Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,973)

Search Parameters:
Keywords = risk of harm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

16 pages, 5536 KiB  
Article
The Development of a Wearable-Based System for Detecting Shaken Baby Syndrome Using Machine Learning Models
by Ram Kinker Mishra, Khalid Al Ansari, Rylee Cole, Arin Nazarian, Ilkay Yildiz Potter and Ashkan Vaziri
Sensors 2025, 25(15), 4767; https://doi.org/10.3390/s25154767 (registering DOI) - 2 Aug 2025
Abstract
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, [...] Read more.
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, such as cognitive deficits, visual impairments, and motor dysfunction. Diagnosing SBS remains difficult due to the lack of visible injuries and delayed symptom onset. Existing detection methods—such as neuroimaging, biomechanical modeling, and infant monitoring systems—cannot perform real-time detection and face ethical, technical, and accuracy limitations. This study proposes an inertial measurement unit (IMU)-based detection system enhanced with machine learning to identify aggressive shaking patterns. Findings indicate that wearable-based motion analysis is a promising method for recognizing high-risk shaking, offering a non-invasive, real-time solution that could minimize infant harm and support timely intervention. Full article
Show Figures

Figure 1

40 pages, 1011 KiB  
Review
The Blurred Lines Between New Psychoactive Substances and Potential Chemical Weapons
by Loreto N. Valenzuela-Tapia, Cristóbal A. Quintul, Nataly D. Rubio-Concha, Luis Toledo-Ríos, Catalina Salas-Kusevic, Andrea V. Leisewitz, Pamela Cámpora-Oñate and Javier Campanini-Salinas
Toxics 2025, 13(8), 659; https://doi.org/10.3390/toxics13080659 (registering DOI) - 1 Aug 2025
Abstract
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose [...] Read more.
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose a growing risk of hostile use, particularly related to the rapid proliferation of new psychoactive substances (NPSs). A narrative literature review was conducted covering specialized databases (PubMed, ScienceDirect, SciELO, Google Scholar) and sources from international organizations (OPCW, UNODC, ONU), analyzing historical and recent cases of the use of nerve agents in conflicts and the use of NPSs for hostile purposes. The main families of conventional agents (G, V, A series, and Novichok) and NPSs (lysergamides, PCP, fentanyl derivatives) were identified, highlighting their ease of synthesis, high toxicity profiles, and the regulatory gaps that facilitate their illicit production. In this scenario, it is essential to strengthen regulatory frameworks, surveillance systems, and ethical protocols in chemical research, as well as to promote international cooperation to prevent these substances from becoming chemical threats. Full article
(This article belongs to the Section Drugs Toxicity)
20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

21 pages, 1192 KiB  
Article
Net and Configurational Effects of Determinants on Managers’ Construction and Demolition Waste Sorting Intention in China Using Partial Least Squares Structural Equation Modeling and the Fuzzy-Set Qualitative Comparative Analysis
by Guanfeng Yan, Yuhang Tian and Tianhai Zhang
Sustainability 2025, 17(15), 6984; https://doi.org/10.3390/su17156984 (registering DOI) - 31 Jul 2025
Abstract
Construction and demolition waste (C&D waste) contains various types of substances, which require different processing methods to maximize benefits and minimize harm to realize the goal of the circular economy. Therefore, it is urgent to promote the on-site sorting of C&D waste and [...] Read more.
Construction and demolition waste (C&D waste) contains various types of substances, which require different processing methods to maximize benefits and minimize harm to realize the goal of the circular economy. Therefore, it is urgent to promote the on-site sorting of C&D waste and explore the determinants of managers’ waste sorting intention. Based on a comprehensive literature review of C&D waste management, seven determinants are identified to explore how antecedent factors influence waste sorting intention by symmetric and asymmetric techniques. Firstly, the partial least squares structural equation modeling (PLS-SEM) was adopted to analyze the data collected from 489 managers to assess the net impact of each determinant on their intentions. Then, the fuzzy-set qualitative comparative analysis (fsQCA) provided another perspective by determining the configurations of the causal conditions that lead to higher or lower levels of intention. The PLS-SEM results reveal that all determinants show a significant positive relationship with the intention except for the perceived risks, which are negatively correlated with managers’ attitudes and intentions regarding C&D waste sorting. Moreover, top management support and subjective norms from other project participants and the public exhibit a huge impact, while the influence of perceived behavioral control (PBC) and policies is moderate. Meanwhile, fsQCA provides a complementary analysis of the complex causality that PLS-SEM fails to capture. That is, fsQCA identified six and five configurations resulting in high and low levels of intention to sort the C&D waste, respectively, and highlighted the crucial role of core conditions. The results provide theoretical and practical insights regarding proper C&D waste management and enhancing sustainable development. Full article
Show Figures

