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Abstract: The Nanushuk Formation (Albian–Cenomanian) crops out over much of the central and
western North Slope of Alaska, varying from ≈1500 to ≈250 m thick from west to northeast. The
Nanushuk Formation records an inter-tonguing succession of marine and nonmarine conglomerate,
sandstone, mudstone, and coal. These rock units comprise the Kukpowruk and Corwin formations
of the former Nanushuk Group, respectively. Work presented here is centered in the foothills of the
DeLong Mountains along the Kukpowruk River, from an area west of Igloo Mountain in the Coke
Basin to the Barabara Syncline, approximately 80 km to the north. A radiometric date recovered
from a tuff in our study area suggests a Cenomanian age for at least some of these rocks. Outcrops
along the Kukpowruk River contain a well-preserved fossil flora previously recovered from marine,
marginal marine, and terrestrial sediments. Our own work focuses on detailed measured sections of
terrestrial rocks, interpretation of sedimentary facies and facies associations, and documentation of
fossil vertebrates. Eight facies associations are identified in the study area that together are interpreted
to represent meandering fluvial and upper delta plain environments. Plant fossils are common and
include standing tree trunks up to 58 cm in diameter at some locations. Approximately 75 newly
discovered tracksites, and a heretofore unknown, rich fossil vertebrate ichnofauna, are present.
The ichnofaunal assemblage includes evidence of small and large theropod dinosaurs (including
birds) and bipedal and quadrupedal ornithischian dinosaurs. Approximately 15% of the dinosaur
ichnofauna record is represented by fossil bird tracks. Wood fragments from the Nanushuk Formation
were analyzed for their carbon isotopic composition to relate δ13C to mean annual precipitation.
Samples averaged −26.4‰ VPDB, suggesting an average MAP of 1412 mm/year. This record of
increased precipitation in the Nanushuk Fm. during the mid-Cretaceous provides new data that
supports global precipitation patterns associated with the Cretaceous Thermal Maximum. This
work provides an important framework for much-needed further paleoecological and paleoclimatic
analyses into greenhouse conditions in the terrestrial Cretaceous Arctic during this important window
in time.

Keywords: dinosaurs; footprints; paleosols; paleoecology; paleoenvironments

1. Introduction

It is a truism that the pace of human-caused changes to global climate is increasingly
overwhelming ecosystems that have, in general, been relatively stable over several thou-
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sands of years. As the world’s human population continues to explode in size at the same
time as rapid climate change, it is forcing a reshaping of conservation paradigms that
now include looking to the past for guidance on crucial aspects of ecosystems and their
health [1]. The prevailing conservation paradigm has been to hold ecosystems to a now
appreciated unrealistic idealized model of stasis. But now it is becoming clear that new
approaches using historical as well as novel landscapes provide insights into key issues
such as drivers of biodiversity, fundamental processes within ecosystems, and the interplay
between biota and climate [2–4]. Sedimentary rocks from the Late Cretaceous Arctic and
sub-Arctic present an opportunity to assess ecosystems that existed during an extreme
planetary greenhouse condition.

The mid to Late Cretaceous of Alaska represents one of these time periods with ter-
restrial Cretaceous deposits ranging from the Albian to the Maastrichtian. While much
work has been advanced for the Late Cretaceous Polar Arctic (Prince Creek Formation),
detailed reconstruction of the mid-Cretaceous Nanushuk Formation still requires a com-
prehensive and quantitative approach. The Albian–Cenomanian of Alaska was arguably
warmer than the Late Cretaceous Polar Arctic [5,6]. More broadly, the mid-Cretaceous
was also a period of global environmental and evolutionary change that included rising
sea levels, diversification of flowering plants, and vertebrate faunal diversification and
turnover [7–10].

The Albian–Cenomanian time was the earliest episode of faunal exchange between
Beringia and Asia, e.g., [11]. This route between the North American and Asian continents
has repeatedly been key to the dispersal of organisms starting during the time represented
by the Nanushuk Formation up to the more recent Pleistocene faunal exchanges. While the
Nanushuk Formation is prominent across all of northern Alaska, this study focuses on ex-
posures of the unit along the Kukpowruk River in far northwestern Alaska (Figure 1). Here,
we build on the detailed earlier paleobotanical survey work by Spicer and Herman [12]
and provide new sedimentological, paleontological, and paleoclimatological data for this
region. While their seminal work [12] provided needed insights into floral communities
ranging from marsh/heath communities to forested river margin communities found along
the Kukpowruk River, their study did not provide information on fossil vertebrates and
paleoclimate, with only limited sedimentological detail. As such, this study takes the first
major steps to improve our understanding of this critical window in deep time.
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Figure 1. (A) Map of Alaska with a star showing location of study area. (B) Map of Kukpowruk 
River showing locations of fossil vertebrate tracksites (designated by combination of numbers and 
letters) in this study, and fossil plant sites (designated by only numbers) from study by Spicer and 
Herman [12]. (C–E) More detailed maps of areas of high concentration of fossil footprint sites. 

