Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = river delta facies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 22085 KiB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 234
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 28055 KiB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 303
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

19 pages, 38097 KiB  
Article
Sediment Provenance and Facies Analysis of the Huagang Formation in the Y-Area of the Central Anticlinal Zone, Xihu Sag, East China Sea
by Xiao Ma, Wei Yan, Yi Yang, Ru Sun, Yue Chao, Guoqing Zhang, Chao Yang, Shudi Zhang, Dapeng Su, Guangxue Zhang and Hong Xu
J. Mar. Sci. Eng. 2025, 13(3), 520; https://doi.org/10.3390/jmse13030520 - 9 Mar 2025
Viewed by 707
Abstract
Recent breakthrough exploration wells in the Huagang Formation in the Y-area of the central anticlinal zone of the Xihu Sag have confirmed the significant exploration potential of structure–lithology complex hydrocarbon reservoirs. However, limited understanding of the provenance system, sedimentary facies, and microfacies has [...] Read more.
Recent breakthrough exploration wells in the Huagang Formation in the Y-area of the central anticlinal zone of the Xihu Sag have confirmed the significant exploration potential of structure–lithology complex hydrocarbon reservoirs. However, limited understanding of the provenance system, sedimentary facies, and microfacies has hindered further progress in complex hydrocarbon exploration. Analysis of high-precision stratigraphic sequences and seismic facies data, mudstone core color, grain-size probability cumulative curves, core facies, well logging facies, lithic type, the heavy-mineral ZTR index, and conglomerate combinations in drilling sands reveals characteristics of the source sink system and provenance direction. The Huagang Formation in the Y-area represents an overall continental fluvial delta sedimentary system that evolved from a braided river delta front deposit into a meandering river channel large-scale river deposit. The results indicate that the primary provenance of the Huagang Formation in the Y-area of the Xihu Sag is the long-axis provenance of the Hupi Reef bulge in the northeast, with supplementary input from the short-axis provenance of the western reef bulge. Geochemical analysis of wells F1, F3, and G in the study area suggests that the prevailing sedimentary environment during the period under investigation was characterized by anoxic conditions in nearshore shallow waters. This confirms previous research indicating strong tectonic reversal in the northeast and a small thickness of the central sand body unrelated to the flank slope provenance system. The aforementioned findings deviate from conventional understanding and will serve as a valuable point of reference for future breakthroughs in exploration. Full article
Show Figures

Figure 1

16 pages, 7497 KiB  
Article
The Tectonic-Sedimentary Evolution of the Yan’an Formation in the Ordos Basin and Its Petroleum Geological Significance
by Taping He, Yaoqi Zhou, Yuanhao Li, Zhenwei Zhang, Yue Zhang and Gaixia Cui
Appl. Sci. 2024, 14(20), 9278; https://doi.org/10.3390/app14209278 - 12 Oct 2024
Cited by 4 | Viewed by 1542
Abstract
Utilizing well logging data, outcrop profiles, and previous research, this study analyzes the sedimentary and tectonic evolution of the Yan’an Formation in the Ordos Basin, correlating the resulting sedimentary facies with hydrocarbon reservoirs to establish the necessary connections. The study reveals that: (1) [...] Read more.
Utilizing well logging data, outcrop profiles, and previous research, this study analyzes the sedimentary and tectonic evolution of the Yan’an Formation in the Ordos Basin, correlating the resulting sedimentary facies with hydrocarbon reservoirs to establish the necessary connections. The study reveals that: (1) Vertically, the sediment grain size shows a pattern of coarser grains at the bottom and top, with finer grains in the middle. Horizontally, the grain size tends to become finer from the northern, western, and southern parts of the basin toward the central-western region. (2) Tectonic movements during the Yan’an period controlled the sedimentary environment. These tectonic activities, through uplift and subsidence, caused the Yan’an Formation to experience four stages of sedimentary environments: braided river, lake, delta, and meandering river. (3) The Yan’an Formation exhibits four types of reservoir sandbody stacking patterns—continuous superposition, intermittent superposition, interbedded sand-mud, and single sandbody types—with continuous and intermittent stacking being the most common. (4) The hydrocarbons in the Yan’an Formation originated from the Chang 7 Member of the Yanchang Formation and migrated into the Yan’an reservoirs. The oil is characterized by its low density, low viscosity, and low pour point, indicating it is a high-maturity, high-quality crude oil. Full article
Show Figures

