Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources
3.2. Research Methods
4. Results and Analysis
4.1. Spatiotemporal Evolution Characteristics of Thalweg
4.2. Evolution of River Planform Morphology
4.2.1. River Width
4.2.2. Channel Erosion and Sedimentation Changes
4.3. Impact of River Channel Evolution on Ecological Water Diversion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Xue, L.; Wei, G.; Chi, Y.; Yang, G. Study on the dominant causes of streamflow alteration and effects of the current water diversion in the Tarim River Basin, China. Hydrol. Process. 2018, 32, 3391–3401. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.; Brierley, G.J.; Wang, Z.; Jia, Y. Migration and cutoff of meanders in the hyperarid environment of the middle Tarim River, northwestern China. Geomorphology 2017, 276, 116–124. (In Chinese) [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gui, D. Research progress on water resources in the Tarim River Basin. Arid Land Geogr. 2018, 41, 1151–1159. [Google Scholar]
- Zhou, T.; Zhao, J. Changes in the middle reaches of the south Tarim River. J. Beijing Norm. Univ. (Nat. Sci.) 1959, 4, 46–60+104. [Google Scholar]
- Yin, Y. Encyclopedia of Rivers and Lakes in China and Commentary on the Water Classic. Henan Water Resour. 2006, 38. [Google Scholar]
- Qin, P. A brief commentary on Records of Rivers in the Western Regions: Preliminary tracing of the water sources of Lop Nur and Kara Nur. J. Zhengzhou Univ. (Philos. Soc. Sci. Ed.) 1988, 4–11.7. (In Chinese) [Google Scholar]
- Zhao, C.; Shi, L.; Xu, F.; Liu, H. Geological processes of the river and channel evolution in the middle and lower reaches of the Yangtze River. Yangtze River 2002, 33, 8–10+48. (In Chinese) [Google Scholar] [CrossRef]
- Nawfee, S.M.; Dewan, A.; Rashid, T. Integrating subsurface stratigraphic records with satellite images to investigate channel change and bar evolution: A case study of the Padma River, Bangladesh. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Hossain, M.A.; Gan, T.Y.; Baki, A.B.M. Assessing morphological changes of the Ganges River using satellite images. Quat. Int. 2013, 304, 142–155. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A. An observation of the changing trends of a river channel pattern in Bangladesh using satellite images. Appl. Sci. 2022, 12, 11604. [Google Scholar] [CrossRef]
- Debnath, J.; Meraj, G.; Das Pan, N.; Chand, K.; Debbarma, S.; Sahariah, D.; Gualtieri, C.; Kanga, S.; Singh, S.K.; Farooq, M.; et al. Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE 2022, 17, e0271190. [Google Scholar] [CrossRef] [PubMed]
- Ali, P.Y.; Jie, D.; Khan, A.; Sravanthi, N.; Rao, L.A.K.; Hao, C. Channel migration characteristics of the Yamuna River from 1954 to 2015 in the vicinity of Agra, India: A case study using remote sensing and GIS. Int. J. River Basin Manag. 2019, 17, 367–375. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology 2019, 325, 92–102. [Google Scholar] [CrossRef]
- Basnayaka, V.; Samarasinghe, J.T.; Gunathilake, M.B.; Muttil, N.; Hettiarachchi, D.C.; Abeynayaka, A.; Rathnayake, U. Analysis of meandering river morphodynamics using satellite remote sensing data—An application in the lower Deduru Oya (River), Sri Lanka. Land 2022, 11, 1091. [Google Scholar] [CrossRef]
- Gupta, A.; Hock, L.; Huang, X.; Ping, C. Evaluation of part of the Mekong River using satellite imagery. Geomorphology 2002, 44, 221–239. [Google Scholar] [CrossRef]
- Binh, D.V.; Wietlisbach, B.; Kantoush, S.; Loc, H.H.; Park, E.; de Cesare, G.; Cuong, D.H.; Tung, N.X.; Sumi, T. A novel method for river bank detection from landsat satellite data: A case study in the Vietnamese Mekong Delta. Remote Sens. 2020, 12, 3298. [Google Scholar] [CrossRef]
- Said, R. The Geological Evolution of the River Nile; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Stanley, D.J.; Warne, A.G. Nile Delta: Recent geological evolution and human impact. Science 1993, 260, 628–634. [Google Scholar] [CrossRef]
- Lawal, M.A.; Omosanya, K.O.L. Multidecadal changes in planform morphology of the confluence of River Niger and River Benue, West Africa. J. Hydrol. 2023, 623, 129764. [Google Scholar] [CrossRef]
