Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = road pavement thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4138 KiB  
Article
Bridging NDT and Laboratory Testing in an Airfield Pavement Structural Evaluation
by Angeliki Armeni
NDT 2025, 3(3), 17; https://doi.org/10.3390/ndt3030017 - 10 Jul 2025
Viewed by 208
Abstract
The accurate assessment of the structural condition of airfield pavements is of paramount importance to airport authorities as it determines the planning of maintenance activities. On this basis, Non-Destructive Testing (NDT) techniques provide a powerful tool to assess the mechanical properties of the [...] Read more.
The accurate assessment of the structural condition of airfield pavements is of paramount importance to airport authorities as it determines the planning of maintenance activities. On this basis, Non-Destructive Testing (NDT) techniques provide a powerful tool to assess the mechanical properties of the individual layers of the pavement. However, information from laboratory testing of cores taken from the pavement is expected to provide a more accurate assessment of material properties. Against this background, the present research aims to investigate the accuracy of the mechanical properties of in-situ layers derived from NDT data and the associated back-calculation procedures for airfield pavements, where higher pavement thicknesses are usually required due to the high aircraft loads, while few similar studies have been conducted compared to road pavements. For this reason, the assessment of the structural condition of a flexible runway pavement is presented. The analysis shows that there is a strong correlation between the moduli estimated in the laboratory and the moduli estimated by back-calculation. Furthermore, the back-calculated moduli appear to lead to a conservative approach in assessing the structural condition of the pavement. This conservatism promotes a more proactive pavement management by airport authorities. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 374
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

23 pages, 6103 KiB  
Article
A Simple Model to Estimate the Increase in Pavement Life Due to the Traffic Wander for Application in Connected and Autonomous Vehicles
by Beata Gajewska, Marcin Gajewski, Jorge Pais and Liseane Thives
Materials 2025, 18(11), 2609; https://doi.org/10.3390/ma18112609 - 3 Jun 2025
Viewed by 406
Abstract
The primary purpose of this paper is to investigate the impact of traffic wander on road pavement life for application in connected and autonomous vehicles. Research shows that in autonomous vehicles, drivers often follow the same path, leading to significant pavement damage on [...] Read more.
The primary purpose of this paper is to investigate the impact of traffic wander on road pavement life for application in connected and autonomous vehicles. Research shows that in autonomous vehicles, drivers often follow the same path, leading to significant pavement damage on specific, well-defined paths. The paper examined the impact of traffic wander on pavement life by analysing two different wander distributions: normal and uniform. Based on the estimated pavement life for various pavement structures, a model that predicts the increase in pavement life due to traffic wander was developed for cracking and rutting prediction. The result of the research is the determination of relative pavement life influence functions, in which the variables are the traffic wander, asphalt layer thickness and subgrade stiffness. The obtained equations can be easily implemented for pavement service life extension evaluation. The model was also used to estimate the asphalt layer thickness as a function of the traffic expressed in terms of Equivalent Single Axle Load (ESALs). An analysis of the implications of the lateral distribution of traffic on the pavement thickness was presented. Significant reductions in the asphalt layer thickness of the pavement are achieved when wander is considered. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 2582 KiB  
Article
Evaluation of Deflection Errors in Traffic Speed Deflectometer Measurements on Inverted Asphalt Pavement Structures
by Kai Wang, Jiaojiao Wei, Xiaoqiang Hou and Chaoyang Wu
Appl. Sci. 2025, 15(7), 4059; https://doi.org/10.3390/app15074059 - 7 Apr 2025
Viewed by 603
Abstract
This study developed a dynamic model for the Traffic Speed Deflectometer (TSD) on inverted asphalt pavement structures. It is aimed at evaluating the deflection slope and quantifying measurement errors. First, the reliability of the ABAQUS model in simulating the dynamic response of asphalt [...] Read more.
This study developed a dynamic model for the Traffic Speed Deflectometer (TSD) on inverted asphalt pavement structures. It is aimed at evaluating the deflection slope and quantifying measurement errors. First, the reliability of the ABAQUS model in simulating the dynamic response of asphalt pavements was validated by comparing with previous studies. The deflection slope curves of inverted and semi-rigid base pavements with varying thicknesses were compared, revealing that the inverted pavement exhibited complex deflection slope trends in TSD measurements. A significant decrease in peak deflection was observed at 0.15 m from the load gap center with increasing surface thickness. The deflection velocity measurement value of the TSD calibration sensor (S3500) on the inverted asphalt pavement is not zero, which causes the road surface deflection to be lower than the actual deflection, with an error as high as 80.1%, which overestimated the pavement’s structural capacity. These findings suggest that the sensor configuration and measurement strategy of TSD should be reconsidered when applied to inverted asphalt pavement structures. The results provide useful insights that may support the refinement of TSD application strategies. Full article
Show Figures

