated into a three-loop ten-linkage exoskeleton capable of dual DOFs per finger (flexion–extension and abduction–adduction, 10 DOFs in total). Kinematic validation was performed using IMU sensors (Delsys) to capture joint angles, and interface pressure distribution at MCP and PIP was measured using thin-film pressure sensors. Experimental results demonstrated that with biomimetic kinematic pairs, the exoskeleton’s fingertip trajectories matched physiological trajectories more closely, with significantly reduced RMSE. Pressure measurements showed a reduction of approximately 15–25% in mean pressure and 20–30% in peak pressure at MCP and PIP, with more uniform distributions. The integrated framework of IRM-based modeling–equivalent ICOR–biomimetic kinematic pairs–multi-DOF exoskeleton design effectively enhanced kinematic alignment and human–machine compatibility. This work highlights the importance and feasibility of ICOR alignment in rehabilitation robotics and provides a promising pathway toward personalized rehabilitation and clinical translation. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Graphical abstract

23 pages, 16253 KB  
Article
Preliminary Validation of Nitinol Rod Driven Discrete Continuum Robot for Transoral Surgery by Planar Path Planning with CT Images
by Yeoun-Jae Kim, Ji Eun Oh and Daehan Wi
Robotics 2025, 14(10), 140; https://doi.org/10.3390/robotics14100140 - 30 Sep 2025
Abstract
A Nitinol rod-driven discrete continuum robot with two sections and eight units was developed to support clinicians in performing transoral surgery. The robot measures 120 mm in length, with each unit having a diameter of 15 mm and a height of 20 mm. [...] Read more.
A Nitinol rod-driven discrete continuum robot with two sections and eight units was developed to support clinicians in performing transoral surgery. The robot measures 120 mm in length, with each unit having a diameter of 15 mm and a height of 20 mm. The distal and proximal sections are designed to bend independently, each with two degrees of freedom (DOF) actuated by four Nitinol rods. To validate the independent controllability of the two sections, two-dimensional bending tests and ANSYS simulations were conducted. For the assessment of clinical feasibility, head and neck CT images from ten patients were manually segmented to reconstruct three-dimensional oral cavity models. Ten fictitious reference passages were generated from the lips to the oropharynx, and planar path-planning simulations were performed using these passages. Verification experiments were carried out on three reference passages employing experimentally derived inverse kinematics. The simulation results demonstrated an average reference path-following error within a root mean square (RMS) of 1.9705 mm at maximum insertion length. Experimental path-planning results showed average absolute angular differences of 5.6 degrees in the distal section and 4.1 degrees in the proximal section when compared with the simulations. Full article
(This article belongs to the Special Issue Development of Biomedical Robotics)
Show Figures