Figure 1

26 pages, 13313 KiB  
Article
Diagenetic Evolution of Syngenetic Volcanogenic Sediment and Their Influence on Sandstone Reservoir: A Case Study in the Southern Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea
by Jiahao Chen, Hongtao Zhu, Guangrong Peng, Lin Ding, Zhiwei Zeng, Wei Wang, Wenfang Tao and Fengjuan Zhou
J. Mar. Sci. Eng. 2024, 12(8), 1459; https://doi.org/10.3390/jmse12081459 - 22 Aug 2024
Cited by 1 | Viewed by 1320
Abstract
The Paleogene sandstone reservoir of Huizhou Sag is an important target for deep exploration in the Pearl River Mouth Basin, South China Sea. Because of the intense volcanic activity, it had a significant impact on the development of reservoirs, making it hard to [...] Read more.
The Paleogene sandstone reservoir of Huizhou Sag is an important target for deep exploration in the Pearl River Mouth Basin, South China Sea. Because of the intense volcanic activity, it had a significant impact on the development of reservoirs, making it hard to predict. The diagenetic process of volcanogenic sediment and their influence of the reservoir have been studied by petrographic analysis, X-ray diffraction and scanning electron microscopy (SEM). Four types of volcanogenic sediment were identified: volcanic dust (<0.05 mm), volcanic rock fragments, crystal fragments (quartz and feldspar) and vitric fragments. The strong tectonic and volcanic activity of the Wenchang Formation resulted in a high content of volcanic materials, which led to significant reservoir compaction. The main sedimentary facies types are fan delta facies and lacustrine facies; the thick lacustrine mudstone can be used as high-quality source rock. After the source rock of the Wenchang Formation matured and discharged acids, feldspar and rock fragments dissolved to form dissolution pores, which effectively increases the porosity of the reservoir, but the argillaceous matrix and clay minerals produced by the volcanic dust alteration would reduce the permeability of the reservoir. With the weaker tectonic activity of the Enping Formation, the sedimentary facies changed into braided river delta, resulting in the greater componential maturity of the reservoir. Due to the relatively small impact of acidic fluids on the reservoir, the pore types of the reservoir are mainly primary pores with good physical properties. Full article
Show Figures

Figure 1

20 pages, 11479 KiB  
Article
Sedimentary Evolution Laws and Main Controlling Factors of the Nenjiang Formation in the Songnan Da’anbei Area, China
by Lei Yuan, Mingyi Hu and Qingjie Deng
Appl. Sci. 2024, 14(12), 5269; https://doi.org/10.3390/app14125269 - 18 Jun 2024
Cited by 1 | Viewed by 1022
Abstract
Shallow-water deltas serve as a critical area for the exploration and development of terrestrial lacustrine oil and gas reservoirs. Current research on oil and gas exploration and development in China’s terrestrial lacustrine basins primarily focuses on their delta front facies zones. Despite extensive [...] Read more.
Shallow-water deltas serve as a critical area for the exploration and development of terrestrial lacustrine oil and gas reservoirs. Current research on oil and gas exploration and development in China’s terrestrial lacustrine basins primarily focuses on their delta front facies zones. Despite extensive discussions on the sedimentary characteristics of shallow-water deltas by predecessors, there is a lack of comprehensive analysis on the combined effects of dynamic factors such as climate change, lake level fluctuations, and sediment supply. This paper, through a detailed examination of 12 core samples and integrating data from 493 exploratory, appraisal, and development wells in the study area, establishes a stratigraphic correlation framework using well–seismic integration techniques. It identifies two main sedimentary facies types in the southern Da’anbei area of the Songliao Basin: shallow-water deltas and lake facies, which can be further subdivided into four sub-facies and nine microfacies. Two depositional models for the shallow-water deltas of the Southern Songliao Nenjiang Formation are established: a deeper water background with channel-river mouth bar sequences forming the delta front framework and a shallower water background with channel-sheet sand sequences forming the delta front framework. This paper also discusses the controlling effects of paleoclimate, sediment supply, and lake level changes on sedimentary evolution, providing a scientific basis for the exploration of lithologic oil and gas reservoirs in the Nenjiang Formation of the study area and the deployment of horizontal wells. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 10355 KiB  
Article
Lower Limits of Petrophysical Properties Allowing Natural Gas Accumulation in Marine Sandstones: An Example from the Qiongdongnan Basin, Northern South China Sea
by Chao Li, Shuai Guo, Qianshan Zhou, Chaochao Xu and Guojun Chen
J. Mar. Sci. Eng. 2024, 12(5), 735; https://doi.org/10.3390/jmse12050735 - 28 Apr 2024
Viewed by 1312
Abstract
The lower limits of petrophysical properties for an effective reservoir are among the key parameters for assessing hydrocarbon reserves and are therefore directly related to hydrocarbon exploration and development strategies. However, the lower limits for marine sandstone gas reservoirs are still not clear [...] Read more.
The lower limits of petrophysical properties for an effective reservoir are among the key parameters for assessing hydrocarbon reserves and are therefore directly related to hydrocarbon exploration and development strategies. However, the lower limits for marine sandstone gas reservoirs are still not clear and the impact factors also remain to be discussed. This study analysed the lower petrophysical property limits of an effective sandstone reservoir in the Qiongdongnan Basin using porosity, permeability and gas testing. The results showed that the lower porosity and permeability limits of effective reservoirs developed in the deltas are 8.9% and 1.2 × 10−3 μm2, respectively, and 11.3% and 4.0 × 10−3 μm2 in the submarine canyons and fans, respectively. Sedimentary facies, sediment transport distance, grain size and burial depth of sandstone significantly influence the lower physical property limits. The lower porosity and permeability limits increase with the increase in sediment transport distance as well as the decrease in sandstone grain size and burial depth. Sediment sources and sedimentary facies determine whether sandstone can become an effective reservoir in the Qiongdongnan Basin. Specifically, the sediment source dramatically influences the petrophysical properties of sandstone. The sandstone sourced from the Red River has higher porosity and permeability, followed by the sandstone sourced from the Hainan Uplift, and the sandstone sourced from the palaeo-uplift within the basin has the lowest porosity and permeability. The feldspar dissolution by CO2 and organic acid is the primary formation mechanism of the effective reservoir in the Lingshui Formation, whereas the dissolution of glauconite is more common in the sandstone reservoirs of the Sanya and Meishan formations. Full article
Show Figures