Figure 1

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 271
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 1205 KiB  
Review
Proton Pump Inhibitor Use in Older Adult Patients with Multiple Chronic Conditions: Clinical Risks and Best Practices
by Laura Maria Condur, Sergiu Ioachim Chirila, Luana Alexandrescu, Mihaela Adela Iancu, Andrea Elena Neculau, Filip Vasile Berariu, Lavinia Toma and Alina Doina Nicoara
J. Clin. Med. 2025, 14(15), 5318; https://doi.org/10.3390/jcm14155318 - 28 Jul 2025
Viewed by 325
Abstract
Background and objectives: Life expectancies have increased globally, including in Romania, leading to an aging population and thus increasing the burden of chronic diseases. Over 80% of individuals over 65 have more than three chronic conditions, with many exceeding ten and often requiring [...] Read more.
Background and objectives: Life expectancies have increased globally, including in Romania, leading to an aging population and thus increasing the burden of chronic diseases. Over 80% of individuals over 65 have more than three chronic conditions, with many exceeding ten and often requiring multiple medications and supplements. This widespread polypharmacy raises concerns about drug interactions, side effects, and inappropriate prescribing. This review examines the impact of polypharmacy in older adult patients, focusing on the physiological changes affecting drug metabolism and the potential risks associated with excessive medication use. Special attention is given to proton pump inhibitors (PPIs), a commonly prescribed drug class with significant benefits but also risks when misused. The aging process alters drug absorption and metabolism, necessitating careful prescription evaluation. Methods: We conducted literature research on polypharmacy and PPIs usage in the older adult population and the risk associated with this practice, synthesizing 217 articles within this narrative review. Results: The overuse of medications, including PPIs, may lead to adverse effects and increased health risks. Clinical tools such as the Beers criteria, the STOPP/START Criteria, and the FORTA list offer structured guidance for optimizing pharmacological treatments while minimizing harm. Despite PPIs’ well-documented safety and efficacy, inappropriate long-term use has raised concerns in the medical community. Efforts are being made internationally to regulate their consumption and reduce the associated risks. Conclusions: Physicians across all specialties must assess the risk–benefit balance when prescribing medications to older adult patients. A personalized treatment approach, supported by evidence-based prescribing tools, is essential to ensure safe and effective pharmacotherapy. Addressing inappropriate PPI use is a priority to prevent potential health complications. Full article
(This article belongs to the Section Geriatric Medicine)
Show Figures

Figure 1

27 pages, 464 KiB  
Review
Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction
by Manuel Glauco Carbone, Giovanni Pagni, Claudia Tagliarini, Icro Maremmani and Angelo Giovanni Icro Maremmani
Int. J. Environ. Res. Public Health 2025, 22(8), 1171; https://doi.org/10.3390/ijerph22081171 - 24 Jul 2025
Viewed by 512
Abstract
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that [...] Read more.
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that can foster tolerance and habitual use. Age-related pharmacokinetic and pharmacodynamic changes prolong caffeine’s half-life and increase physiological sensitivity in the elderly. While moderate consumption may enhance alertness, attention, and possibly offer neuroprotective effects—especially in Parkinson’s disease and Lewy body dementia—excessive or prolonged use may lead to anxiety, sleep disturbances, and cognitive or motor impairment. Chronic exposure induces neuroadaptive changes, such as adenosine receptor down-regulation, resulting in tolerance and withdrawal symptoms, including headache, irritability, and fatigue. These symptoms, often mistaken for typical aging complaints, may reflect a substance use disorder yet remain under-recognized due to caffeine’s cultural acceptance. The review explores caffeine’s mixed role in neurological disorders, being beneficial in some and potentially harmful in others, such as restless legs syndrome and frontotemporal dementia. Given the variability in individual responses and the underestimated risk of dependence, personalized caffeine intake guidelines are warranted. Future research should focus on the long-term cognitive effects and the clinical significance of caffeine use disorder in older populations. Full article
(This article belongs to the Section Behavioral and Mental Health)
19 pages, 909 KiB  
Viewpoint
The Big Minority View: Do Prescientific Beliefs Underpin Criminal Justice Cruelty, and Is the Public Health Quarantine Model a Remedy?
by Alan C. Logan and Susan L. Prescott
Int. J. Environ. Res. Public Health 2025, 22(8), 1170; https://doi.org/10.3390/ijerph22081170 - 24 Jul 2025
Viewed by 583
Abstract
Famed lawyer Clarence Darrow (1857–1938) argued strongly for an early-life public health approach to crime prevention, one that focused on education, poverty reduction, and equity of resources. Due to his defense of marginalized persons and his positions that were often at odds with [...] Read more.
Famed lawyer Clarence Darrow (1857–1938) argued strongly for an early-life public health approach to crime prevention, one that focused on education, poverty reduction, and equity of resources. Due to his defense of marginalized persons and his positions that were often at odds with his legal colleagues and public opinion, he was known as the Big Minority Man. He argued that the assumption of free will—humans as free moral agents—justifies systems of inequity, retributive punishment, and “unadulterated brutality.” Here, the authors revisit Darrow’s views and expand upon them via contemporary research. We examine increasingly louder argumentation—from scholars across multiple disciplines—contending that prescientific notions of willpower, free will, blameworthiness, and moral responsibility, are contributing to social harms. We draw from biopsychosocial perspectives and recent scientific consensus papers calling for the dismantling of folk psychology ideas of willpower and blameworthiness in obesity. We scrutinize how the status quo of the legal system is justified and argue that outdated notions of ‘moral fiber’ need to be addressed at the root. The authors examine recent arguments for one of Darrow’s ideas—a public health quarantine model of public safety and carceral care that considers the ‘causes of the causes’ and risk assessments through a public health lens. In our view, public health needs to vigorously scrutinize the prescientific “normative” underpinnings of the criminal justice system. Full article
Show Figures