Figure 1

27 pages, 1205 KB  
Article
Dynamic Reconstruction of Degrees of Freedom and Coupling Control in 3RPUR Metamorphic Parallel Mechanism
by Shuwei Qu, Chaochao Li, Hongfu Wang, Zhike Qian, Shengquan Feng, Qianyao Wang, Tiong Sieh Kiong, Ewe Lay Sheng, Ruiqin Li and Wei Yao
Machines 2025, 13(10), 894; https://doi.org/10.3390/machines13100894 - 30 Sep 2025
Abstract
This study investigates the 3RPUR (3-Revolute–Prismatic–Universal–Revolute) variable parallel mechanism, employing screw theory and linear geometry to analyze the geometric relationships and constraint characteristics of the RPUR (Revolute–Prismatic–Universal–Revolute) limb kinematic pairs. The findings reveal that the constraint moment in the always remains perpendicular to [...] Read more.
This study investigates the 3RPUR (3-Revolute–Prismatic–Universal–Revolute) variable parallel mechanism, employing screw theory and linear geometry to analyze the geometric relationships and constraint characteristics of the RPUR (Revolute–Prismatic–Universal–Revolute) limb kinematic pairs. The findings reveal that the constraint moment in the always remains perpendicular to the two axes of the U pair, forming an equivalent plane. Through the locking/unlocking mechanism of universal joints (U pair), the mechanism achieves dynamic degree-of-freedom reconstruction, enabling seamless switching between three translational (3T) and three translational-one-rotation (3T1R) motion modes. The continuity between motion and degrees of freedom during the variable cell process is demonstrated. This research reveals a strict 1:1 linear coupling between the rotational angle of the moving platform around the Z-axis and the U pair’s rotation angle under 3T1R mode. Simulation experiments validate the feasibility and coupling characteristics of both motion modes, providing theoretical and technical support for this mechanism’s adaptation to complex working conditions in mobile robotics applications, particularly where reconfigurable parallel mechanisms are required for multi-task flexibility. Full article
(This article belongs to the Section Machine Design and Theory)
25 pages, 2147 KB  
Article
Skeletal Image Features Based Collaborative Teleoperation Control of the Double Robotic Manipulators
by Hsiu-Ming Wu and Shih-Hsun Wei
Electronics 2025, 14(19), 3897; https://doi.org/10.3390/electronics14193897 - 30 Sep 2025
Abstract
In this study, a vision-based remote and synchronized control scheme is proposed for the double six-DOF robotic manipulators. Using an Intel RealSense D435 depth camera and MediaPipe skeletal image feature technique, the operator’s 3D hand pose is captured and mapped to the robot’s [...] Read more.
In this study, a vision-based remote and synchronized control scheme is proposed for the double six-DOF robotic manipulators. Using an Intel RealSense D435 depth camera and MediaPipe skeletal image feature technique, the operator’s 3D hand pose is captured and mapped to the robot’s workspace via coordinate transformation. Inverse kinematics is then applied to compute the necessary joint angles for synchronized motion control. Implemented on double robotic manipulators with the MoveIt framework, the system successfully achieves a collaborative teleoperation control task to transfer an object from a robotic manipulator to another one. Further, moving average filtering techniques are used to enhance trajectory smoothness and stability. The framework demonstrates the feasibility and effectiveness of non-contact, vision-guided multi-robot control for applications in teleoperation, smart manufacturing, and education. Full article
(This article belongs to the Section Systems & Control Engineering)
32 pages, 25347 KB  
Article
NMPC-Based Trajectory Optimization and Hierarchical Control of a Ducted Fan Flying Robot with a Robotic Arm
by Yibo Zhang, Bin Xu, Yushu Yu, Shouxing Tang, Wei Fan, Siqi Wang and Tao Xu
Drones 2025, 9(10), 680; https://doi.org/10.3390/drones9100680 - 29 Sep 2025
Abstract
Ducted fan flying robots with robotic arms can perform physical interaction tasks in complex environments such as indoors. However, the coupling effects between the aerial platform, the robotic arm, and physical environment pose significant challenges for the robot to accurately approach and stably [...] Read more.
Ducted fan flying robots with robotic arms can perform physical interaction tasks in complex environments such as indoors. However, the coupling effects between the aerial platform, the robotic arm, and physical environment pose significant challenges for the robot to accurately approach and stably contact the target. To address this problem, we propose a unified control framework for a ducted fan flying robot that encompasses both flight planning and physical interaction. This contribution mainly includes the following: (1) A nonlinear model predictive control (NMPC)-based trajectory optimization controller is proposed, which achieves accurate and smooth tracking of the robot’s end effector by considering the coupling of redundant states and various motion and performance constraints, while avoiding potential singularities and dangers. (2) On this basis, an easy-to-practice hierarchical control framework is proposed, achieving stable and compliant contact of the end effector without controller switching between the flight and interaction processes. The results of experimental tests show that the proposed method exhibits accurate position tracking of the end effector without overshoot, while the maximum fluctuation is reduced by up to 75.5% without wind and 71.0% with wind compared to the closed-loop inverse kinematics (CLIK) method, and it can also ensure continuous stable contact of the end effector with the vertical wall target. Full article
(This article belongs to the Section Drone Design and Development)
17 pages, 20573 KB  
Article
Digital Twin-Based Intelligent Monitoring System for Robotic Wiring Process
by Jinhua Cai, Hongchang Ding, Ping Wang, Xiaoqiang Guo, Han Hou, Tao Jiang and Xiaoli Qiao
Sensors 2025, 25(19), 5978; https://doi.org/10.3390/s25195978 - 26 Sep 2025
Abstract
In response to the growing demand for automation in aerospace harness manufacturing, this study proposes a digital twin-based intelligent monitoring system for robotic wiring operations. The system integrates a seven-degree-of-freedom robotic platform with an adaptive servo gripper and employs a five-dimensional digital twin [...] Read more.
In response to the growing demand for automation in aerospace harness manufacturing, this study proposes a digital twin-based intelligent monitoring system for robotic wiring operations. The system integrates a seven-degree-of-freedom robotic platform with an adaptive servo gripper and employs a five-dimensional digital twin framework to synchronize physical and virtual entities. Key innovations include a coordinated motion model for minimizing joint displacement, a particle-swarm-optimized backpropagation neural network (PSO-BPNN) for adaptive gripping based on wire characteristics, and a virtual–physical closed-loop interaction strategy covering the entire wiring process. Methodologically, the system enables motion planning, quality prediction, and remote monitoring through Unity3D visualization, SQL-driven data processing, and real-time mapping. The experimental results demonstrate that the system can stably and efficiently complete complex wiring tasks with 1:1 trajectory reproduction. Moreover, the PSO-BPNN model significantly reduces prediction error compared to standard BPNN methods. The results confirm the system’s capability to ensure precise wire placement, enhance operational efficiency, and reduce error risks. This work offers a practical and intelligent solution for aerospace harness production and shows strong potential for extension to multi-robot collaboration and full production line scheduling. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