Figure 1

21 pages, 23614 KiB  
Article
Effect of Acid Fluid on Deep Eocene Sweet Spot Reservoir of Steep Slope Zone in Lufeng Sag, Pearl River Mouth Basin, South China Sea
by Kai Zhong, Lihao Bian, Shijie Zhao and Kailong Feng
Processes 2024, 12(5), 895; https://doi.org/10.3390/pr12050895 - 28 Apr 2024
Cited by 1 | Viewed by 1457
Abstract
The Paleogene system of the Zhuyi Depression exhibits a pronounced mechanical compaction background. Despite this compaction, remarkable secondary porosity is observed in deep clastic rocks due to dissolution processes, with well-developed hydrocarbon reservoirs persisting in deeper strata. We conducted a comprehensive study utilising [...] Read more.
The Paleogene system of the Zhuyi Depression exhibits a pronounced mechanical compaction background. Despite this compaction, remarkable secondary porosity is observed in deep clastic rocks due to dissolution processes, with well-developed hydrocarbon reservoirs persisting in deeper strata. We conducted a comprehensive study utilising various analytical techniques to gain insights into the dissolution and transformation mechanisms of deep clastic rock reservoirs in the steep slope zone of the Lufeng Sag. The study encompassed the collection and analysis of the rock thin sections, XRD whole-rock mineralogy, and petrophysical properties from seven wells drilled into the Eocene. Our findings reveal that the nature of the parent rock, tuffaceous content, dominant sedimentary facies, and the thickness of individual sand bodies are crucial factors that influence the development of high-quality reservoirs under intense compaction conditions. Moreover, the sustained modification and efficient expulsion of organic–inorganic acidic fluids play a main role in forming secondary dissolution porosity zones within the En-4 Member of the LF X transition zone. Notably, it has been established that the front edge of the fan delta, the front of the thin layer, and the near margin of the thick layer of the braided river delta represent favorable zones for developing deep sweet-spot reservoirs. Furthermore, we have identified the LF X and LF Y areas as favourable exploration zones and established an Eocene petroleum-accumulation model. These insights will significantly aid in predicting high-quality dissolution reservoirs and facilitate deep oil and gas exploration efforts in the steep slope zone of the Zhuyi Depression. Full article
Show Figures