Figure 1

16 pages, 342 KiB  
Article
Home Cultivation of Cannabis in a Context of Prohibition: Results from Two Online Cross-Sectional Surveys of People Using Cannabis Daily in France
by Martin Bastien, Salim Mezaache, Cécile Donadille, Laélia Briand Madrid, Maëla Lebrun, Victor Martin and Perrine Roux
Int. J. Environ. Res. Public Health 2025, 22(8), 1167; https://doi.org/10.3390/ijerph22081167 - 23 Jul 2025
Viewed by 224
Abstract
In recent decades, European countries have seen a substantial increase in home cultivation of cannabis. In France, the prevalence of cannabis use continues to increase despite its possession, sale, and cultivation being strictly illegal. The present study aimed to describe the profile and [...] Read more.
In recent decades, European countries have seen a substantial increase in home cultivation of cannabis. In France, the prevalence of cannabis use continues to increase despite its possession, sale, and cultivation being strictly illegal. The present study aimed to describe the profile and motivations of people in France who cultivate cannabis at home. We separately analyzed data from two convenience samples of people who use cannabis daily in France, based on two online cross-sectional surveys. In the first analysis (N = 3840), we used a multivariable logistic regression model to assess factors associated with home cultivation as the main source of cannabis supply. In the second analysis (N = 574), we described participants’ motivations for home cultivation and their cultivation patterns. In the two samples, 11% and 16% reported home cultivation as their main source of supply, respectively. Age, male gender, stable housing, living with a partner, consuming cannabis in herbal form, smoking joints with little or no tobacco, smoking cannabis from a bong or pipe, non-smoking modes of cannabis administration, and using cannabis exclusively for therapeutic reasons were all positively associated with home cultivation, while urban area of residence and at-risk alcohol use were negatively associated. The main reason reported for home cultivation was to manage quality. Few reported selling some of their crop, and most were self-sufficient. Finally, we interpret this practice as a personal response to cannabis prohibition and the unregulated market. Accordingly, possible harm reduction strategies are discussed. Full article
24 pages, 743 KiB  
Review
Surgical Treatment, Rehabilitative Approaches and Functioning Assessment for Patients Affected by Breast Cancer-Related Lymphedema: A Comprehensive Review
by Paola Ciamarra, Alessandro de Sire, Dicle Aksoyler, Giovanni Paolino, Carmen Cantisani, Francesco Sabbatino, Luigi Schiavo, Renato Cuocolo, Carlo Pietro Campobasso and Luigi Losco
Medicina 2025, 61(8), 1327; https://doi.org/10.3390/medicina61081327 - 23 Jul 2025
Viewed by 384
Abstract
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), [...] Read more.
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Physiotherapy Evidence Database (PEDro) from inception until 30 June 2024. Results: Breast cancer-related lymphedema (BCRL) is indeed an important healthcare burden both due to the significant patient-related outcomes and the overall social impact of this condition. Even though lymphedema is not life-threatening, the literature underlined harmful consequences in terms of pain, infections, distress, and functional impairment with a subsequent and relevant decrease in quality of life. Currently, since there is no cure, the therapeutic approach to BCRL aims to slow disease progression and prevent related complications. A comprehensive overview of postmastectomy lymphedema is offered. First, the pathophysiology and risk factors associated with BCRL were detailed; then, diagnosis modalities were depicted highlighting the importance of early detection. According to non-negligible changes in patients’ everyday lives, novel criteria for patients’ functioning assessment are reported. Regarding the treatment modalities, a wide array of conservative and surgical methods both physiologic and ablative were analyzed with their own outcomes and downsides. Conclusions: Combined strategies and multidisciplinary protocols for BCRL, including specialized management by reconstructive surgeons and physiatrists, along with healthy lifestyle programs and personalized nutritional counseling, should be compulsory to address patients’ demands and optimize the treatment of this harmful and non-curable condition. The Lymphedema-specific ICF Core Sets should be included more often in the overall outcome evaluation with the aim of obtaining a comprehensive appraisal of the treatment strategies that take into account the patient’s subjective score. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

