Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,474)

Search Parameters:
Keywords = risk mitigation measure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 586 KB  
Article
Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada
by Hassan Ikrema, Innocent Mugudamani and Saheed Adeyinka Oke
Environments 2025, 12(10), 362; https://doi.org/10.3390/environments12100362 - 7 Oct 2025
Abstract
Urban community gardens are valued for promoting sustainable food production, yet the accumulation of toxic heavy metals in city soils can present both ecological and public health risks. Therefore, this study was aimed at assessing the environmental and health risks of toxic heavy [...] Read more.
Urban community gardens are valued for promoting sustainable food production, yet the accumulation of toxic heavy metals in city soils can present both ecological and public health risks. Therefore, this study was aimed at assessing the environmental and health risks of toxic heavy metals in community gardens soil contaminated by an industrial fire hazard in New Brunswick, Canada. Both top and subsoil soil samples were collected at Carleton community garden. The collected samples were examined for toxic heavy metals using inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry. Ecological risks were evaluated through the ecological risk factor and the potential ecological risk index, while human health risks were determined using a standard human health risk assessment approach. The mean concentration of Pb, Zn, Cu, and Sn exceeded permissible limits when compared to the Canadian soil quality guidelines and upper continental crust values. Findings from the ecological risk assessment showed that all metals were associated with low risk, except for nickel, which posed a high ecological risk across both soil layers. PERI results revealed a low overall ecological threat. The human health risk analysis indicated that children could face non-carcinogenic and carcinogenic risks from As exposure, while adults were not at risk from any of the studied metals. These findings identify arsenic as the primary contaminant of concern, with children representing the most vulnerable population, emphasizing the necessity for targeted mitigation strategies and protective measures to reduce their exposure. The results of this study can inform interventions aimed at safeguarding both environmental and public health, while also raising awareness about the presence and risks of toxic heavy metals, ultimately contributing to the protection of human health and the broader ecosystem. Full article
Show Figures

Figure 1

31 pages, 19755 KB  
Article
Impact of Climate Change and Other Disasters on Coastal Cultural Heritage: An Example from Greece
by Chryssy Potsiou, Sofia Basiouka, Styliani Verykokou, Denis Istrati, Sofia Soile, Marcos Julien Alexopoulos and Charalabos Ioannidis
Land 2025, 14(10), 2007; https://doi.org/10.3390/land14102007 - 7 Oct 2025
Abstract
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. [...] Read more.
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. The role of land administration systems, geospatial documentation of coastal cultural heritage sites, and the adoption of innovative techniques that combine various methodologies is crucial for timely action. The coastal management infrastructure in Greece is presented, outlining the key public authorities and national legislation, as well as the land administration and geospatial ecosystems and the various available geospatial ecosystems. We profile the Hellenic Cadastre and the Hellenic Archaeological Cadastre along with open geospatial resources, and introduce TRIQUETRA Decision Support System (DSS), produced through the EU’s Horizon project, and a Digital Twin methodology for hazard identification, quantification, and mitigation. Particular emphasis is given to the role of Digital Twin technology, which acts as a continuously updated virtual replica of coastal cultural heritage sites, integrating heterogeneous geospatial datasets such as cadastral information, photogrammetric 3D models, climate projections, and hazard simulations, allowing for stakeholders to test future scenarios of sea level rise, flooding, and erosion, offering an advanced tool for resilience planning. The approach is validated at the coastal archaeological site of Aegina Kolona, where a UAV-based SfM-MVS survey produced using high-resolution photogrammetric outputs, including a dense point cloud exceeding 60 million points, a 5 cm resolution Digital Surface Model, high-resolution orthomosaics with a ground sampling distance of 1 cm and 2.5 cm, and a textured 3D model using more than 6000 nadir and oblique images. These products provided a geospatial infrastructure for flood risk assessment under extreme rainfall events, following a multi-scale hydrologic–hydraulic modelling framework. Island-scale simulations using a 5 m Digital Elevation Model (DEM) were coupled with site-scale modelling based on the high-resolution UAV-derived DEM, allowing for the nested evaluation of water flow, inundation extents, and velocity patterns. This approach revealed spatially variable flood impacts on individual structures, highlighted the sensitivity of the results to watershed delineation and model resolution, and identified critical intervention windows for temporary protection measures. We conclude that integrating land administration systems, open geospatial data, and Digital Twin technology provides a practical pathway to proactive and efficient management, increasing resilience for coastal heritage against climate change threats. Full article
(This article belongs to the Special Issue Land Modifications and Impacts on Coastal Areas, Second Edition)
Show Figures