24 pages, 5243 KB  
Article
Multi-Segment Extendable Soft Manipulator Driven by a Pneumatic–Tendon Coupling Mechanism
by Hongxi Yang, Yufeng Zeng, Zeyu Zhong, Zhiyan Chen, Junxi Zhou, Zhicheng Ling, Ye Chen and Yunquan Li
Biomimetics 2025, 10(10), 643; https://doi.org/10.3390/biomimetics10100643 - 23 Sep 2025
Viewed by 162
Abstract
Continuum robots have garnered significant attention for their high flexibility and adaptability to complex environments. However, achieving the same level of high-precision control as rigid robots remains a significant challenge. This paper introduces an innovative Multi-Segment Extendable Soft Manipulator (MSESM) that employs a [...] Read more.
Continuum robots have garnered significant attention for their high flexibility and adaptability to complex environments. However, achieving the same level of high-precision control as rigid robots remains a significant challenge. This paper introduces an innovative Multi-Segment Extendable Soft Manipulator (MSESM) that employs a pneumatic–tendon hybrid drive mechanism. The design, utilizing off-the-shelf industrial bellows and 3D-printed components, allows the manipulator to achieve an extension ratio of up to 156.85%. By adopting a differential stiffness design, its bending stiffness was increased by approximately 4–5 times, its axial stiffness was increased by approximately 10 times, and its torsional resistance was enhanced, preventing inter-segment coupling during motion. At the control level, this paper proposes a hybrid control method that integrates a Constant Curvature (CC) physical prior with a data-driven neural network. Experimental results show that in tracking rectangular, triangular, and circular trajectories, this hybrid method reduced the average tracking error by 60.43% compared to a purely neural network-based controller, with the error reduction for the rectangular trajectory reaching 74.19%. This research validates a practical and effective approach for creating soft manipulators that successfully merge high flexibility with high-precision control. Full article
Show Figures