Figure 1

17 pages, 3450 KiB  
Article
Neural Network Approach for Fatigue Crack Prediction in Asphalt Pavements Using Falling Weight Deflectometer Data
by Bishal Karki, Sayla Prova, Mayzan Isied and Mena Souliman
Appl. Sci. 2025, 15(7), 3799; https://doi.org/10.3390/app15073799 - 31 Mar 2025
Viewed by 936
Abstract
Fatigue cracking is a major issue in asphalt pavements, reducing their lifespan and increasing maintenance costs. This study develops an artificial neural network (ANN) model to predict the onset and progression of fatigue cracking. The model is calibrated utilizing Falling Weight Deflectometer (FWD) [...] Read more.
Fatigue cracking is a major issue in asphalt pavements, reducing their lifespan and increasing maintenance costs. This study develops an artificial neural network (ANN) model to predict the onset and progression of fatigue cracking. The model is calibrated utilizing Falling Weight Deflectometer (FWD) testing data, alongside essential pavement characteristics such as layer thickness, air void percentage, asphalt binder proportion, traffic loads (Equivalent Single Axle Loads or ESALs), and mean annual temperature. By analyzing these factors, the ANN captures complex relationships influencing fatigue cracking more effectively than traditional methods. A comprehensive dataset from the Long-Term Pavement Performance (LTPP) program is used for model training and validation. The ANN’s ability to adapt and recognize patterns enhances its predictive accuracy, allowing for more reliable pavement condition assessments. Model performance is evaluated against real-world data, confirming its effectiveness in predicting fatigue cracking with an overall R2 of 0.9. This study’s findings provide valuable insights for pavement maintenance and rehabilitation planning, helping transportation agencies optimize repair schedules and reduce costs. This research highlights the growing role of AI in pavement engineering, demonstrating how machine learning can improve infrastructure management. By integrating ANN-based predictive analytics, road agencies can enhance decision-making, leading to more durable and cost-effective pavement systems for the future. Full article
(This article belongs to the Special Issue Big Data Analytics and Deep Learning for Predictive Maintenance)
Show Figures

Figure 1

19 pages, 7932 KiB  
Article
Theoretical Investigation and Parametric Sensitivity Analysis of Polypropylene–Polyester Fiber-Reinforced Recycled Brick Aggregate Concrete Pavement Humidity Warping Stress During the Service Life
by Fei Li, Shenghao Jin, Peifeng Cheng and Zehui Wang
Materials 2025, 18(5), 1093; https://doi.org/10.3390/ma18051093 - 28 Feb 2025
Viewed by 679
Abstract
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model [...] Read more.
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model in order to verify the accuracy of the analytical solution. Subsequently, the finite difference method, in conjunction with the finite element method, was employed to investigate the calculation methodology for wet-warping stress in PPRBAC slabs during service. Finally, the Taguchi–GRA (gray relational analysis) method was selected to analyze the sensitivity of humidity warping factors affecting PPRBAC slabs. The findings indicate that compared to the traditional bending moment equivalent method, the wetness warping stress formula established in this study accounts for the nonlinearity of wetness warping stress and demonstrates higher accuracy. For PPRBAC pavements during the service period, assuming uniform initial humidity distribution along the height within the concrete does not align with practical observations. The calculated humidity warping stress and deformation using this assumption are 1.1 and 1.7 times those obtained from the comprehensive dry–wet calculation method. It is crucial to consider the wet stage’s impact on the dry stage in the calculations. The Taguchi–GRA method objectively determines the weight of factors affecting humidity warping in PPRBAC, with slab size, thickness, and flexural strength having the greatest influence. Full article
Show Figures