2. Geologic Framework 
The Nanushuk Fm. and coeval upper Torok Fm. fill the western part of a large, east–

west trending, peripheral foreland basin across the west-central North Slope of Alaska. 
The basin is bounded to the south by the Brooks Range fold and thrust belt [13]. The fold 
and thrust belt comprises a succession of sedimentary rocks thrust northward that are 
partly contemporaneous with rifting on the northern flank [13,14]. The Colville foreland 
basin formed due to the load imposed by thrust faulted allochthons within the growing 
Cretaceous Brooks Range, followed by sediment deposition eroded from them. Orogen-
wide uplift and erosion between 135–95 Ma resulted in the deposition of clastic sediments 
to the north and northeast, including early Albian to Cenomanian fluvial–deltaic strata of 
the Nanushuk Fm. [15,16]. 

Figure 1. (A) Map of Alaska with a star showing location of study area. (B) Map of Kukpowruk
River showing locations of fossil vertebrate tracksites (designated by combination of numbers and
letters) in this study, and fossil plant sites (designated by only numbers) from study by Spicer and
Herman [12]. (C–E) More detailed maps of areas of high concentration of fossil footprint sites.

2. Geologic Framework

The Nanushuk Fm. and coeval upper Torok Fm. fill the western part of a large,
east–west trending, peripheral foreland basin across the west-central North Slope of Alaska.
The basin is bounded to the south by the Brooks Range fold and thrust belt [13]. The fold
and thrust belt comprises a succession of sedimentary rocks thrust northward that are
partly contemporaneous with rifting on the northern flank [13,14]. The Colville foreland
basin formed due to the load imposed by thrust faulted allochthons within the growing
Cretaceous Brooks Range, followed by sediment deposition eroded from them. Orogen-
wide uplift and erosion between 135–95 Ma resulted in the deposition of clastic sediments
to the north and northeast, including early Albian to Cenomanian fluvial–deltaic strata of
the Nanushuk Fm. [15,16].
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The Nanushuk Fm. and upper Torok Fm. are present in the northern foothills belt
and in the subsurface of the North Slope coastal plain (Figure 2). The Nanushuk Fm. is a
succession of inter-tonguing marine and nonmarine rocks interpreted as marine shelf, delta
plain, strandplain, fluvial, and alluvial overbank deposits [14–23]. Mull et al. [24] revised
the stratigraphy of the Albian–Cenomanian Nanushuk Group, which included the marine
Tuktu, Grandstand, and Ninuluk formations, the predominantly nonmarine Chandler and
Corwin formations, and the marine–nonmarine Kukpowruk Formation. Mull et al. [24]
downgraded the Nanushuk Group to formation status, incorporating all six formations
of the former Nanushuk Group. Thickness estimates for the Nanushuk Fm. range from
2750 m along the Chukchi Sea coast in the west [21] to a zero edge ≈75 km east of Umiat,
and in the vicinity of the modern Colville delta. The Nanushuk Fm. crops out in the
northern Brooks Range foothills belt and coastal plain, comprising a lower dominantly
marine unit of inter-tonguing shallow-marine shale, siltstone, and sandstone (Tuktu and
Grandstand formations of former usage), that grades to the north to east-northeast into
outer-shelf, slope, basinal shale, and minor sandstone of the upper Torok Fm. [15,16]. This
grades up-section into primarily nonmarine mudstone, coal, sandstone, and conglomerate
(Chandler Formation of former usage). These nonmarine rocks intertongue with rocks
representing coastal facies within the Nanushuk Fm. [15,16]. Overall, the Nanushuk Fm.
comprises a thick regressive package, interrupted many times by marine flooding that
resulted from delta lobe shifting and abandonment.
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Figure 2. Stratigraphic nomenclature for Cretaceous and Paleocene rock units of the North Slope
of Alaska.

Throughout the western North Slope of Alaska, an angular unconformity bounds
the Nanushuk Fm., separating nonmarine Cretaceous rocks from overlying Pleistocene
sediments. In the central North Slope and the subsurface of the eastern National Petroleum
Reserve-Alaska (NPRA), Cenomanian intertonguing fluvial sandstone, paludal mudstone
and coal, and shallow-marine sandstone and silty shale overlies dominantly nonmarine
Nanushuk rocks [15,25]. These 350 m thick intertonguing nonmarine and marine rocks
were included in the Niakogon Tongue (Chandler Formation) and Ninuluk Formation
of former usage, and now part of the Nanushuk Formation, and record a change from
regression to regional transgression [25]. At outcrop and in the subsurface where the lower
contact of the Nanushuk with the Seabee Fm. is present, the Seabee typically consists of a
thin, basal transgressive lag of fine- to medium-grained sandstone a few cm to dm thick
that grades into thin-bedded fine- to very fine-grained sandstone a few meters thick that is
overlain by bentonite-rich mudstone. Alternatively, the basal lag may be abruptly overlain
solely by bentonite-rich mudstone.

Alhbrandt et al. [21] recognized two major delta systems in the Nanushuk Fm.; the
Corwin Delta, on the western side of the basin, and the Umiat Delta on the eastern side. Both
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the Corwin and Umiat Deltas are not individual deltas, instead representing thick deltaic
depocenters, or complexes, comprising the deposition of many individual delta lobes.
Fisher et al. [18] suggested that the eastern delta was river dominated. Ahlbrandt et al. [21]
and Huffman et al. [20] indicated that both delta complexes were river dominated, but
they also suggested that the Umiat delta complex was affected by greater wave reworking.
Recent work suggests that river- and wave-reworking of delta complexes varies temporally
as well as spatially in the eastern Nanushuk Fm., with initial wave dominance followed by
subsequent river influence in shallower, more wave-limited conditions created by earlier
parasequence progradation and shelf construction [26].