Figure 1

20 pages, 3503 KB  
Article
The Development, Implementation, and Application of a Probabilistic Risk Assessment Framework to Evaluate Supply Chain Shortages
by Priyanka Pandit, Arjun Earthperson and Mihai A. Diaconeasa
Logistics 2025, 9(4), 141; https://doi.org/10.3390/logistics9040141 - 6 Oct 2025
Abstract
Background: Supply chain disruptions from natural hazards, geopolitical tensions, or global events, such as the COVID-19 pandemic, can trigger widespread shortages, with particularly severe consequences in healthcare through drug supply interruptions. Existing methods to assess shortage risks include scoring, simulation, and machine [...] Read more.
Background: Supply chain disruptions from natural hazards, geopolitical tensions, or global events, such as the COVID-19 pandemic, can trigger widespread shortages, with particularly severe consequences in healthcare through drug supply interruptions. Existing methods to assess shortage risks include scoring, simulation, and machine learning, but these approaches face limitations in interpretability, scalability, or computational cost. This study explores the application of probabilistic risk assessment (PRA), a method widely used in high-reliability industries, to evaluate pharmaceutical supply chain risks. Methods: We developed the supply chain probabilistic risk assessment framework and tool, which integrates facility-level failure probabilities and flow data to construct and quantify fault trees and network graphs. Using FDA inspection data from drug manufacturing facilities, the framework generates shortage risk profiles, performs uncertainty analysis, and computes importance measures to rank facilities by risk significance. Results: SUPRA quantified 7567 supply chain models in under eight seconds, producing facility-level importance measures and shortage risk profiles that highlight critical vulnerabilities. The tool demonstrated scalability, interpretability, and efficiency compared with traditional simulation-based methods. Conclusions: PRA offers a systematic, data-driven approach for shortage risk assessment in supply chains. SUPRA enables decision-makers to anticipate vulnerabilities, prioritize mitigation strategies, and strengthen resilience in critical sectors such as healthcare. Full article
Show Figures