Figure 1

20 pages, 7600 KiB  
Article
Research on the Stress Characteristics of Reuse of Semi-Rigid Base
by Liting Yu, Dong Tang, Haoyi Kang, Haiqi He, Donliang Hu, Rui Li, Jianzhong Pei and Shihui Cheng
Sensors 2024, 24(24), 8004; https://doi.org/10.3390/s24248004 - 14 Dec 2024
Cited by 1 | Viewed by 1023
Abstract
Semi-rigid bases are widely used in road construction due to their excellent properties, high rigidity, and frost resistance, and they have been in service for many years. However, as the service life increases, the maintenance demands also grow, with traditional maintenance methods still [...] Read more.
Semi-rigid bases are widely used in road construction due to their excellent properties, high rigidity, and frost resistance, and they have been in service for many years. However, as the service life increases, the maintenance demands also grow, with traditional maintenance methods still being the primary approach. Based on a typical case using ground-penetrating radar (GPR) technology, this study explores the issue of cracks in semi-rigid bases and their impact on overlay layers. The findings indicate that the overlay layer at semi-rigid base cracks struggles to withstand significant tensile and shear stresses, leading to reflective cracking and reducing pavement durability. To address this problem, this paper investigates the application potential of crushing technology in maintaining semi-rigid bases. Crushing technology has been widely employed in the maintenance of cement concrete panels, effectively eliminating reflective cracks and extending the service life of overlays. Given that semi-rigid bases share similar high-strength characteristics with cement concrete panels, crushing technology shows considerable applicability in semi-rigid base maintenance. This study employs a finite element analysis method to establish a semi-rigid base model under the impact load of multi-hammer equipment. It examines its dynamic mechanical response and evaluates the feasibility and effectiveness of crushing technology for semi-rigid base maintenance. Additionally, this study investigates the influence of the crushed layer’s modulus and thickness on key mechanical design indicators of the overlay and proposes recommendations for optimal design parameters. The research results provide valuable references for the design of the thickness and modulus in maintaining and repairing semi-rigid bases, contributing to improving pavement performance and durability. Full article
Show Figures