- Dada, O.A.; Qiao, L.; Ding, D.; Li, G.; Ma, Y.; Wang, L. Evolutionary trends of the Niger Delta shoreline during the last 100 years: Responses to rainfall and river discharge. Mar. Geol. 2015, 367, 202–211. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, G.; Wu, W.; Ke, X.; He, Y.; Song, Y.; Zhou, X.; Zhang, M.; Liu, Y.; Fu, X.; et al. Is river-course change associated with the crustal movement? Geocarto Int. 2022, 37, 11846–11866. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, Z.; Shen, Y. Desiccation of the Tarim River, Xinjiang, China, and mitigation strategy. Quat. Int. 2011, 244, 264–271. [Google Scholar] [CrossRef]
- Yu, G.; Disse, M.; Huang, H.Q.; Yu, Y.; Li, Z. River network evolution and fluvial process responses to human activity in a hyper-arid environment—Case of the Tarim River in Northwest China. CATENA 2016, 147, 96–109. [Google Scholar] [CrossRef]
- Yan, Z.L.; Huang, Q.; Tian, H.F.; Jin, X.C. Remote sensing analyses of spatio-temporal changes of the ecological environment in the lower reaches of the Tarim River. N. Z. J. Agric. Res. 2007, 50, 679–687. [Google Scholar]
- Frascati, A.; Lanzoni, S. Morphodynamic regime and long-term evolution of meandering rivers. J. Geophys. Res. Earth Surf. 2009, 114, F02002. [Google Scholar] [CrossRef]
- Camporeale, C.; Perucca, E.; Ridolfi, L. Significance of cutoff in meandering river dynamics. J. Geophys. Res. Earth Surf. 2008, 113, F01001. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Li, L.; Zhang, L. Study on the influence of revetment on the evolution law of river channel morphology in the wandering section of Tarim river. Sci. Rep. 2025, 15, 16355. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhao, H.; Mao, C.; Ma, J.; Cui, G. Quantitative analysis of human-water relationships and harmony-based regulation in the Tarim River Basin. J. Hydrol. Eng. 2015, 20, 05014030. [Google Scholar] [CrossRef]
- Ling, H.; Guo, B.; Zhang, G.; Xu, H.; Deng, X. Evaluation of the ecological protective effect of the “large basin” comprehensive management system in the Tarim River basin, China. Sci. Total Environ. 2019, 650, 1696–1706. [Google Scholar] [CrossRef]
- Tanton, T.; Ikramova, M.; Rycroft, D. Natural and manmade risks to water resource security in the Amu Darya Basin. In Interstate Water Resource Risk Management Towards a Sustainable Future for the Aral Basin (JAYHUN); IWA Publishing: London, UK, 2010; pp. 99–116. [Google Scholar]
- Pak, M. International River Basin Management in the Face of Change: Syr Darya Basin Case Study. J Oregon State University: Corvallis, OR, USA, 2014; p. 3. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/4j03d425d (accessed on 23 May 2025).
- Sorg, A.; Mosello, B.; Shalpykova, G.; Allan, A.; Clarvis, M.H.; Stoffel, M. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environ. Sci. Policy 2014, 43, 68–77. [Google Scholar] [CrossRef]
- Hazel, J.E., Jr.; Kaplinski, M.A.; Hamill, D.; Buscombe, D.; Mueller, E.R.; Ross, R.P.; Kohl, K.A.; Grams, P.E. Multi-Decadal Sandbar Response to Flow Management Downstream from a Large Dam—The Glen Canyon Dam on the Colorado River in Marble and Grand Canyons, Arizona; US Geological Survey: Baltimore, MD, USA, 2022.
- Wang, Y.G.; Hu, C.H.; Zhou, W.H. Characteristics of riverbed evolution in the main stream of the Tarim River. J. Hydraul. Eng. 2003, 12, 27–33. [Google Scholar]
- Hu, C.; Wang, Y.; Guo, Q.; Hu, J. River Channel Evolution and Regulation of the Main Stream of Tarim River; Science Press: Beijing, China, 2005. [Google Scholar]
- Wang, Y.; Hu, C.; Zhou, W.; Li, X.; Zhu, B. River type and its cause of formation of the main stream of Tarim River. J. Sediment Res. 2002, 6, 19–25. [Google Scholar] [CrossRef]
- Gao, X.; Fang, G.; Chen, Y.; Zhang, X. Analysis of runoff variations in an arid catchment based on multi-model ensemble-a case study in the Tarim River Basin in Central Asia. Front. Earth Sci. 2023, 11, 1249107. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Chen, Y.; Liu, J.; He, B. Ecological effect of synthesized governing in Tarim River valley. J. China Environ. Sci. 2007, 27, 24–28. [Google Scholar]
- Chen, Y.; Li, W.; Xu, C.; Hao, X. Effects of climate change on water resources in Tarim River Basin, Northwest China. J. Environ. Sci. 2007, 19, 488–493. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Q.; Qi, W.; Wang, X. Study on the influence of embankment construction on water and sediment transport in the main stream of Tarim River. J. Sediment Res. 2015, 4, 52–58. [Google Scholar]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; Van de Bund, W.J.A.S. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Roberts, D.A.; Lawrence, R.L. Lawrence. Spectrally based remote sensing of river bathymetry. Earth Surf. Process. Landf. 2009, 34, 1039–1059. [Google Scholar] [CrossRef]