Figure 1

15 pages, 1878 KB  
Article
Evaluation of the Effectiveness of Botulinum Therapy Based on the Anthropometric Characteristics of the Face Using Non-Invasive Thermal Imaging Data
by Olesya Kytko, Yuriy Vasil’ev, Ekaterina Emelyanova, Evgeniy Kutin, Ramin Sarmadian, Sofia Trofimova, Irina Kondrina, Alexander Moiseenko, Sergey Dydykin and Ekaterina Rebrova
Diagnostics 2025, 15(19), 2519; https://doi.org/10.3390/diagnostics15192519 - 4 Oct 2025
Abstract
Objective: The objective of this study was to clarify the connection between BTX-A injections and local changes in skin temperature and to assess the correlation between post-BTX-A injection facial vascular hyperthermia and subcutaneous adipose tissue thickness (SAT) in the frontal area using [...] Read more.
Objective: The objective of this study was to clarify the connection between BTX-A injections and local changes in skin temperature and to assess the correlation between post-BTX-A injection facial vascular hyperthermia and subcutaneous adipose tissue thickness (SAT) in the frontal area using thermography. Methods: The study involved 30 patients (mean age 42 ± 0.5 years; 18 women, 12 men). Facial skin temperature was measured via thermography (Thermo GEAR G30) before, immediately after, and 20 min after subcutaneous injection of BTX-A with hemagglutinin complex, gelatin (6 mg), and maltose monohydrate (12 mg). SAT development was graded by combined visual-palpation assessment. Statistical analysis included Student’s t-test and the Mann–Whitney U-test. Results: Biphasic thermal response: immediately post-injection: Significant decrease in min (−1.1 °C) and mean (−0.3 °C) facial temperatures (p < 0.05); 20 min post-injection: pronounced increase in mean (+1.5 °C), max (+1.3 °C), and min (+1.6 °C) temperatures (p < 0.001), attributed to BTX-A-induced vasodilation and local inflammation. Subjects with pronounced SAT exhibited significantly higher baseline temperatures (Me = 33.1 °C vs. 29.8 °C; p < 0.001) and more intense hyperthermic responses (+1.6 °C mean increase vs. +1.1 °C in low-SAT group; p < 0.001). Pronounced SAT was predominantly female (10/15; p < 0.05) and linked to higher BMI (33.3% overweight vs. 0% in low-SAT; *p = 0.036*). Conclusions: SAT thickness is a key determinant of post-BTX-A vascular hyperthermia, with pronounced SAT predicting stronger reactions. Practical Recommendation: Targeted local hypothermia (+4 °C to +8 °C for 5–7 min post-injection, adjustable by SAT thickness) mitigates hyperemia, edema, hematoma risk, and potential toxin diffusion, especially in high-SAT individuals. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 15384 KB  
Article
Subterranean Biodiversity on the Brink: Urgent Framework for Conserving the Densest Cave Region in South America
by Robson de Almeida Zampaulo, Marconi Souza-Silva and Rodrigo Lopes Ferreira
Animals 2025, 15(19), 2899; https://doi.org/10.3390/ani15192899 - 3 Oct 2025
Abstract
Subterranean ecosystems represent some of the most unique and fragile habitats on Earth, yet they remain poorly understood and highly vulnerable to human-induced disturbances. Despite their ecological significance, these systems are rarely integrated into conservation planning, and surface-level protected areas alone are insufficient [...] Read more.
Subterranean ecosystems represent some of the most unique and fragile habitats on Earth, yet they remain poorly understood and highly vulnerable to human-induced disturbances. Despite their ecological significance, these systems are rarely integrated into conservation planning, and surface-level protected areas alone are insufficient to safeguard their biodiversity. In southeastern Brazil, a karst landscape spanning approximately 1200 km2, recognized as the region with the highest cave density in South America (approximately 2600 caves), is under increasing pressure from urban expansion, agriculture, and mining, all of which threaten the ecological integrity of subterranean habitats. This study sought to identify caves of high conservation priority by integrating species richness of non-troglobitic invertebrates, occurrence of troglobitic species, presence of endemic troglobitic taxa, and the degree of anthropogenic impacts, using spatial algebra and polygon-based mapping approaches. Agriculture and exotic forestry plantations (54%) and mining operations (15%) were identified as the most prevalent disturbances. A total of 32 troglobitic species were recorded, occurring in 63% of the 105 surveyed caves. Notably, seven caves alone harbor 25% of the region’s known cave invertebrate diversity and encompass 50% of its cave-restricted species. The findings highlight the global significance of this spot of subterranean biodiversity and reinforce the urgent need for targeted conservation measures. Without immediate action to mitigate unsustainable land use and resource exploitation, the persistence of these highly specialized communities is at imminent risk. Full article
(This article belongs to the Section Ecology and Conservation)
20 pages, 1157 KB  
Article
Examining Strategies to Manage Climate Risks of PPP Infrastructure Projects
by Isaac Akomea-Frimpong and Andrew Victor Kabenlah Blay Jnr
Risks 2025, 13(10), 191; https://doi.org/10.3390/risks13100191 - 3 Oct 2025
Abstract
Tackling climate change in the public–private partnership (PPP) infrastructure sector requires radical transformation of projects to make them resilient against climate risks and free from excessive carbon emissions. Types of PPP infrastructure such as transport, power plants, hospitals, schools and residential buildings experience [...] Read more.
Tackling climate change in the public–private partnership (PPP) infrastructure sector requires radical transformation of projects to make them resilient against climate risks and free from excessive carbon emissions. Types of PPP infrastructure such as transport, power plants, hospitals, schools and residential buildings experience more than 30% of global climate change risks. Therefore, this study aims to examine the interrelationships between the climate risk management strategies in PPP infrastructure projects. The first step in conducting this research was to identify the strategies through a comprehensive literature review. The second step was data collection from 147 PPP stakeholders with a questionnaire. The third step was analysing the interrelationships between the strategies using a partial least square–structural equation model approach. The findings include green procurement, defined climate-resilient contract award criteria, the identification of climate-conscious projects and feasible contract management strategies. The results provide understanding of actionable measures to counter climate risks and they encourage PPP stakeholders to develop and promote climate-friendly strategies to mitigate climate crises in the PPP sector. The results also serve as foundational information for future studies to investigate climate change risk management strategies in PPP research. Full article
(This article belongs to the Special Issue Climate Risk in Financial Markets and Institutions)
Show Figures