Previous work indicates high mud and low sand contents in the Corwin delta com-
plex [16,20,27], suggesting that the western delta complex was characterized by river-
dominated delta lobes that prograded east-northeastward obliquely along the Colville
basin axis [20,21,28]. In the Wainwright # 1 core to the northeast of our study area, LePain
and Decker [28] documented lower and upper delta plain facies in the subsurface. Our
outcrop facies analysis documents nonmarine sediments similar to their upper delta plain
or alluvial plain facies. Biostratigraphic data indicates an early Albian to late Albian age
for the Corwin Delta complex along the Chukchi Sea coast, which becomes younger in the
east and north [19,21]. The Corwin delta complex dominated depositional patterns in the
western two-thirds of the foreland basin [15] at a paleolatitude of ≈75◦ N [29].

3. Radiometric Data from Study Area

LA-ICP-MS U-Pb zircon geochronology allows in situ grain spatial resolution [29]
and high single grain resolution throughput (usually >100 grains per sample analysis),
which is required for (a) dating complex zircons, (b) detrital studies, and (c) accurately
dating bentonites with a potential detrital or xenolith component. Determining crystal-
lization/eruption or maximum deposition age “calls” from LA-ICP-MS U-Pb zircon data
are complicated by potential undetermined Pb loss for young zircons (<~400 Ma), matrix
mismatch, and large N analysis resulting in apparently robust populations of younger
grains that are just an artifact of instrumental statistical spread [30–32].

CA-ID-TIMS has higher accuracy and precision and can usually mitigate the effects
of potential Pb loss [33], but this whole grain technique is time intensive, resulting in
fewer grains analyzed per sample (usually ~3 to 7 grains) and no in situ grain spatial
resolution. Hence, there is a tradeoff between LA-ICP-MS and CA-ID-TIMS U-Pb zircon
dating applications. Many labs are now screening zircon grains via large N LA-ICP-MS
U-Pb analysis and then performing CA-ID-TIMS U-Pb zircon analysis on select grains [34].
This dual-technique combination, though powerful, adds significant expense and time.

Furthermore, these dual-technique studies have demonstrated that selecting the LA-
ICP-MS U-Pb zircon youngest statistical population (YSP), which is the weighted mean
of the youngest statistical population (2 or more grains) that produces a mean square
weighted deviation (MSWD) close to 1, approximates CA-ID-TIMS U-Pb zircon results
from the same sample [35,36]. A variation of this approach is the youngest mode weighted
mean (YMWM), which uses the LA-ICP-MS zircon dates that define the youngest age mode
from a kernel density estimate peak that consists of at least three grains that overlap at
2 sigma uncertainty with an MSWD that approximates 1 [32,34]. We use a modified version
of the YSP and YMWM age determinations by utilizing an iterative approach that captures
the largest population of young grains that overlap at 2 sigma uncertainty with an MSWD
that approximates 1. We call this approach the largest youngest statistical population
(L-YSP) and favor it, because it allows the parsing of potential young tails that may have
experienced Pb loss and older detrital and/or xenolith grains [37]. The results are often
like those from Tuffzirc [38], which follows a similar approach, but uses a not-explained
modified 2 sigma uncertainty overlap and can capture older grains that do not approximate
depositional–eruption ages.

We applied a 10% uncertainty filter to remove less precise grains with possible iso-
topic/analytical concerns. We use the macro-spread sheet from Herriot et al. [36] to both



Geosciences 2024, 14, 36 6 of 24

iteratively select grains and to calculate a weighted average age and systematic uncertainty.
Based on the weighted average age of 34 out of 103 zircon grains dated, we determined an
eruption age of 97.20 ± 0.53 with an MSWD of 0.98 for the bentonite sample 15-EO-8-17-2
(Figure 3).
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4. Sedimentology

While the Nanushuk Formation encompasses marine and nonmarine facies, this paper
focuses primarily on nonmarine fluvial sediments of the rock unit that are exposed along
the upper Kukpowruk River (Figure 4). Plant fossils, reflecting successional, riparian, and
interfluve environments (Figure 5A) [12], and upright tree trunks in situ (up to 58 cm
diameter) are relatively common in nonmarine facies along the Kukpowruk River.

4.1. Facies Association 1: Thick Sandstone

Medium- to fine-grained sandstones (5–15 m thick) with tabular bedsets, and ero-
sive basal contacts that may contain a basal lag conglomerate, are overlain by sandstones
containing large-scale trough cross-beds, and ripple laminations and, less commonly, hori-
zontal laminations. In some cases, sandstones are apparently massive, and they typically
fine upwards. Multistory, very fine- to coarse-grained, tabular sandstones up to 10 m
thick (Figure 5B) may also be present. These sandstones may be pebbly, although trough
crossbedding and ripple cross-lamination typically are present. Siderite intraclasts may be
present at the base of sandstones. Lateral accretion surfaces 2–10 m thick may also occur.
Sandbodies are typically lenticular but lateral pinch-outs are not always observed, owing
to the limited extent of the outcrop. Interbeds of laminated siltstone, mudstone, or coaly
shale may be present between sandstone beds.

Two (2 to 5 m thick), very fine- to fine-grained trough cross-bedded and/or ripple
cross-laminated sandstones with flat to irregular basal contacts either fine upwards or
exhibit no apparent grain size trend. This facies association typically incises into, or grades
upward into, interbedded sandstone and mudstone or into mudstones or coal with thin
sandstone interbeds. In situ root traces and plant fossils are common.
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for legend.