Figure 1

24 pages, 12619 KiB  
Article
New Dinosaur Ichnological, Sedimentological, and Geochemical Data from a Cretaceous High-Latitude Terrestrial Greenhouse Ecosystem, Nanushuk Formation, North Slope, Alaska
by Anthony R. Fiorillo, Paul J. McCarthy, Grant Shimer, Marina B. Suarez, Ryuji Takasaki, Tsogtbaatar Chinzorig, Yoshitsugu Kobayashi, Paul O’Sullivan and Eric Orphys
Geosciences 2024, 14(2), 36; https://doi.org/10.3390/geosciences14020036 - 30 Jan 2024
Cited by 1 | Viewed by 13466
Abstract
The Nanushuk Formation (Albian–Cenomanian) crops out over much of the central and western North Slope of Alaska, varying from ≈1500 to ≈250 m thick from west to northeast. The Nanushuk Formation records an inter-tonguing succession of marine and nonmarine conglomerate, sandstone, mudstone, and [...] Read more.
The Nanushuk Formation (Albian–Cenomanian) crops out over much of the central and western North Slope of Alaska, varying from ≈1500 to ≈250 m thick from west to northeast. The Nanushuk Formation records an inter-tonguing succession of marine and nonmarine conglomerate, sandstone, mudstone, and coal. These rock units comprise the Kukpowruk and Corwin formations of the former Nanushuk Group, respectively. Work presented here is centered in the foothills of the DeLong Mountains along the Kukpowruk River, from an area west of Igloo Mountain in the Coke Basin to the Barabara Syncline, approximately 80 km to the north. A radiometric date recovered from a tuff in our study area suggests a Cenomanian age for at least some of these rocks. Outcrops along the Kukpowruk River contain a well-preserved fossil flora previously recovered from marine, marginal marine, and terrestrial sediments. Our own work focuses on detailed measured sections of terrestrial rocks, interpretation of sedimentary facies and facies associations, and documentation of fossil vertebrates. Eight facies associations are identified in the study area that together are interpreted to represent meandering fluvial and upper delta plain environments. Plant fossils are common and include standing tree trunks up to 58 cm in diameter at some locations. Approximately 75 newly discovered tracksites, and a heretofore unknown, rich fossil vertebrate ichnofauna, are present. The ichnofaunal assemblage includes evidence of small and large theropod dinosaurs (including birds) and bipedal and quadrupedal ornithischian dinosaurs. Approximately 15% of the dinosaur ichnofauna record is represented by fossil bird tracks. Wood fragments from the Nanushuk Formation were analyzed for their carbon isotopic composition to relate δ13C to mean annual precipitation. Samples averaged −26.4‰ VPDB, suggesting an average MAP of 1412 mm/year. This record of increased precipitation in the Nanushuk Fm. during the mid-Cretaceous provides new data that supports global precipitation patterns associated with the Cretaceous Thermal Maximum. This work provides an important framework for much-needed further paleoecological and paleoclimatic analyses into greenhouse conditions in the terrestrial Cretaceous Arctic during this important window in time. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