Figure 1

26 pages, 4384 KB  
Review
Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review
by Lei Zhao, Fangduo Xiao, Pengfei Liu, Guanghui Bai, Litan Pan, Jiankang Chen and Dongming Yan
Buildings 2025, 15(19), 3558; https://doi.org/10.3390/buildings15193558 - 2 Oct 2025
Abstract
Dams are currently confronted with severe risks from frequent extreme climates and expanding aging deterioration, with traditional mitigation measures struggling to balance efficient prevention/control and long-term management. As an innovative solution, fiber-reinforced polymer (FRP) composites support improved dam safety governance. To address the [...] Read more.
Dams are currently confronted with severe risks from frequent extreme climates and expanding aging deterioration, with traditional mitigation measures struggling to balance efficient prevention/control and long-term management. As an innovative solution, fiber-reinforced polymer (FRP) composites support improved dam safety governance. To address the lack of systematic integration in existing dam-related studies, this paper promotes the development of an FRP in the dam field by comprehensively analyzing and summarizing the material properties, interfacial bonding properties of the FRP, as well as the flexural and compressive characteristics of FRP bar–concrete members and FRP sheet–concrete members while systematically organizing their practical engineering application cases. It also explores the FRP’s potential in hydraulic structures and suggests its wider application therein based on the FRP’s superior properties. Full article
(This article belongs to the Special Issue Applications of Advanced Composites in Civil Engineering)
Show Figures

Figure 1

28 pages, 760 KB  
Article
Expanding the Fine-Kinney Methodology Using Fuzzy Logic: A Case Study in an Energy Linemen Workshop
by Chris Mitrakas, Alexandros Xanthopoulos and Dimitrios Koulouriotis
Safety 2025, 11(4), 94; https://doi.org/10.3390/safety11040094 - 2 Oct 2025
Abstract
This paper investigates the effectiveness and limitations of the traditional Fine-Kinney method for occupational risk assessment, emphasizing its shortcomings in addressing complex and dynamic work environments. To overcome these challenges, two advanced methodologies, Fine-Kinney10 (FK10) and Fuzzy Fine-Kinney10 (FFK10), are introduced. The FK10 [...] Read more.
This paper investigates the effectiveness and limitations of the traditional Fine-Kinney method for occupational risk assessment, emphasizing its shortcomings in addressing complex and dynamic work environments. To overcome these challenges, two advanced methodologies, Fine-Kinney10 (FK10) and Fuzzy Fine-Kinney10 (FFK10), are introduced. The FK10 employs a symmetric scaling system (1–10) for probability, frequency, and severity indicators, providing a more balanced quantification of risks. Meanwhile, FFK10 incorporates fuzzy logic to handle uncertainty and subjectivity in risk assessment, significantly enhancing the sensitivity and accuracy of risk evaluation. These methodologies were applied to a linemen workshop in an energy production and distribution company, analyzing various types of accidents such as falls from heights, exposure to electric currents, slips on surfaces, and more. The applications highlighted the practical benefits of these methods in effectively assessing and mitigating risks. A significant finding includes the identification of risks related to falls from heights of <2.5 m (SH1) and road traffic accidents (SH6), where all three methods yielded different verbal outcomes. Compared to the traditional Fine-Kinney method, FK10 and FFK10 demonstrated superior ability in distinguishing risk levels and guiding targeted safety measures. The study underscores that FK10 and FFK10 represent significant advancements in occupational risk management, offering robust frameworks adaptable across various industries. Full article
Show Figures