Figure 1

14 pages, 3737 KiB  
Article
Investigation of the Effect of Compression Force on the Tensile Strength and Infiltration Rate of Pervious Concrete Blocks
by Ahmet Akkaya and İsmail Hakkı Çağatay
Buildings 2024, 14(11), 3689; https://doi.org/10.3390/buildings14113689 - 19 Nov 2024
Viewed by 1108
Abstract
Pervious concrete is widely used as a paving material. Pervious pavement is generally constructed by pouring fresh pervious concrete and compacting. However, it has some difficulties such as finishing and curing. In addition, the road has to be closed, until the pervious concrete [...] Read more.
Pervious concrete is widely used as a paving material. Pervious pavement is generally constructed by pouring fresh pervious concrete and compacting. However, it has some difficulties such as finishing and curing. In addition, the road has to be closed, until the pervious concrete gains enough strength. Pervious concrete block is a new material that can overcome these difficulties. In this study, the effect of compression force on the strength and infiltration rate of pervious concrete blocks has been investigated. The compaction process was different from traditional methods in this study, and was applied according to predesignated compression forces on fresh pervious concrete mixtures sensitively. Within the scope of the study, 36 different mixtures were produced by applying four different compression forces (25, 50, 75, and 100 kN) in three different sample thicknesses (60, 80, and 100 mm) with three different aggregate sizes (2–4, 4–8, and 8–16 mm). As a result, it was found that while the increase in the compression force increases the splitting tensile strength of pervious concrete blocks with 2–4 and 4–8 mm aggregate, it causes a decrease in the strength due to the aggregate crushing phenomenon in mixtures with 8–16 mm aggregate, 6 cm thick samples. In this study, it was seen that the expectation that the increase in compaction would always cause an increase in strength is not valid, contrary to the literature. The infiltration rate decreased as the compression force increased, as expected. It was determined that the new infiltration rate measurement method has been found effective. Considering the strength requirement in the TS 2824 EN 1338 standard, pervious concrete blocks produced with 4–8 mm aggregate, compressed with 75 kN force and having 80 mm thickness have been determined as the optimum block type. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 2973 KiB  
Article
Cost Effectiveness of Chip Seal and Hot Mix Asphalt Pavements
by Bojan Žlender, Cahit Gürer, Rok Varga and Primož Jelušič
Geotechnics 2024, 4(4), 1140-1158; https://doi.org/10.3390/geotechnics4040058 - 11 Nov 2024
Cited by 2 | Viewed by 1319
Abstract
Chip seal pavements, consisting of one or more layers of asphalt binder and fine aggregate, can be mechanically characterized as a surface treatment that enhances evenness and trafficability. This paper examines the geotechnical aspects of chip seal applicability compared to traditional hot mix [...] Read more.
Chip seal pavements, consisting of one or more layers of asphalt binder and fine aggregate, can be mechanically characterized as a surface treatment that enhances evenness and trafficability. This paper examines the geotechnical aspects of chip seal applicability compared to traditional hot mix asphalt pavements. An analytical model was employed to design unpaved roads and determine the required thickness of unbound layers. Eight optimization models were developed for hot mix asphalt pavements and four for chip seal pavements, aimed at achieving optimal designs for various input parameters. These outcomes were used to conduct a multi-parametric analysis, incorporating an optimization loop for each combination of design variables. The results indicate that, under low traffic conditions, a chip seal pavement structure can be up to 40% less expensive than an optimal hot mix asphalt pavement structure, particularly when the subgrade has low bearing capacity and is exposed to unfavorable climatic conditions. However, at medium traffic loads, with good subgrade bearing capacity and favorable climate, the chip seal pavement structure incurs costs that are 25% higher than those of the hot asphalt pavement structure. In addition, chip seal pavements should always be designed with integrated geosynthetic reinforcement to minimize construction costs, and chip seal is not as sensitive to frost as hot mix asphalt. Full article
Show Figures

Figure 1

15 pages, 900 KiB  
Article
Evaluation of the Mechanical Behavior of Asphaltic Mixtures Utilizing Waste of the Processing of Iron Ore
by Antônio Carlos Rodrigues Guimarães, Marcio Leandro Alves de Arêdes, Carmen Dias Castro, Lisley Madeira Coelho and Sergio Neves Monteiro
Mining 2024, 4(4), 889-903; https://doi.org/10.3390/mining4040049 - 22 Oct 2024
Cited by 5 | Viewed by 1699
Abstract
Mineral extraction is an important operation for the economy of different countries and generates millions of tons of mining waste. In this context, and in association with the high demand for paving aggregates and the lack of raw materials for this purpose, the [...] Read more.
Mineral extraction is an important operation for the economy of different countries and generates millions of tons of mining waste. In this context, and in association with the high demand for paving aggregates and the lack of raw materials for this purpose, the feasibility of using iron ore processing waste has emerged as a promising alternative. This study evaluates the physical and mechanical behavior of asphalt mixtures incorporating waste from the company Samarco S.A., collected in Mariana-MG, to replace the fine aggregate in asphalt concrete mixtures, with a view to applications in the bearing layer of local traffic roads. Two mixtures, M2 and M3, containing 20% and 17% waste, respectively, were formulated and analyzed, compared to a reference mixture, M1. Evaluations were carried out using the Marshall method parameters, mechanical tests of resilience modulus, and fatigue life under controlled tension, as well as mechanistic analysis. Brazilian mechanistic–empirical design software (MeDiNa—v 1.5.0) contributed to this analysis. This analysis revealed that, for a traffic level of N = 5 × 106 (average traffic) on a local road, pavements containing the M1 and M3 mixtures had the same layer thicknesses (6.9 cm), as well as the same fatigue class, equal to 1. The pavement with the M2 mixture had the thickest asphalt layer (8.2 cm) and a lower fatigue class equal to 0. But if compared in terms of the percentage of cracked area over 10 years, it still offers ideal performance conditions compared to the M1 and M3 mixes. Thus, it can be considered feasible to replace fine aggregate with iron ore waste in asphalt concrete for use on local roads in the region without altering the bearing capacity of the pavement. Full article
Show Figures