4.2. Interpretation

This facies association is interpreted as fluvial channel deposits representative of
large, high sinuosity, mixed-load, meandering channels. Thinner sandstones suggest that
smaller, mixed-load, meandering channels, or small crevasse channels were also present.
Lateral accretion surfaces indicate that channels migrated laterally across floodplains [39].
Multistory sandstones suggest deposition within a meander belt complex. Mud partings
and shale clasts suggest variable flow conditions, and intraformational siderite clasts and
mud rip-up clasts suggest that channels were eroding adjacent floodplains. The presence
of root traces in the upper layers of some channel sandstones, and the presence of in
situ standing tree trunks, indicate that point bars supported vegetation following channel
migration, or that some small channel areas were emergent during low flow conditions [40].
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(not shown). (D) Trough cross-bedded channel sandstone. (E) Standing tree trunk rooted in flood-
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Figure 5. (A) Interbedded sandstone, siltstone, shale, and coal typical of floodplain facies. (B) Multi-
story channel-fill sandstone. (C) Floodplain mudstone and sandstone with standing trees at base (not
shown). (D) Trough cross-bedded channel sandstone. (E) Standing tree trunk rooted in floodplain
mudstone and sandstone (max. 58 cm diameter). (F) Floodplain mudstone with standing tree
(adjacent to hammer length = 33 cm). (G) Interbedded, ripple-laminated sandstone, siltstone, shale,
and coal typical of a poorly drained floodplain. (H) Large carbonaceous root traces in splay sandstone.
(I) Ripple cross-laminated sandstone with abundant organic fragments (coffee grounds) on forests.
(J) Floodplain mudstone coarsening upward into splay and levee sandstone sheets.
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4.3. Facies Association 2: Interbedded Sandstone and Mudstone

Interbedded, very fine- to fine-grained, lithic sandstone and mudstone (Figure 5C)
comprise this facies association. Sharp-based, coarsening-upward intervals of very fine-
to fine-grained, ripple cross-laminated sandstone beds with 1–10 cm thick-mudstone in-
terbeds occur. Sandstones thicken upward and they may display horizontal lamination and
ripple cross-lamination 1–3 cm thick (Figure 5C). Siltstone interbeds may be ripple cross
laminated and typically contain organic fragments, fossils, and coal rip-up clasts. This
facies association ranges in thickness from 1 to 3 m, and may be rooted and contain in situ
tree trunks up to 30 cm wide.

4.4. Interpretation

Sandier upward successions suggest a change from low energy to higher energy
conditions indicating upward shallowing that may result from crevasse delta progradation
into a floodplain lake or pond. Ripple cross-laminated interbedded sandstone, siltstone,
and mudstone suggest periodic inputs of higher energy unidirectional flows into quiet
water. This facies association represents the deposition of a crevasse delta and/or mouth
bar [41,42].

4.5. Facies Association 3: Tabular or Lenticular Sharp-Based Sandstone

Very fine to fine sandstones (0.1–2 m thick) without vertical grain size trends comprise
this facies association. Individual sandstones may be sharp based, tabular, or lenticular
(Figure 5D), and display ripple cross-lamination and trough crossbeds. Plane beds are
rare. Individual sandstones typically contain disseminated organic matter. Sandstones are
typically rooted and may contain in situ tree trunks and coaly plant fragments (Figure 5E,F).
This facies association is typically overlain by siltstones and mudstones.

4.6. Interpretation

Non-channelized flow is suggested by sandstone sheets with sharp bases [43,44]. The
grain sizes and bedforms present suggest that bedload was being transported by turbulent
flow across floodplains. Small channels within the tabular sandstones suggest a crevasse
splay distributary system [45].

4.7. Facies Association 4: Rooted Siltstone and Sandstone

Planar laminated and current ripple cross-laminated fine sandstones (0.1–10 cm thick),
with siltstone and/or carbonaceous mudstone interbeds comprising this facies association
(Figure 5E). Sandstones coarsen upward. Upper surfaces of sandstones are typically rooted,
or they may be rooted throughout, overlain by an organic-rich layer. Basal contacts may be
erosional or gradational.

4.8. Interpretation

The sheet-like form of these beds, along with a variety of current-formed structures,
suggests non-channelized flow [43,44]. The grain size and bedforms suggest bedload and
suspended load were simultaneously deposited. The presence of root traces throughout
this facies association suggests that episodic aggradation allowed vegetation to recolonize
following deposition. Organic-rich interbeds suggest the presence of organic litter that was
buried by subsequent floods. This facies is interpreted to represent levee deposition [42,46].

4.9. Facies Association 5: Platy Mudstone and Siltstone

Dark grey or brown laminated platy mudstone, silty mudstone, or muddy siltstone
(0.1–3 m thick) comprise this facies association. Black, brown, and orange color banding
may occur. The upper few cm of beds may display ripple cross-laminations. Some intervals
have occasional lenses of cm-scale silty sandstone. Mm- to cm-scale siderite nodules are
typically observed.