Figure 1

22 pages, 6989 KB  
Article
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
by Ciro Caliendo, Isidoro Russo and Gianluca Genovese
Appl. Sci. 2025, 15(19), 10660; https://doi.org/10.3390/app151910660 - 2 Oct 2025
Abstract
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale [...] Read more.
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale transport by rail. However, the flammability of hydrogen poses serious safety concerns, especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train, the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences, especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study, a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel, when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However, shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings, by providing additional insight into the risks associated with LH2 transport in railway tunnels, indicate the need for risk mitigation measures and/or traffic management strategies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 1137 KB  
Review
The Pathophysiology of Wharton’s Jelly and Its Impact on Fetal and Neonatal Outcomes: A Comprehensive Literature Review
by Tudor-Andrei Butureanu
Med. Sci. 2025, 13(4), 215; https://doi.org/10.3390/medsci13040215 - 2 Oct 2025
Abstract
Wharton’s jelly (WJ), the mucoid connective tissue of the umbilical cord, provides essential protection to the umbilical vessels against mechanical stress. While research into WJ-derived stem cells for regenerative medicine has surged, the clinical significance of its in utero pathologies remains less explored. [...] Read more.
Wharton’s jelly (WJ), the mucoid connective tissue of the umbilical cord, provides essential protection to the umbilical vessels against mechanical stress. While research into WJ-derived stem cells for regenerative medicine has surged, the clinical significance of its in utero pathologies remains less explored. This review synthesizes the current literature on the pathophysiology of WJ abnormalities and their direct impact on fetal and neonatal outcomes. Pathologies are broadly categorized as quantitative (absence/reduction or excess/edema) and structural (pseudocysts, mucoid degeneration). A reduction or segmental absence of WJ critically compromises cord integrity, leading to vascular compression and is a direct cause of stillbirth, fetal growth restriction (FGR), and intrapartum distress. Conversely, excessive WJ or edema is associated with maternal diabetes and fetal hydrops and can also impair hemodynamics. Umbilical cord pseudocysts, arising from focal WJ degeneration, are significant markers for severe chromosomal abnormalities, particularly Trisomy 18 and 13, and other structural defects, especially when persistent or multiple. Sonographic measurement of WJ area shows promise as a surrogate for placental function, with decreased area correlating with placental pathology and FGR. However, significant diagnostic challenges persist, particularly the prenatal detection of segmental WJ absence, a “silent” pathology often discovered only after a catastrophic event. This review highlights the critical role of WJ integrity in determining perinatal outcomes and underscores the urgent need for improved diagnostic modalities and standardized management protocols to mitigate associated risks. Full article
(This article belongs to the Section Gynecology)
Show Figures

Figure 1

24 pages, 9060 KB  
Article
Uncertainty Propagation for Vibrometry-Based Acoustic Predictions Using Gaussian Process Regression
by Andreas Wurzinger and Stefan Schoder
Appl. Sci. 2025, 15(19), 10652; https://doi.org/10.3390/app151910652 - 1 Oct 2025
Abstract
Shell-like housing structures for motors and compressors can be found in everyday products. Consumers significantly evaluate acoustic emissions during the first usage of products. Unpleasant sounds may raise concerns and cause complaints to be issued. A prevention strategy is a holistic acoustic design, [...] Read more.
Shell-like housing structures for motors and compressors can be found in everyday products. Consumers significantly evaluate acoustic emissions during the first usage of products. Unpleasant sounds may raise concerns and cause complaints to be issued. A prevention strategy is a holistic acoustic design, which includes predicting the emitted sound power as part of end-of-line testing. The hybrid experimental-simulative sound power prediction based on laser scanning vibrometry (LSV) is ideal in acoustically harsh production environments. However, conducting vibroacoustic testing with laser scanning vibrometry is time-consuming, making it difficult to fit into the production cycle time. This contribution discusses how the time-consuming sampling process can be accelerated to estimate the radiated sound power, utilizing adaptive sampling. The goal is to predict the acoustic signature and its uncertainty from surface velocity data in seconds. Fulfilling this goal will enable integration into a product assembly unit and final acoustic quality control without the need for an acoustic chamber. The Gaussian process regression based on PyTorch 2.6.0 performed 60 times faster than the preliminary reference implementation, resulting in a regression estimation time of approximately one second for each frequency bin. In combination with the Equivalent Radiated Power prediction of the sound power, a statistical measure is available, indicating how the uncertainty of a limited number of surface velocity measurement points leads to predictions of the uncertainty inside the acoustical signal. An adaptive sampling algorithm reduces the prediction uncertainty in real-time during measurement. The method enables on-the-fly error analysis in production, assessing the risk of violating agreed-upon acoustic sound power thresholds, and thus provides valuable feedback to the product design units. Full article
29 pages, 8798 KB  
Article
Mitigating Waterlogging in Old Urban Districts with InfoWorks ICM: Risk Assessment and Cost-Aware Grey-Green Retrofits
by Yan Wang, Jin Lin, Tao Ma, Hongwei Liu, Aimin Liao and Peng Liu
Land 2025, 14(10), 1983; https://doi.org/10.3390/land14101983 - 1 Oct 2025
Abstract
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening [...] Read more.
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening flood risk. This study applies InfoWorks ICM Ultimate (version 21.0.284) to simulate flooding in a typical old urban district for six return periods. A risk assessment was carried out, flood causes were analyzed, and mitigation strategies were evaluated to reduce inundation and cost. Results show that all combined schemes outperform single-measure solutions. Among them, the green roof combined with pipe optimization scheme eliminated high-risk and medium-risk areas, while reducing low-risk areas by over 78.23%. It also lowered the ponding depth at key waterlogging points by 70%, significantly improving the flood risk profile. The permeable pavement combined with pipe optimization scheme achieved similar results, reducing low-risk areas by 77.42% and completely eliminating ponding at key locations, although at a 50.8% higher cost. This study underscores the unique contribution of cost-considered gray-green infrastructure retrofitting in old urban areas characterized by land scarcity and aging pipeline networks. It provides a quantitative basis and optimization strategies for refined modeling and multi-strategy management of urban waterlogging in such regions, offering valuable references for other cities facing similar challenges. The findings hold significant implications for urban flood control planning and hydrological research, serving as an important resource for urban planners engaged in flood risk management and researchers in urban hydrology and stormwater management. Full article
Show Figures