Figure 1

12 pages, 3355 KiB  
Article
Performance Study of Stabilized Recycled Aggregate Base Material with Two-Gray Components
by Kai Wang, Xianhu Hu, Yingjie Yuan, Feng Lian, Mingchen Zhong and Kun Meng
Materials 2024, 17(20), 5038; https://doi.org/10.3390/ma17205038 - 15 Oct 2024
Cited by 2 | Viewed by 1244
Abstract
This article studies the practical road performance of recycled materials from construction waste, relying on the paving test section of the supporting project for the Qingdao Cross-Sea Bridge. The research focuses on the construction technology and road performance of using recycled construction waste [...] Read more.
This article studies the practical road performance of recycled materials from construction waste, relying on the paving test section of the supporting project for the Qingdao Cross-Sea Bridge. The research focuses on the construction technology and road performance of using recycled construction waste materials in urban road sub-base construction. Through indoor tests such as sieving and unconfined compressive strength tests, relevant technical indicators were obtained and analyzed. Additionally, periodic core sampling, compaction tests, and rebound deflection tests were conducted on-site according to relevant standards to thoroughly investigate the specific effects of using construction waste in practice and to analyze and evaluate the actual feasibility of the materials for road use. The results indicate that the particle gradation of the construction mix in the test section aligns well with the target gradation, and the dosage of the mixing agent meets the design requirements. The 7-day unconfined compressive strength already satisfied the technical requirements for heavy and extremely heavy traffic on highways as specified in the “Technical Specifications for Construction of Highway Pavement Subbase” (JTG/T F20-2015), with the 14-day strength generally reaching 7 MPa. Core sampling revealed good aggregate gradation, smooth and straight profiles, and the thickness and strength of all parts meet the specifications. The compaction levels met the testing requirements, the surface deflection values showed a decreasing trend, and the deformation resistance was good, consistent with the general development patterns of semi-rigid sub-bases. Full article
(This article belongs to the Special Issue Sustainable Materials and Structures Used in Pavement Engineering)
Show Figures