- Nicoll, T.J.; Hickin, E.J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 2010, 116, 37–47. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Ta, W.; Jia, X. Planform channel dynamics along the Ningxia-Inner Mongolia reaches of the Yellow River from 1958 to 2008: Analysis using Landsat images and topographic maps. Environ. Earth Sci. 2013, 70, 97–106. [Google Scholar] [CrossRef]
- Gurnell, A.M. Channel change on the River Dee meanders, 1946–1992, from the analysis of air photographs. Regul. Rivers 1997, 13, 13–26. [Google Scholar] [CrossRef]
- Parizi, E.; Khojeh, S.; Hosseini, S.M.; Moghadam, Y.J. Application of Unmanned Aerial Vehicle DEM in flood modeling and comparison with global DEMs: Case study of Atrak River Basin, Iran. J. Environ. Manag. 2022, 317, 115492. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.Y. Analysis for the characteristics of sediment in Tarim river. Appl. Mech. Mater. 2014, 641, 25–28. [Google Scholar] [CrossRef]
- Hana, S. Analysis of visual interpretation of satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 675–681. [Google Scholar]
- Bathurst, J.C.; Hey, R.D.; Thorne, C.R. Secondary flow and shear stress at river bends. J. Hydraul. Div. 1979, 105, 1277–1295. [Google Scholar] [CrossRef]
- He, X.; Yu, M.; Wang, K.; Liu, Y. Propagation of the effect of upstream bend circulations to downstream flow and sediment transport in consecutive river bends. J. Hydrol. 2025, 660, 133358. [Google Scholar] [CrossRef]
- Tang, X.; Knight, D.W. The lateral distribution of depth-averaged velocity in a channel flow bend. J. Hydro-Environ. Res. 2015, 9, 532–541. [Google Scholar] [CrossRef]
- People’s Government of Xinjiang Uygur Autonomous Region. Report on Recent Comprehensive Control Planning of Tarim River Basin; China Water & Power Press: Beijing, China, 2001.
Satellite Identification Number | Satellite Image Row and Column Numbers | Acquisition Time |
---|---|---|
Landsat5-TM | 145/032 | 18/07/1993, 25/12/1993, 19/06/1994, 22/08/1994, 18/03/1995, 05/05/1995, 27/08/1996, 01/12/1996, 30/08/1997, 18/11/1997, 04/10/1998 |
Landsat7-ETM+ | 145/032 | 13/09/1999, 18/12/1999, 27/06/2000, 17/10/2000, 30/06/2001, 02/09/2001, 07/10/2002, 18/11/2002, 22/07/2003, 26/10/2003, 25/08/2004, 13/11/2004, 13/09/2005, 18/12/2005, 30/07/2006, 21/12/2006, 18/08/2007, 08/12/2007, 20/08/2008, 23/10/2008, 07/08/2009, 29/12/2009, 23/06/2010, 16/12/2010, 14/09/2011, 17/11/2011, 31/08/2012, 02/10/2012, 28/07/2017 |
Landsat8-OLI | 145/032 | 10/08/2013, 30/11/2013, 14/09/2014, 17/11/2014, 15/07/2015, 20/11/2015, 02/08/2016, 06/11/2016, 09/09/2018, 30/12/2018, 28/09/2019, 17/12/2019, 14/09/2020, 17/11/2020, 15/07/2021, 20/11/2021, 18/07/2022, 25/12/2022 |
Landsat9-OLI | 145/032 | 13/07/2023, 30/08/2023, 10/04/2024, 29/06/2024 |
Year Location | 1993–1996 | 1996–2000 | 2000–2004 | 2004–2008 | 2008–2012 | 2012–2016 | 2016–2020 | 2020–2024 | Cumulative Migration Distance (m) |
---|---|---|---|---|---|---|---|---|---|
Tarim Farm Area 5 Reach | 497.9 | −1097.2 | 1160.8 | −1298.2 | 480.1 | 560.9 | −191.2 | −914.3 | −801.2 |
Paman Reservoir in Tarim Township Reach | −855.1 | 1014.9 | −899.6 | −220.6 | −59.3 | −174.7 | −35.7 | 20.2 | −1209.9 |
Pama Reach | −189.6 | −258.9 | 667.7 | −1892.6 | −131.3 | −59.8 | −173.1 | −105.8 | −2143.4 |
Kuerqiaoer Reach | 38.3 | 77.9 | −101.2 | −11.1 | −2.9 | 2507.7 | 74.1 | 36.6 | 2619.4 |
Yueliangwan Scenic Area Reach | 218.1 | 129.1 | 968 | 12.4 | 12.6 | 57.6 | −36.4 | −85.9 | 1275.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, L.; Liu, J. Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem. Appl. Sci. 2025, 15, 6977. https://doi.org/10.3390/app15136977
Li Z, Li L, Liu J. Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem. Applied Sciences. 2025; 15(13):6977. https://doi.org/10.3390/app15136977
Chicago/Turabian StyleLi, Ze, Lin Li, and Jing Liu. 2025. "Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem" Applied Sciences 15, no. 13: 6977. https://doi.org/10.3390/app15136977
APA StyleLi, Z., Li, L., & Liu, J. (2025). Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem. Applied Sciences, 15(13), 6977. https://doi.org/10.3390/app15136977