Graphical abstract

40 pages, 10028 KB  
Article
Collaborative Optimization Control of Gravity Center and Pose of Hexapod Robot in Complex Terrains
by Chenjiang Yu, Diqing Fan and Xintian Liu
Machines 2025, 13(9), 871; https://doi.org/10.3390/machines13090871 - 18 Sep 2025
Viewed by 229
Abstract
The adaptability of a hexapod robot to complex terrain is highly dependent on its own posture, which directly affects its stability and flexibility. In order to adapt to a change in terrain, it is necessary to adjust posture in real time when walking. [...] Read more.
The adaptability of a hexapod robot to complex terrain is highly dependent on its own posture, which directly affects its stability and flexibility. In order to adapt to a change in terrain, it is necessary to adjust posture in real time when walking. At the same time, external factors such as ground state and landing impact will also interfere with posture. Therefore, it is necessary to maintain balance after adjustment. This paper proposes a pose adjustment method utilizing joint angle control. It enhances robot stability, flexibility, and terrain adaptability through torso posture and center of gravity optimization, aiming to maintain balance. The strategy’s effectiveness was validated via Adams–Simulink co-simulation. Optimal position and posture adjustment for the torso was then implemented at the six-legged support stage after each step, employing inverse kinematics and a triangular gait. It is found that without pose adjustment, the direction deviation will accumulate and significantly deviate from the trajectory. The introduction of this adjustment can effectively correct the direction deviation and torso posture angle, increase the stability margin, ensure stable straight-line walking, and significantly reduce joint energy consumption. Crawling experiments with the physical prototype further validate the strategy. It rapidly counters instantaneous attitude fluctuations during leg alternation, maintaining a high stability margin and improving locomotion efficiency. Consequently, the robot achieves enhanced directional stability, overall stability, and energy efficiency when traversing terrain. Full article
(This article belongs to the Topic New Trends in Robotics: Automation and Autonomous Systems)
Show Figures

Figure 1

31 pages, 12050 KB  
Article
Design, Implementation, and Experimental Evaluation of a 6-DoF Parallel Manipulator Driven by Pneumatic Muscles
by Dawid Sebastian Pietrala, Pawel Andrzej Laski, Krzysztof Borkowski and Jaroslaw Zwierzchowski
Appl. Sci. 2025, 15(18), 10126; https://doi.org/10.3390/app151810126 - 17 Sep 2025
Viewed by 206
Abstract
This paper presents the design, implementation, and experimental results of a six-degree-of-freedom Delta-type parallel manipulator, in which all actuators were realized using proprietary pneumatic muscles. The objective of the study was to evaluate the suitability of this type of actuator for applications in [...] Read more.
This paper presents the design, implementation, and experimental results of a six-degree-of-freedom Delta-type parallel manipulator, in which all actuators were realized using proprietary pneumatic muscles. The objective of the study was to evaluate the suitability of this type of actuator for applications in parallel robotics, with particular attention to their dynamic properties, nonlinearities, and potential limitations. In the first part of the article, the details of the manipulator’s construction and the kinematic model, covering both the forward and inverse kinematics, are presented. The control system was based on antagonistic pairs of pneumatic muscles forming servo drives responsible for the motion of individual arms. The experimental investigations were focused on analyzing trajectory-tracking accuracy and positioning repeatability, both in unloaded conditions and under additional payload applied to the end-effector. The results indicate that positioning errors for simple trajectories were generally below 1 mm, whereas for complex trajectories and under load, they increased, particularly during changes in motion direction, which can be attributed to friction and hysteresis phenomena in the muscles. Repeatability tests confirmed the ability of the manipulator to repeatedly reach the desired positions with small deviations. The analysis carried out confirms that pneumatic muscles can be effectively applied to drive parallel manipulators, offering advantageous features such as high power density and low mass. At the same time, the need for further research on nonlinearity compensation and durability enhancement was demonstrated. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

21 pages, 4392 KB  
Article
Research on Identification of Minimum Parameter Set in Robot Dynamics and Excitation Strategy
by Zhiqiang Wang, Jianhai Han, Xiangpan Li, Bingjing Guo and Lewei Lu
Sensors 2025, 25(18), 5749; https://doi.org/10.3390/s25185749 - 15 Sep 2025
Viewed by 274
Abstract
The minimal parameter set is fundamental to robot dynamic identification, enabling efficient and identifiable modeling for control and simulation. In this paper, the Newton–Euler method is employed to formulate the robot dynamics. By leveraging screw theory, the model is expressed in a matrix [...] Read more.
The minimal parameter set is fundamental to robot dynamic identification, enabling efficient and identifiable modeling for control and simulation. In this paper, the Newton–Euler method is employed to formulate the robot dynamics. By leveraging screw theory, the model is expressed in a matrix form that is linear with respect to the robot’s inertial parameters. The Kronecker product is then applied to transform the matrix equation into an equivalent vector–matrix representation. Subsequently, full-rank decomposition is used to reduce the dimensionality of the parameter vector, resulting in the minimal dynamic parameter set of the robot. Following this, excitation signals are sequentially applied to each joint, starting from the end-effector and progressing toward the base, enabling a stepwise identification of the minimal parameter set using the least-squares method. The identified minimal parameters are then incorporated into the mass matrix of the dynamic model, enabling the implementation of forward dynamic simulation. Experimental validation is conducted on a planar 3R robot. The results demonstrate that the sequential excitation strategy accurately identifies dynamic parameters while ensuring the robot’s safety. Furthermore, the forward dynamic simulation closely replicates the kinematic behavior of the actual robot. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