Figure 1

26 pages, 3716 KiB  
Article
A Comparative Study of Pavement Roughness Prediction Models under Different Climatic Conditions
by Soughah Al-Samahi, Waleed Zeiada, Ghazi G. Al-Khateeb, Khaled Hamad and Ali Alnaqbi
Infrastructures 2024, 9(10), 167; https://doi.org/10.3390/infrastructures9100167 - 24 Sep 2024
Cited by 4 | Viewed by 1459
Abstract
Predicting the International Roughness Index (IRI) is crucial for maintaining road quality and ensuring the safety and comfort of road users. Accurate IRI predictions help in the timely identification of road sections that require maintenance, thus preventing further deterioration and reducing overall maintenance [...] Read more.
Predicting the International Roughness Index (IRI) is crucial for maintaining road quality and ensuring the safety and comfort of road users. Accurate IRI predictions help in the timely identification of road sections that require maintenance, thus preventing further deterioration and reducing overall maintenance costs. This study aims to develop robust predictive models for the IRI using advanced machine learning techniques across different climatic conditions. Data were sourced from the Ministry of Energy and Infrastructure in the UAE for localized conditions coupled with the Long-Term Pavement Performance (LTPP) database for comparison and validation purposes. This study evaluates several machine learning models, including regression trees, support vector machines (SVMs), ensemble trees, Gaussian process regression (GPR), artificial neural networks (ANNs), and kernel-based methods. Among the models tested, GPR, particularly with rational quadratic specifications, consistently demonstrated superior performance with the lowest Root Mean Square Error (RMSE) and highest R-squared values across all datasets. Sensitivity analysis identified age, total pavement thickness, precipitation, temperature, and Annual Average Daily Truck Traffic (AADTT) as key factors influencing the IRI. The results indicate that pavement age and higher traffic loads significantly increase roughness, while thicker pavements contribute to smoother surfaces. Climatic factors such as temperature and precipitation showed varying impacts depending on the regional conditions. The developed models provide a powerful tool for predicting pavement roughness, enabling more accurate maintenance planning and resource allocation. The findings highlight the necessity of tailoring pavement management practices to specific environmental and traffic conditions to enhance road quality and longevity. This research offers a comprehensive framework for understanding and predicting pavement performance, with implications for infrastructure management both locally and worldwide. Full article
Show Figures

Figure 1

23 pages, 12500 KiB  
Article
Study on the Performance of Epoxy-Modified Asphalt and Steel Slag Ultra-Thin Friction Course
by Quanmin Zhang, Ziyu Lu, Anqi Chen, Shaopeng Wu, Jianlin Feng, Haiqin Xu and Yuanyuan Li
Materials 2024, 17(18), 4513; https://doi.org/10.3390/ma17184513 - 13 Sep 2024
Cited by 5 | Viewed by 1089
Abstract
Ultra-thin overlays (UTOL) are a standard highway pre-maintenance method used to improve the road surface performance of asphalt pavements and to repair minor rutting and cracking. However, the thin thickness makes it very sensitive to external changes, which increases its wear and shortens [...] Read more.
Ultra-thin overlays (UTOL) are a standard highway pre-maintenance method used to improve the road surface performance of asphalt pavements and to repair minor rutting and cracking. However, the thin thickness makes it very sensitive to external changes, which increases its wear and shortens its life. So, this paper aims to prepare a durable and skid-resistance asphalt ultra-thin overlay using epoxy asphalt (EA) and steel slag. First, the physical properties of EA were characterized by penetration, softening point, flexibility, and kinematic viscosity tests. The dynamic shear rheometer (DSR) test characterizes EA’s rheological properties. Differential Scanning Calorimetry (DSC), kinematic viscosity, and Fourier transform infrared spectroscopy (FTIR) characterized the EA’s curing process. Finally, the pavement performance of an epoxy ultra-thin overlay (EUTOL) prepared with EA and steel slag was tested. The results show that the epoxy resin particles increase with the increase in epoxy resin dosage, and at 40%, its epoxy particles are uniformly distributed with the most significant area share. With the addition of epoxy resin, the needle penetration of EA decreases and then increases, the flexibility decreases at a slower rate, and the softening point rises significantly. Moreover, the growth of the elastic component in EA significantly improved the high-temperature viscoelastic properties. Considering its physical and rheological properties, the optimal doping amount of 40% was selected. By analyzing the curing behavior of EA (optimum dosage), the combination temperature of EA is 150 °C, which meets the needs of mixing and paving asphalt mixtures. After 12 h of maintenance at 120 °C, its reaction is sufficient. The skid-resistance durability, high-temperature, low-temperature, water stability, and fatigue resistance of UTOL can be effectively improved using steel slag coarse aggregate. Full article
Show Figures