13 pages, 4739 KiB  
Article
Sedimentary Sequence and Age of Core NTCJ1 in the Sheyang Estuary, Western South Yellow Sea: A Re-Interpretation
by Fei Xia, Yongzhan Zhang, Li Wang and Dezheng Liu
Water 2023, 15(20), 3617; https://doi.org/10.3390/w15203617 - 16 Oct 2023
Cited by 2 | Viewed by 1533
Abstract
The Sheyang estuary is located on the northern Jiangsu muddy coast, in the western South Yellow Sea, and in the transition area between the eroded coast of the abandoned Yellow River delta and the silted coast of the central Jiangsu. This area is [...] Read more.
The Sheyang estuary is located on the northern Jiangsu muddy coast, in the western South Yellow Sea, and in the transition area between the eroded coast of the abandoned Yellow River delta and the silted coast of the central Jiangsu. This area is also one of the key areas of interactions between the paleo-Yellow River and paleo-Changjiang River during the late Quaternary. In order to investigate deeply the late Quaternary sedimentary sequence models of coasts and continental shelves under the interactions of the above two large rivers, the sedimentary sequence and age of the core NTCJ1 drilled at the Sheyang estuary were re-examined and re-interpreted recently, based on the existing data on lithology, grain size, ostracods, foraminifera, clay minerals, geochemical elements, and Electron Spin Resonance (ESR) dating, together with other adjacent key cores and shallow seismic profiles. The three new perspectives were summarized as follows: Firstly, the 22.00 m-long core NTCJ1 recorded the evolution of the sedimentary environments since Marine Isotope Stage 5 (MIS 5), and the first continental facies layer formed in MIS 4-2 is supposed to be missing; therefore, the MIS 1 marine facies layer directly overlays on the MIS 5 marine facies layer. Furthermore, the second continental facies layer formed in MIS 6 and/or the stage of the relatively low sea-level of MIS 5 has not been drilled yet. Secondarily, the middle-upper part of the NTCJ1 core sediments (0.00–17.95 m) are characterized by a finer grain, with a predominantly silty texture and dark yellow tone, and from bottom to top it shows a change from fine to coarse and then to fine in grain size, which could be substantially interpreted as the abandoned Yellow River deltaic deposits mainly formed in 1128–1855 CE, and may contain a small amount of Holocene coastal-shallow marine deposits at the bottom; however, it is difficult to identify them currently. Thirdly, the lower part of the NTCJ1 core sediments (17.95–22.00 m) have not yet been drilled through and are characterized by a coarser grain, with a predominantly fine sandy texture and dark grey tone, which could be interpreted as a delta front deposit in the MIS 5 tidal estuary and were obviously influenced by the paleo-Yellow River. Full article
(This article belongs to the Special Issue Landscape Dynamics and Fluvial Geomorphology)
Show Figures

Figure 1

21 pages, 51815 KiB  
Article
The Earliest Clastic Sediments of the Xiong’er Group: Implications for the Early Mesoproterozoic Sediment Source System of the Southern North China Craton
by Yuan Zhang, Guocheng Zhang and Fengyu Sun
Minerals 2023, 13(7), 971; https://doi.org/10.3390/min13070971 - 22 Jul 2023
Cited by 1 | Viewed by 1570
Abstract
The volcanic activity of the Xiong’er Group and its concomitant sedimentation are related to the stretching–breakup of the Columbia supercontinent. The Dagushi Formation overlies the Paleoproterozoic Shuangfang Formation with an angular unconformity. The Dagushi Formation, as the earliest clastic strata of the Xiong’er [...] Read more.
The volcanic activity of the Xiong’er Group and its concomitant sedimentation are related to the stretching–breakup of the Columbia supercontinent. The Dagushi Formation overlies the Paleoproterozoic Shuangfang Formation with an angular unconformity. The Dagushi Formation, as the earliest clastic strata of the Xiong’er Group and the first stable sedimentary cover overlying the Archean crystalline basement in the southern margin of the North China Craton, provides tectonic evolution information that predates Xiong’er volcanic activity. By distinguishing lithologic characteristics and sedimentary structures, we identified that the sedimentary facies of the Dagushi Formation were braided river delta lake facies from bottom to top. The U–Pb ages of the detrital zircons of the Dagushi Formation can be divided into four groups: ~1905–1925, ~2154–2295, ~2529–2536, and ~2713–2720 Ma, indicating the provenance from the North China Craton basement. Based on the geochemical characteristics of the Dagushi Formation, we suggest that the sediments accumulated rapidly near the source, which were principally felsic in nature, and were supplemented by recycled materials. The provenance area pointed to the underlying metamorphic crystalline basement of the North China Craton as the main source area with an active tectonic background. The Chemical Index of Alteration (CIA) values of the Dagushi Formation sandstone samples ranged from 60.8 to 76.7, indicating that the source rocks suffered from slight to moderate chemic chemical weathering. The Index of Composition Variability (ICV) values ranged from 0.8 to 1.3, which indicates the first cyclic sediments. The vertical facies and provenance changes of the Dagushi Formation reflect a continuous crust fracturing process that occurred in the North China Craton. Full article
Show Figures