Figure 1

14 pages, 1065 KB  
Article
The Association Between Naples Prognostic Score and Coronary Collateral Circulation in Patients with Chronic Coronary Total Occlusion
by Abdullah Tunçez, Sevil Bütün, Kadri Murat Gürses, Hüseyin Tezcan, Aslıhan Merve Toprak Su, Burak Erdoğan, Mustafa Kırmızıgül, Muhammed Ulvi Yalçın, Yasin Özen, Kenan Demir, Nazif Aygül and Bülent Behlül Altunkeser
Diagnostics 2025, 15(19), 2500; https://doi.org/10.3390/diagnostics15192500 - 1 Oct 2025
Abstract
Background: Coronary collateral circulation (CCC) plays a crucial protective role in patients with chronic total occlusion (CTO), mitigating ischemia and improving long-term outcomes. However, the degree of collateral vessel development varies substantially among individuals. Systemic inflammatory and nutritional status may influence this variability. [...] Read more.
Background: Coronary collateral circulation (CCC) plays a crucial protective role in patients with chronic total occlusion (CTO), mitigating ischemia and improving long-term outcomes. However, the degree of collateral vessel development varies substantially among individuals. Systemic inflammatory and nutritional status may influence this variability. The Naples Prognostic Score (NPS) is a composite index reflecting these parameters, yet its relationship with CCC remains incompletely defined. Methods: We retrospectively analyzed 324 patients with angiographically confirmed CTO at Selçuk University Faculty of Medicine between 2014 and 2025. Coronary collaterals were graded using the Rentrop classification, and patients were categorized as having poor (grades 0–1) or good (grades 2–3) collaterals. The NPS was calculated using serum albumin, cholesterol, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. Baseline clinical and laboratory data were compared between groups. Univariate and multiple binary logistic regression analyses were performed to identify independent predictors of collateral development. Results: Of the 324 patients, 208 (64.2%) had poor and 116 (35.8%) had good collateral circulation. Patients with good collaterals had higher body mass index, HDL Cholesterol (HDL-C), and triglyceride levels, and significantly lower NPS values compared with those with poor collaterals (p < 0.05 for all). In multiple binary logistic regression analysis, HDL-C (OR 1.035; 95% CI 1.008–1.063; p = 0.011) and NPS (OR 0.226; 95% CI 0.130–0.393; p < 0.001) emerged as independent predictors of well-developed collaterals. Conclusions: Both NPS and HDL-C are independently associated with the degree of coronary collateral circulation in CTO patients. These findings highlight the interplay between systemic inflammation, nutritional status, lipid metabolism, and vascular adaptation. As simple and routinely available measures, NPS and HDL-C may serve as practical tools for risk stratification and identifying patients at risk of inadequate collateral formation. Prospective studies with functional assessments of collateral flow are warranted to confirm these associations and explore potential therapeutic interventions. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