Geosciences 2024, 14, 36 12 of 24

4.10. Interpretation

Laminated or platy siltstone and mudstone suggest deposition under low-energy
environments. Dark colors result from organic matter content. Ripple cross-laminations
suggest shallow water deposition. The abundance of plant fossils, absence of marine fossils,
and association with floodplain mudstones, crevasse splays, and coals suggest deposition
in small ponds or lakes on floodplains [46].

4.11. Facies Association 6: Dark Brown to Brownish-Grey, Blocky Mudstone

This facies association consists of blocky structured, medium to dark grey or brownish
grey mudstone and muddy siltstone (0.1–10 cm thick). Individual beds contain few, fine
orange, and reddish-brown mottles (Figure 5F), as well as mm- to cm-scale carbonaceous
root traces. Isolated siderite nodules may be present. Waxy-textured clay coatings may be
present on blocky peds. These units typically occur in upward-fining succession or within
interbedded sandstone, siltstone, and mudstone units.

4.12. Interpretation

Blocky textures, root traces, and oxidized siderite indicate pedogenic processes within
the vadose zone, or in a zone of water table fluctuation. Blocky structure develops as a
result of shrinking and swelling of clay particles resulting from alternating wetting and
drying [47]. Waxy clay coatings indicate weak clay illuviation, which requires sufficient
soil wetting to permit physical washing of colloidal clay through the soil in suspension,
followed by sufficient drying out so that the clays are retained on peds [48]. Orange
mottling suggests iron translocation under variable to poorly drained conditions. The
presence of siderite along with grey-brown colors indicate conditions were well-drained
enough to allow decomposition of organics. These features are consistent with pedogenesis
on floodplains where water tables fluctuated frequently. Taken together these features
suggest weakly developed paleosols that developed under alternating redox conditions on
an imperfectly drained floodplain [49,50].

4.13. Facies Association 7: Pale Grey, Sideritic Mudstone

Massive to nodular, pale grey to orange-grey, silty mudstone to very-fine sandstone
with carbonaceous roots (1–10 cm long), plant fragments, and siderite nodules (1–15 cm
diameter) comprise this facies association. Coaly root traces and fine carbonaceous rootlets
typically occur. Well-developed bedding may be disrupted by large siderite nodules that
may contain carbonaceous plant fragments within them.

4.14. Interpretation

The pale grey-to-grey coloring, siderite nodules, and plant detritus in this facies
association suggest a reducing environment and abundant organic matter [47,48]. Organic
matter decomposition is prevented by anaerobic conditions. Weak structure, mottling,
and large root traces are indicative of pedogenic development on a poorly drained or
hydromorphic floodplain.

4.15. Facies Association 8: Coal

This facies association comprises very dark grey to black fissile to friable coal (0.1–3 m
thick) (Figure 5G). Coalified or carbonaceous leaf and twig fragments, root traces (Figure 5H)
bark, and fine-grained organic matter are present. Thinner coals containing more clastic
material result in low-grade coals or coaly shales. Thin coals may be interbedded with
lenticular, ripple cross-laminated, very fine-grained sandstones (Figure 5I) overlying thin
mudstone interbeds (Figure 5J). Thicker coals with less clastic material may contain iron
oxide mottles or nodules, as well as siderite nodules (up to 5 cm in diameter), and tubules
(10–15 cm long).
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4.16. Interpretation

Thick coals suggest a wet or waterlogged environment with little clastic input where
the organic matter accumulation rate is equal to the subsidence rate. Low clastic contents
of thick coals indicate peat swamps were isolated for long periods from deposition on
floodplains [51]. Thinner coals with more clastic material may represent accumulations of
leaf litter on poorly drained, well-vegetated floodplains.

5. Fossil Vertebrates

A limited record of fossil bone material has been recovered from the Nanushuk
Formation, such as a distal ornithopod humerus figured in Fiorillo [52]. In contrast, there
is an emerging dinosaurian ichnological record that is diverse, and abundant and will be
broadly discussed here.

The track surface scan models for the figures were constructed using Agisoft Metashape
Professional Version 1.8.3. The photographs were taken by Nikon D5100 at a resolution of
4928 × 3264. The reconstructed models are presented two-dimensionally in orthographic
views, occasionally in solid grey models to better illustrate the track topology.

Initial survey work along the Kukpowruk River of the North Slope of Alaska in the
summers of 2015–2017 produced approximately 75 isolated discoveries of trace fossils
attributable to dinosaurs from fluvial, alluvial, and deltaic settings. Many tracks were
found in situ in cross-section, as part of bioturbated horizons in outcrop (Figure 6). Unless
features (i.e., distinct toe impressions) were found that helped identify the track makers,
these tracks were recorded simply as tracks. When tracks were found in planar view, and
showed distinct morphology, those tracks were attributed to large and small theropods,
avian theropods, and bipedal and quadrupedal ornithischians. With the possible exception
of the quadrupedal ornithischian tracks described below, no ichnotaxonomic group was
correlated to any particular depositional setting.
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5.1. Non-Avian Theropods Tracks