27 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Viewed by 219
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Selenium Reduces Cadmium-Induced Cardiotoxicity by Modulating Oxidative Stress and the ROS/PARP-1/TRPM2 Signalling Pathway in Rats
by Yener Yazğan, Ömer Faruk Keleş, Mehmet Hafit Bayir, Hacı Ahmet Çiçek, Adem Ahlatcı and Kenan Yıldızhan
Toxics 2025, 13(8), 611; https://doi.org/10.3390/toxics13080611 - 22 Jul 2025
Viewed by 315
Abstract
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD [...] Read more.
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD is linked to oxidative damage and inflammation. A trace element with anti-inflammatory, anti-apoptotic, and antioxidant qualities, selenium (SEL) can be taken as a dietary supplement. The biotoxicity of heavy metal CAD is significantly inhibited by SEL, a mineral that is vital to human and animal nutrition. Through ROS-induced PARP-1/ADPR/TRPM2 pathways, this study seeks to assess the preventive benefits of selenium against cardiovascular damage caused by CAD. The SEL showed encouraging results in reducing inflammatory and oxidative reactions. Rats were given 0.5 mg/kg SEL and 3 mg/kg 2-Aminoethyl diphenylborinate (2-APB) intraperitoneally for five days, in addition to 25 mg/kg CAD given via gavage. Histopathological examination findings revealed that the morphologic changes in the hearts of the CAD group rats were characterised by marked necrosis and the degeneration of myocytes and congestion of vessels. Compared to the rats in the CAD group, the hearts of the SEL, 2-APB and SEL+2-APB groups showed fewer morphological alterations. Moreover, in rats given CAD, there was an increase in cardiac malondialdehyde (MDA), total oxidant (TOS), reactive oxygen species (ROS), caspase (Casp-3-9), and TNF-α, whereas glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant (TAS) decreased. SEL improved antioxidants, avoided tissue damage, and reduced cardiac MDA, TOS, and ROS. In rats given CAD, SEL decreased cardiac PARP-1, TRPM2, TNF-α, and caspase. In summary, by reducing oxidative stress and cardiac damage and modifying the ROS/PARP-1/TRPM2 pathway, SEL protected against CAD cardiotoxicity. Full article
Show Figures

Graphical abstract

37 pages, 3892 KiB  
Review
Sustainable Remediation Strategies and Technologies of Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Soils: A Critical Review
by Rosario Napoli, Filippo Fazzino, Federico G. A. Vagliasindi and Pietro P. Falciglia
Sustainability 2025, 17(14), 6635; https://doi.org/10.3390/su17146635 - 21 Jul 2025
Viewed by 607
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high chemical and thermal stability pose a great challenge for remediation. As a result, there is an increasing interest in identifying and optimizing very effective and sustainable technologies for PFAS removal. This review summarizes both traditional and innovative remediation strategies and technologies for PFAS-contaminated soils. Unlike existing literature, which primarily focuses on the effectiveness of PFAS remediation, this review critically discusses several techniques (based on PFAS immobilization, mobilization and extraction, and destruction) with a deep focus on their sustainability and scalability. PFAS destruction technologies demonstrate the highest removal efficiencies; however, thermal treatments face sustainability challenges due to high energy demands and potential formation of harmful by-products, while mechanical treatments have rarely been explored at full scale. PFAS immobilization techniques are less costly than destruction methods, but issues related to the regeneration/disposal of spent sorbents should be still addressed and more long-term studies conducted. PFAS mobilization techniques such as soil washing/flushing are hindered by the generation of PFAS-laden wastewater requiring further treatments, while phytoremediation is limited to small- or medium-scale experiments. Finally, bioremediation would be the cheapest and least impactful alternative, though its efficacy remains uncertain and demonstrated under simplified lab-scale conditions. Future research should prioritize pilot- and full-scale studies under realistic conditions, alongside comprehensive assessments of environmental impacts and economic feasibility. Full article
Show Figures

Figure 1

Back to TopTop