24 pages, 10828 KB  
Article
Data-Driven Twisted String Actuation for Lightweight and Compliant Anthropomorphic Dexterous Hands
by Zhiyao Zheng, Jingwei Zhan, Zhaochun Li, Yucheng Wang, Chanchan Xu and Xiaojie Wang
Biomimetics 2025, 10(9), 621; https://doi.org/10.3390/biomimetics10090621 - 15 Sep 2025
Viewed by 414
Abstract
Anthropomorphic dexterous hands are crucial for robotic interaction in unstructured environments, yet their performance is often constrained by traditional actuation systems, which suffer from excessive weight, complexity, and limited compliance. Twisted String Actuators (TSAs) offer a promising alternative due to their high transmission [...] Read more.
Anthropomorphic dexterous hands are crucial for robotic interaction in unstructured environments, yet their performance is often constrained by traditional actuation systems, which suffer from excessive weight, complexity, and limited compliance. Twisted String Actuators (TSAs) offer a promising alternative due to their high transmission ratio, lightweight design, and inherent compliance. However, their strong nonlinearity under variable loads poses significant challenges for high-precision control. This study presents an integrated approach combining data-driven modeling and biomimetic mechanism innovation to overcome these limitations. First, a data-driven modeling approach based on a dual hidden-layer Back Propagation Neural Network (BPNN) is proposed to predict TSA displacement under variable loads (0.1–4.2 kg) with high accuracy. Second, a lightweight, underactuated five-finger dexterous hand is developed, featuring a biomimetic three-phalanx structure and a tendon-spring transmission mechanism, achieving an ultra-lightweight design. Finally, a comprehensive experimental platform validates the system’s performance, demonstrating precise bending angle prediction (via integrated BPNN–kinematic modeling), versatile gesture replication, and robust grasping capabilities (with a maximum fingertip force of 7.4 N). This work not only advances TSA modeling for variable-load applications but also provides a new paradigm for designing high-performance, lightweight dexterous hands in robotics. Full article
(This article belongs to the Special Issue Advanced Service Robots: Exoskeleton Robots 2025)
Show Figures

Figure 1

20 pages, 754 KB  
Article
Dynamic Analysis and Force Adaptation in Elastic-Link Mechanical Systems with Two Degrees of Freedom
by Fariza Oraz, Kenzhebek Myrzabekov, Konstantin Ivanov and Kuanysh Alipbayev
Appl. Sci. 2025, 15(18), 10040; https://doi.org/10.3390/app151810040 - 14 Sep 2025
Viewed by 222
Abstract
This study presents a comprehensive dynamic analysis of mechanical systems incorporating elastic joints and introduces an adaptive vibration actuator with an integrated transmission variator. The system’s behavior is modeled through kinematic and dynamic formulations, utilizing both analytical and numerical methods. The analysis reveals [...] Read more.
This study presents a comprehensive dynamic analysis of mechanical systems incorporating elastic joints and introduces an adaptive vibration actuator with an integrated transmission variator. The system’s behavior is modeled through kinematic and dynamic formulations, utilizing both analytical and numerical methods. The analysis reveals that the inclusion of elastic elements enables a force adaptation effect, allowing the output element to adjust dynamically to variations in external loading. Under conditions of constant input power, the output speed varies inversely with the load, ensuring reliable adaptive performance. Furthermore, the elastic joints facilitate internal force redistribution, enhancing energy efficiency and reducing mechanical losses. These findings hold relevance for applications in industrial automation and robotics, where consistent functionality under variable load conditions is essential. Full article
Show Figures

Figure 1

Back to TopTop