Tracks attributable to non-avian theropods are uncommon. All the non-avian theropod
tracks discovered so far from this region are tridactyl and lack hallux impression. The
digits of these tracks are long and thin, and they taper to a point (Figure 7). In addition to
the sharply terminated distal ends, in some examples, digit III also has a slight sinusoidal
curve (Figure 7). The lengths of these tracks range from 16–27 cm long, while the widths
range from 13–22 cm. The morphology of these tracks allows attribution of the track-
maker as a medium to a large non-avian theropod. For the maximum track length (27 cm),
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using an equation of 4× the track length as an estimate of hip height, and 3.75× the hip
height as an estimate of body length [53–55], this track was made by a non-avian theropod
approximately 4 m long. Given the incomplete nature of the fossil record, time correlative
comparisons within North America are challenging. Where the skeletal remains are more
complete, this estimated body size is much smaller than the Cenomanian North African
theropod, Carcharodontosaurus [56], but within the size range of somewhat younger Turonian
theropods such as the North American Suskityrannus [57] and the Asian Timurlengia [58].
Likewise, the length of the smallest track (16 cm) suggests a body length of approximately
2.5 m.
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5.2. Avian Theropod Tracks

In this study, tracks attributable to fossil birds represent two of the broad categories
assigned to modern bird tracks [59,60]: anisodactyl and incumbent anisodactyl. The ar-
rangement of digits in anisodactyl tracks has three toes (digits II–IV) that point forward
and one toe (digit I) that points backward. Though very similar in morphology, incumbent
anisodactyl tracks also have digits II–IV that point forward but have a greatly reduced
or non-existent impression left by digit I. This suggests that digit I is greatly reduced or
non-existent. Tracks with full webbing between digits II–IV are palmate tracks, and within
palmate tracks, the impression left by digit I is greatly reduced or non-existent. Thus,
palmate tracks can resemble incumbent anisodactyl tracks. But the former group of tracks
also differs from the latter in that digits II and IV are somewhat curved medially. Rezen-
des [59] and Elbroch and Marks [60] point out that morphological variation within modern
tracks of known trackmakers can result from variability in sediment texture, consistency,
and moisture, thereby yielding tracks that belong to more than one morphological group.
Variance in morphology due to the transmission of significant pressure into sediment
sublayers seems unlikely given the small nature of these avian tracks.

The most abundant avian theropod tracks are small with three slender toe impressions
(Figure 8). The individual pes impressions are typically wider than long, though some are
approximately as wide as long. Lengths within all tracks found range from 3.1 to 6.9 cm,
though the majority are approximately 4 cm long. Similarly, widths within all tracks were
found to range from 4.1 to 7.1 cm, while most tracks have an approximate 5 cm in width.
Hallux (digit I) impressions are absent, though two tracks (Figure 9) have a suggestion of
hallux. Those without a hallux impression can be attributed to the ichnogenus Aquatilavipes.
Digit III for these tracks is the longest and digit IV is approximately the same length as digit
II. The morphology of this fossil track compares well with the Aquatilavipes swiboldae from
the Aptian of British Columbia [61]. The tracks with a suggestion of a hallux are tentatively
assigned the ichnogenus Ignotornis, though the webbing that can be associated with this
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ichnogenus [62] was not observed. Both ichnotaxa have been reported in several rock units
in western North America, as well as Asia [61–65].
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Figure 9. Small tridactyl track with three slender toe impressions and the suggestion of a hallux. This
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5.3. Ornithischian Tracks

The most abundant tracks can be attributed to ornithischian pedal tracks. This attri-
bution is based on the overall morphology of three short, wide, ovoid digit impressions,
and an associated large, rounded heel (Figure 10). Individual tracks are wider than long,
with the width ranging from 15 to 39 cm and the length ranging between 12 and 31 cm.
No evidence of a bi-lobed heel was observed, a defining characteristic of tracks attributed
to hadrosaurs and specifically the ichnogenus Hadrosauropodus [66–68]. Rather, the large,
rounded heel and short, broad digits are characters allowing attribution to the ichnotaxon
Caririchnium [69]. Similar to much of the lower latitude Cretaceous Western Interior Seaway
margin deposits, isolated tracks of large ornithopods are the most encountered dinosaurian
ichnites in Upper Cretaceous high-latitude deposits of North America [67,68,70–72], and
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that pattern holds for the older Nanushuk Formation along the Kukpowruk River. Though
it is worth noting that, compared to the lower latitude Cenomanian records of Caririchnium,
the Nanushuk tracks discussed here tend to be smaller on average (Woodbine Forma-
tion: 38.8–46.6 cm in length [73]; Tongfosi Formation: 33.6–50 cm in length, [74]), it is
unclear if this pattern has taxonomic or environmental implications, or perhaps some other
unrecognized significance.
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The morphology of ceratopsian and thyreophoran feet is very similar and differenti-
ating the two can be challenging. McCrea et al. [75] examined the skeletal and footprint
characters distinguishing ankylosaur tracks from ceratopsian tracks, and those characters
are summarized in Table 1. Their study pointed out a significant difference between the
two groups of dinosaurs in that ankylosaurs had proportionately longer toes when com-
pared to metatarsals, while in ceratopsians the relationship is reversed, with metatarsals
longer than the toes. Thus, thyreophoran tracks have well-developed toe impressions
when compared to ceratopsians. Further, in ankylosaur manus prints, the distribution of
digit impressions is arcuate, resulting in a star-shaped track. Within the track assemblage
found along the Kukpowruk River, there are several examples of tracks attributable to
quadrupedal ornithischian dinosaurs.

Table 1. List of characters that distinguish ceratopsian tracks from ankylosaur tracks. Table combines
skeletal characters and footprint characters. Characters taken from McCrea et al. [75].