Figure 1

20 pages, 7962 KiB  
Article
Early Pleistocene River-Fed Paleocoast in Western Umbria (Central Italy): Facies Analysis and Coastal Models
by Roberto Bizzarri and Angela Baldanza
Geosciences 2023, 13(6), 163; https://doi.org/10.3390/geosciences13060163 - 1 Jun 2023
Cited by 1 | Viewed by 2159
Abstract
Pliocene (?)—early Pleistocene shallow marine deposits, varying from gravel to sand to clay, characterize the southernmost sector of the Valdichiana Basin, between Orte and Città della Pieve, across Tuscany, Umbria and Latium (Central Italy). Facies associations, referring to the evolution of a river-fed [...] Read more.
Pliocene (?)—early Pleistocene shallow marine deposits, varying from gravel to sand to clay, characterize the southernmost sector of the Valdichiana Basin, between Orte and Città della Pieve, across Tuscany, Umbria and Latium (Central Italy). Facies associations, referring to the evolution of a river-fed coast, with a sensible facies heteropy, and a sub-environment articulation, both across and alongshore, have been recently described. Although the main part of the territory responds to a wave-dominated coastal model, a clear fluvial sediment origin and the presence of localized river mouths have also been documented. Nearshore is mainly represented by interbedded sand and gravel beachface to upper shoreface deposits, in which both a mouth bar organization and a lateral distribution of gravel beaches are recognizable. Sediment origins largely depend ondebris flow processes, related to small alluvial fans/fan deltas. In constrained areas, debris flow and current continental deposits occur, referring to coalescent alluvial fans, organized as a smoothly seaward-dipping piedmont band, drained by shallow braided channels. This roughly organized fluvial system feeds a coastal area, with a fandeltabuild-up. The as-described fan delta and beach systems are characterized by a smooth seaward morphology, according to models resembling, on a coast-transverse profile, the shelf-type fan delta. Although the proposed models differ from each other’s, with respect tothe shelf-type one, this is mainly on a lateral facies distribution. Full article
(This article belongs to the Special Issue Quaternary Coastal Paleoenvironments)
Show Figures

Figure 1

19 pages, 18901 KiB  
Article
The Upper Triassic Braided River Thin-Bedded Tight Sandstone in the Yanchang Formation, Ordos Basin: Sedimentary Characteristics, Seismic Forecasting Method, and Implication
by Tongyang Lou, Congjun Feng, Mengsi Sun and Zhiqiang Chen
Processes 2023, 11(5), 1303; https://doi.org/10.3390/pr11051303 - 22 Apr 2023
Cited by 3 | Viewed by 1849
Abstract
In the Ordos Basin, Chang 81, a Member of the Yanchang Formation, features the development of braided river thin-bedded tight sandstones. These sandstones constitute one of the main production layers of tight oil and gas in the Yanchang Formation within the basin. This [...] Read more.
In the Ordos Basin, Chang 81, a Member of the Yanchang Formation, features the development of braided river thin-bedded tight sandstones. These sandstones constitute one of the main production layers of tight oil and gas in the Yanchang Formation within the basin. This study integrates data from core samples, drilling, and seismic information to identify braided river thin-bedded sandstones in the Chang 81 Member at Daijiaping, Ordos Basin, using a method of constrained correlation between seismic waveform and seismic facies. This approach aids in determining the sedimentary microfacies types and reservoir characteristics of thin-bedded tight sandstones. We establish a quantitative fitting formula for the width-to-thickness ratio of braided channel sand bodies to finely characterize sand body stacking patterns and spatial distribution of thin-bedded tight sandstones in braided channels. Braided delta plain deposits in the Chang 81 Member at Daijiaping mainly comprise four types of sedimentary microfacies: braided channels, crevasse channels, floodplains, and swamps. The thickness of the reservoir sand body of Chang 81 member is mainly concentrated between 5–25 m, with low porosity and permeability, making it a typical thin-bedded tight sandstone reservoir. A method of constrained correlation between seismic waveforms and seismic facies was employed to identify sand bodies of braided river thin-bedded sandstones in the Chang 81 Member, summarizing four sand body stacking patterns: longitudinal incision type, longitudinal separation type, lateral shifting type, and single channel type. Furthermore, a quantitative forecasting formula of width-to-thickness ratio was established for the river channel scale, providing accurate guidance for well deployment. Horizontal wells deployed from the sand body’s side towards its center in a river channel yield a production 1.8 times higher than that of horizontal wells deployed in the opposite direction. Thin-bedded tight sandstones in braided channels, characterized by flat-top and convex-bottom lenticular seismic facies, hold practical significance in guiding the deployment of horizontal well patterns for tight oil and enhancing oil and gas recovery. Full article
Show Figures