Figure 1

18 pages, 1944 KiB  
Article
A Critical Review of Pavement Design Methods Based on a Climate Approach
by Juan F. Mendoza-Sanchez, Elia M. Alonso-Guzman, Wilfrido Martinez-Molina, Hugo L. Chavez-Garcia, Rafael Soto-Espitia, Horacio Delgado-Alamilla and Saul A. Obregon-Biosca
Sustainability 2024, 16(16), 7211; https://doi.org/10.3390/su16167211 - 22 Aug 2024
Cited by 1 | Viewed by 5363
Abstract
The design of flexible road pavements is a complex process as a result of the multiple variables that influence and interact in the models that allow the design of each layer. In recent years, a particular interest has been raised to ensure that [...] Read more.
The design of flexible road pavements is a complex process as a result of the multiple variables that influence and interact in the models that allow the design of each layer. In recent years, a particular interest has been raised to ensure that climate is considered in pavement design due to temperature and precipitation that influence the deterioration of pavements, impacting their service life. This paper presents a critical review of flexible pavement design methods, from the first ones based on experience, such as empirical methods, to the most recent ones on mechanical–empirical methodologies, where, based on different principles, they determine the thicknesses of the layers that integrate the structure of a pavement to identify how these methods have included climate variables within their methodology. Through this review, it was identified that temperature is incorporated in the dynamic modulus of the asphalt mix, and precipitation and moisture are incorporated through the resilient modulus in the granular layers (base, subbase, and foundation soil or subgrade courses). As a result, it was identified that the most holistic way of integrating climate is through the Enhanced Integrated Climatic Model (EICM) from the Mechanistic–Empirical Pavement Design Guide (MEPDG). In many cases, climate is incorporated through parameters whose behavior is associated with temperature and precipitation but does not use the data of these climate variables directly from the project site. The practical incorporation of climate into design methods allows an increase in the certainty of results, ensuring additional climate-resilient pavement structures and increasing their durability and sustainability during their service life. Full article
(This article belongs to the Special Issue Sustainability in Pavement Materials and Design)
Show Figures

Figure 1

14 pages, 6706 KiB  
Article
Finite Element Analysis of Geogrid-Incorporated Flexible Pavement with Soft Subgrade
by Sagar Chhetri and Plaban Deb
Appl. Sci. 2024, 14(13), 5798; https://doi.org/10.3390/app14135798 - 3 Jul 2024
Cited by 5 | Viewed by 2470
Abstract
Improving the durability of flexible pavements and constructing new roads on weak soil foundations present significant challenges, prompting designers to explore alternative methods to prolong pavement lifespan. Geosynthetics have emerged as a promising solution for soil stabilization, with various materials developed for this [...] Read more.
Improving the durability of flexible pavements and constructing new roads on weak soil foundations present significant challenges, prompting designers to explore alternative methods to prolong pavement lifespan. Geosynthetics have emerged as a promising solution for soil stabilization, with various materials developed for this purpose. The current study concentrates on using the finite element (FE) method to examine the effectiveness of geogrid-incorporated flexible pavements on soft soil substrates. A three-dimensional layered pavement is constructed with an FE model, incorporating subgrade layers of varying strengths based on their California bearing ratio (CBR) values, with a geogrid layer implemented to enhance subgrade stability. Additionally, attention is also given to investigating the effect of base course thickness. The findings reveal that the geogrid layer primarily influences the formation of plastic strains in the subgrade rather than resilient strains, effectively reducing vertical compressive strain by approximately 40%. With increasing CBR values, there is a reduction in vertical strain, although the influence zone extends up to a depth of 300 mm within the subgrade. At the surface of the subgrade, vertical strain decreases by around 17%, 39%, and 49% as the CBR values increase from 1% to 3%, 5%, and 8%, respectively. Full article
(This article belongs to the Special Issue Advanced Pavement Engineering: Design, Construction, and Performance)
Show Figures

Figure 1

Back to TopTop