Ankylosaur Skeletal Ceratopsian Skeletal

- 4 digits on pes
- 5 digits on manus
- manual digit V reduced
- longer toes compared to metatarsals

- 4 digits on pes
- 5 digits on manus
- manual digits IV and V reduced
- shorter toes compared to metatarsals
- digits have appearance of tapering

distally

Ankylosaur Footprint Ceratopsian Footprint

(Tetrapodosaurus ichnosp.)

- longer toe impressions
- digit I most prominent

(Ceratopsipes ichnosp.)

- symmetrical appearance
- digit I not the most prominent

The first pattern observed in tracks found in exposures along the Kukpowruk River
is that of very short, rounded toes on a nearly symmetrical track, without one digit be-
ing prominent (Figure 11). The tracks of quadrupedal ornithischians discussed here are
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attributed to the ceratopsian ichnogenus Ceratopsipes, though we recognize that somewhat
older ceratopsians, such as Aquilops and Auroraceratops, were bipedal and lightly built,
and possibly left tracks with a different morphology. Further, it should be noted that the
track shown in Figure 10 is rather large for an Auroraceratops-sized animal; thus, this larger
potential ceratopsian might have already switched to a more quadrupedal position.
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Figure 11. Very short, rounded toes on a nearly symmetrical track, without one digit being prominent
attributed to the ichnogenus, Ceratopsipes, considered to be a quadrupedal ornithischian. Scale bar is
in centimeters.

The second pattern observed in tracks attributable to quadrupedal ornithischians are
tracks that are more star shaped, with defined digits (Figure 12). The track in Figure 11 is a
five-toed manual track whose finger impressions are well separated from each other. The
track is approximately 15 cm wide and 10 cm long. The first and fifth phalanx impressions
are angled more than 180 degrees as in the Tetrapodosaurus borealis holotype (NMC 8556)
from the Aptian–Albian Gething Formation [75], which is now widely accepted to belong
to Ankylosauria [76].
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The Tetrapodosaurus track is the northernmost ankylosaur occurrence known today.
Previously, Gangloff [77] reported a partial skull of a nodosaurid ankylosaur Edmontonia
sp. from the upper Campanian–lower Maastrichtian Matanuska Formation exposed along
the Caribou Creek in Talkeetna Mountains, Alaska. Godefroit et al. [78] also reported
an isolated ankylosaur tooth from the Maastrichtian Kakanaut Formation, Russia. The
new fossil record reported herein extends ankylosaur biogeography further north and in
much older dates. While the Nanushuk Formation Tetrapodosaurus is much older than
the Matanuska Formation nodosaurid, nodosaurids are widely known from the northern
hemisphere including North America (e.g., Sauropelta), Europe (e.g., Europelta), and Asia
(e.g., Dongyangopelta) during this time range. Of these two ichnogenera, Ceratopsides and
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Tetrapodosaurus, the latter is approximately twice as frequent as the former in the more
nonmarine facies studied in this report.

6. Paleoclimate

An inverse relationship between mean annual precipitation (MAP) and the carbon iso-
tope value of plant tissue (specifically leaves) of C3 plants is documented by Kohn [79] and
Diefendorf et al. [80]. While leaves were not recovered from these localities, coalified wood
fragments were abundant and analyzed for their stable carbon isotope values. Samples
were homogenized and treated with 0.5 M HCl to remove any carbonate mineral. Samples
were then rinsed, dried, and rehomogenized. Carbon isotope values were determined via
combustion on a Costech 4010 Elemental analyzer coupled to a ThermoFinnigan Delta
+ XP at the University of Texas at San Antonio. Analyses were corrected to VPDB using
internal and international standards (USGS 24, ANU Sucrose (IAEA-C6), and IAEA 600).
Reproducibility is monitored via the repeated analyses of Peach Leaves (NIST 1547) and
Dogfish muscle (DORM) and is reported as +/−0.2‰.

For this study, we utilize the following equations to determine MAP:

∆lea f = 5.54 (±0.22) ∗ log10(MAP) + 4.07 (±0.70) (1)

∆lea f =
δ13Catm − δ13Clea f

1 + δ13Clea f /1000
(2)

The δ13Cleaf value was determined by applying a −1‰ correction to the wood carbon
isotope value [81]. It is not expected that the coalification process would alter the δ13C
values of plants [82]. Barral et al. [83] provide values for the δ13C values of the atmosphere
by stage for the Cretaceous period. We utilize −5.97 for δ13Catm for the calculation of ∆leaf.
Equation 1 [80] was then utilized to determine mean annual precipitation.

The δ13C values for wood fragments range from −27.0‰ to −25.8‰ (Table 2). Using
Equation (1) [80], MAP ranges from 1334 mm/year to 2284 mm/year. These preliminary
estimates are greater than modeled precipitation rates (218 to 642 mm/year [84]; 150 to
963 mm/year [85]), emphasizing the fact that climate model and climate proxy estimates
in polar regions still require reconciliation. The average MAP for our samples yields an
estimate of 1770 mm per year.

Table 2. The δ13C values for wood fragments collected from the Nanushuk Formation along the
Kukpowruk River during this project.