Figure 1

24 pages, 13551 KiB  
Article
Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan
by Mubashir Mehmood, Abbas Ali Naseem, Maryam Saleem, Junaid ur Rehman, George Kontakiotis, Hammad Tariq Janjuhah, Emad Ullah Khan, Assimina Antonarakou, Ihtisham Khan, Anees ur Rehman and Syed Mamoon Siyar
J. Mar. Sci. Eng. 2023, 11(4), 726; https://doi.org/10.3390/jmse11040726 - 27 Mar 2023
Cited by 16 | Viewed by 5439
Abstract
An integrated study of sediments was conducted to examine the facies architecture and depositional environment of the Cretaceous Pab Formation, Rakhi Gorge, and Suleiman Ranges, Pakistan. This research focused on analyzing architectural elements and facies, which are not commonly studied in sedimentary basins [...] Read more.
An integrated study of sediments was conducted to examine the facies architecture and depositional environment of the Cretaceous Pab Formation, Rakhi Gorge, and Suleiman Ranges, Pakistan. This research focused on analyzing architectural elements and facies, which are not commonly studied in sedimentary basins in Pakistan. To identify lithofacies, outcrop analysis and section measurement were performed. The identified lithofacies were then categorized based on their depositional characteristics and facies associations, with a total of nine types identified within a stratigraphic thickness of approximately 480 m. These facies were mainly indicative of high-energy environments, although the specifics varied by location. Sedimentary structures such as planar and trough crossbedding, lamination, nodularity, load-casts, and fossil traces were found within these facies, indicating high-energy environments with a few exceptions in calm environments. The identified facies were grouped into seven architectural elements according to their depositional environments: delta-dominated elements, including laminated shale sheet elements (LS), fine sandstone elements (SF), planar cross-bedded sandstone elements (SCp), trace sandstone elements (ST), and paleosol elements (Pa); and river-dominated elements, including trough cross-bedded sandstone elements (SCt), channel deposit elements (CH), and paleosol elements (Pa). These architectural elements, along with their vertical and lateral relationships, indicate a transitional fluvio-deltaic environment within the Pab Formation. In conclusion, by interpreting facies and architectural elements, it is possible to gain a better understanding of the depositional history of the formation and the distribution of reservoir units. Full article
(This article belongs to the Special Issue Recent Advances in Sedimentology)
Show Figures

Figure 1

25 pages, 5406 KiB  
Article
Sedimentary Filling Evolution under Paleoclimate Transition—A Case Study from the Middle Jurassic Zhiluo Formation, Ordos Basin
by Liwei Cui, Nan Peng, Yongqing Liu, Dawei Qiao and Yanxue Liu
Minerals 2023, 13(3), 314; https://doi.org/10.3390/min13030314 - 23 Feb 2023
Cited by 7 | Viewed by 2262
Abstract
Under a specific tectonic background, the change in paleoclimate can show different facies associations and depositional architecture. The Jurassic China continent was an important region for transforming the Paleotethys tectonic domain to the circum-Pacific tectonic domain, and its paleoclimate information was entirely preserved [...] Read more.
Under a specific tectonic background, the change in paleoclimate can show different facies associations and depositional architecture. The Jurassic China continent was an important region for transforming the Paleotethys tectonic domain to the circum-Pacific tectonic domain, and its paleoclimate information was entirely preserved in the continental sedimentary successions. The Middle Jurassic Zhiluo Formation, in the Ordos Basin, was at just the critical period of paleostructure and paleoclimate transition, preserving considerable sedimentological evidence; however, little sedimentological research has been conducted under the transition. This study reconstructed the sedimentary filling characteristics of the Zhiluo Formation under paleoclimate transition based on field outcrop survey, thin section observation, geochemical indices, stratigraphic correlation, and depositional environment analysis. The results showed that with the paleoclimate change from warm and humid to hot and arid, the sedimentary facies of the Zhiluo Formation were characterised by the change from the braided river/braided river delta in the J2z1-1 sedimentary period to the meandering river/meandering river delta in the J2z1-2 sedimentary period, and finally the change to the meandering river, meandering river delta, and lacustrine in the J2z2 sedimentary period. The combined action of the southern super monsoon effect, the increasing global CO2 concentrations, the moving southward of the East Asian block, and the terrain elevation difference, changed the basin’s climate from warm and humid to hot and semi-arid/arid. This study provides a crucial basis for reconstructing the interplay between paleoclimate and paleotectonics, and guiding sedimentology and paleoenvironment research on East Asia during the Middle Jurassic period. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Back to TopTop