19 pages, 2021 KB  
Article
Fate of Tebuconazole and Trifloxystrobin in Edible Rose Petals: Storage Stability and Human Health Risk Assessment
by Xiaotong Qin, Jinwei Zhang, Yan Tao, Li Chen, Pingzhong Yu, Junjie Jing, Ercheng Zhao, Yongquan Zheng and Min He
Molecules 2025, 30(19), 3938; https://doi.org/10.3390/molecules30193938 - 1 Oct 2025
Abstract
This study addresses the absence of maximum residue limits (MRLs) for tebuconazole and trifloxystrobin in edible rose petals in China by systematically evaluating the residue behavior and dietary exposure risks of these fungicides. An analytical method based on QuEChERS sample preparation coupled with [...] Read more.
This study addresses the absence of maximum residue limits (MRLs) for tebuconazole and trifloxystrobin in edible rose petals in China by systematically evaluating the residue behavior and dietary exposure risks of these fungicides. An analytical method based on QuEChERS sample preparation coupled with UPLC–MS/MS was developed for the simultaneous determination of tebuconazole, trifloxystrobin, and its metabolite CGA321113 in fresh and dried rose petals. Field trials under the highest application conditions (184 g a.i./hm2, applied twice) were conducted to investigate residue dissipation dynamics, storage stability, processing concentration effects, and transfer behavior during brewing. Results indicated that the target compounds remained stable in rose petals for 12 months at –20 °C ± 2 °C. The drying process significantly concentrated residues due to the hydrophobic nature of the compounds, with enrichment factors ranging from 3.0 to 3.9. Brewing tests further confirmed low transfer rates of tebuconazole, trifloxystrobin, and CGA321113 into the infusion, consistent with their low water solubility and high log Kow values. Residue dissipation followed first-order kinetics, with half-lives of 1.9–2.9 days for tebuconazole and 1.2–2.7 days for trifloxystrobin. Dietary risk assessment showed an acceptable risk for trifloxystrobin (RQ = 22.7%) but a high risk for tebuconazole (RQ = 175.1%). It is recommended to set the MRL for both tebuconazole and trifloxystrobin in edible roses at 15.0 mg/kg. This standard ensures consumer safety while accommodating agricultural needs and aligns with international regulations. For the high-risk pesticide tebuconazole, measures such as optimizing application strategies and promoting integrated management should be implemented to mitigate residue risks. Full article
Show Figures

Figure 1

21 pages, 3607 KB  
Article
Artificial Water Bodies in Post-Industrial and Urban Landscapes—A Case Study on Assessing Their Potential in Blue–Green Urban Infrastructure
by Mariola Krodkiewska, Bartosz Łozowski, Edyta Sierka, Aleksandra Nadgórska-Socha, Andrzej Woźnica, Barbara Feist and Agnieszka Babczyńska
Water 2025, 17(19), 2862; https://doi.org/10.3390/w17192862 - 30 Sep 2025
Abstract
Anthropogenic ponds have the potential to shape the post-industrial landscape and mitigate the effects of climate change, particularly in urban heat island-threatened areas. However, decisions regarding their inclusion in blue–green infrastructure networks require balancing costs and benefits while considering potential pollution risks. The [...] Read more.
Anthropogenic ponds have the potential to shape the post-industrial landscape and mitigate the effects of climate change, particularly in urban heat island-threatened areas. However, decisions regarding their inclusion in blue–green infrastructure networks require balancing costs and benefits while considering potential pollution risks. The objectives of this study are: (i) to develop an efficient decision-making framework based on standard aquatic science tools; (ii) to apply this framework to a specific artificial pond in the Upper Silesian Industrial Region, Poland, in order to optimize actions based on resources, advantages, limitations, and informativeness of the data. Eighteen methods, grouped into five categories, including historical document analyses, hydroacoustic and modeling methods, multiparametric water quality measurements, and ecotoxicological tests, were used. Optimization-focused analysis indicated that investigating historical documents should precede further testing, as it enables decision-makers to select the most effective methods to assess the pond’s value for blue–green infrastructure. In this case, the tests based on metal pollution, bathymetry, and biodiversity appeared sufficient. The presented approach offers a straightforward screening method for assessing reservoirs in post-industrial areas. Full article
Show Figures

Figure 1

Back to TopTop