Sample Name δ13C ‰
vs. VPDB

δ13Cleaf‰
vs. VPDB

∆leaf

Mean Annual
Precipitation
(mm/year)

KUKP-1 −26.6 −27.7 22.2 1901

KUKP-3 −27.0 −28.0 22.7 2284

KUKP-4 −25.8 −26.8 21.4 1334

KUKP-5 −26.1 −27.1 21.8 1562

7. Discussion

In contrast to the study of Cretaceous Alaskan dinosaurs of the Campanian–Maastrichtian,
the documentation of fossil vertebrates from older Cretaceous rocks has been limited [28,52,86–88].
In the mid-1980s, dinosaurian fossil skin impressions and footprints were reported from
the Cretaceous of northwestern Alaska in what is now recognized as the Nanushuk For-
mation [87]. Despite not being described in detail, the figures provided by the authors
suggested that these traces can be attributed to ornithopods. Additional three-toed tracks
in the Nanushuk Fm. have been photographed and presented as sedimentologic oddities
elsewhere in the literature [21], while a four-toed track attributed to a neoceratopsian
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has also been reported from this rock unit [11]. Though the record of fossil bones from
the Nanushuk Formation is far from robust, the dinosaur bones found thus far can be
attributed to members of the Ornithopoda [52]. This current work has shown a remark-
able undocumented dinosaur ichnological record, which has been under-appreciated by
previous geologists working in this rock unit and allows for integration with the detailed
paleobotanical study along the same river by Spicer and Herman [12]. Further, the new
isotopic date for at least part of the section discussed here is consistent with other ash dates
published for nonmarine facies within the Nanushuk Formation elsewhere [89], not only
suggesting that our conclusions are constrained within the Cenomanian but that much of
the nonmarine section for this rock unit is of this age.

In their detailed study, Spicer and Herman [12] noted consistent patterns between
depositional environments and plant associations. These plant communities ranged from a
marginal marine and early successional marsh/heath community dominated by horsetails
(Equisetum) and ferns, to shrubby to forested river margin communities, and mire forest
communities. While this resolution in plant communities is intriguing, the same commu-
nity resolution is not readily apparent from the vertebrate ichnological record along the
Kukpowruk River in this study. Our documentation shows no comparably clear pattern.
There is only a slight suggestion with the tracks recorded in this study that the Ceratop-
sipes/Tetrapodus track makers may have been restricted to the more nonmarine part of the
stratigraphic section exposed along this river. This is in contrast with the association of
Tetrapodus tracks with coastal deposits in younger Cretaceous deposits in the ancient high
latitudes [90].

Figure 13 shows the relative abundances of four broad ichnotaxonomic groups of
tracks found along the Kukpowruk River. Of note is the dominance of tracks attributable
to bipedal ornithischian dinosaurs. This is in contrast to the correlative Dunvegan For-
mation of nearby northeast British Columbia where the tracks of Tetrapodus dominate the
vertebrate ichnology record [91]. To explain this abundance of Tetrapodus tracks in the
Dunvegan Formation, it has been suggested that this may be tied to the diversity and
abundance of angiosperms found in the rock unit [92]. The diversity of floral communities
within the Nanushuk Formation along the Kukpowruk River where angiosperms were
only a minor component of the floral landscape [12] suggests such a landscape favored
bipedal ornithischians.

Also of note within the dinosaur ichnofauna is that approximately 15% of the record
(Figure 13) is represented by fossil bird tracks, specifically shorebird-like tracks (e.g.,
Aquatilavipes). This unexpected abundance of bird tracks in the ancient Arctic is intriguing.
Nearly half of extant shorebirds that reside in North America take advantage of the high
seasonal productivity of the warm months to breed in the modern Arctic [93]. The high
frequency of fossil bird tracks along the Kukpowruk River may suggest that the effects of
seasonal ecosystem productivity were a similar driver for ancient vertebrate productivity
and biodiversity within this group of fossil animals.

Finally, tectonic reconstructions suggest that the formation of the land bridge con-
nection between Asia and North America occurred by the Albian [94] and was used by
neoceratopsians at this time [11]. The track diversity shown in this study demonstrates
some level of more advanced ecological complexity by vertebrates regarding niche separa-
tion and resource use just a few million years later.

The MAP data presented here show wetter conditions than conditions recorded in
later Cretaceous environments at comparable latitudes [6]. A warmer wetter Arctic in the
Cenomanian is consistent with other climate models/data and these tracks show that the
wetter conditions would have allowed a suitable environment for all these dinosaurs. This
study provides a framework for further paleoecological and paleoclimatic analyses in the
terrestrial Cretaceous Arctic during this important window of greenhouse conditions.
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8. Conclusions

The Nanushuk Formation was deposited at high latitude in the mid-Cretaceous green-
house Arctic, and records deposition on marginal marine, lower delta plain, and upper
delta plain environments. The upper delta plain, exposed along the Kukpowruk River, is
dominated by a meandering fluvial system, including floodplains, crevasse channels and
splays, levees, and peat swamps. Radiometric data indicate that the rocks representing
these environments are Cenomanian in age. The Nanushuk Formation contains abun-
dant evidence of thriving vegetational communities. There is evidence of a diverse fauna
consisting of both avian (birds) and non-avian theropods, and quadrupedal and bipedal
ornithischians. The environments preserved within the Nanushuk Formation had a MAP
averaging 1770 mm per year. This pattern of increased precipitation in the Nanushuk For-
mation during the Cenomanian is regionally consistent with the global pattern associated
with the Cretaceous Thermal Maximum and provides additional evidence of a thriving
high-latitude ecosystem during the mid-Cretaceous greenhouse in paleo-Arctic Alaska.
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