Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada
Abstract
1. Introduction
2. Material and Method
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Potential Environmental and Public Health Risk Assessment of Soil Heavy Metals
2.3.1. Ecological Risk Factor
2.3.2. Potential Ecological Risk Index
2.3.3. Public Health Risk Assessment
3. Results and Discussion
3.1. Concentration of Toxic Heavy Metals in Carleton Community Garden Soil
| Parameter | Concentration (mg/kg) | |||||
|---|---|---|---|---|---|---|
| Topsoil (0–15 cm) | Subsoil (15–30 cm) | Background Values | ||||
| Min–Max | Mean ± SD | Min–Max | Mean ± SD | UCCV | CCME | |
| Al | 11,200–13,000 | 11,920 ± 87,579 | 11,700–14,100 | 12,800 ± 956.6 | - | - | 
| Sb | 0.6–0.8 | 0.7 ± 0.1 | 0.6–0.9 | 0.7 ± 0.2 | 2.5 | - | 
| As | 4.0–10.0 | 6.6 ± 2.30 | 4.0–10.0 | 7.2 ± 2.2 | 12.4 | 12 | 
| Ba | 35.2–63.8 | 49.5 ± 13.3 | 41.6–65.7 | 49.8 ± 10.2 | 570 | 750 | 
| Be | 0.5–0.6 | 0.6 ± 0.1 | 0.5–0.7 | 0.6 ± 0.1 | 1.84 | 4 | 
| B | 2.6–4.4 | 3.4 ± 0.7 | 2.2–3.5 | 2.8 ± 0.5 | 72 | - | 
| Cr | 15.4–19.8 | 17.3 ± 1.6 | 15.5–22.1 | 19.2 ± 2.8 | 68 | 64 | 
| Co | 6.4–8.2 | 7.4 ± 0.8 | 6.7–10.3 | 8.3 ± 1.4 | 10.5 | 40 | 
| Cu | 24.5–81.9 | 54.3 ± 25.4 | 31.9–108 | 63.5 ± 28.1 | 28.7 | 63 | 
| Fe | 20,600–27,100 | 24,820 ± 2695.7 | 21,000–28,800 | 26,680 ± 3204.2 | - | |
| Pb | 15.2–171 | 70.1 ± 64.9 | 16.5–187 | 71.9 ± 70.0 | 31 | 31 | 
| Li | 14.7–16.3 | 15.5 ± 0.8 | 15.2–17.3 | 16.6 ± 0.9 | - | - | 
| Mn | 348–566 | 458.2 ± 84.9 | 325–693 | 477.8 ± 136.4 | - | - | 
| Mo | 0.5–1.2 | 1.0 ± 0.34 | 0.9–1.1 | 1.0 ± 0.1 | 27 | 45 | 
| Ni | 12–17.6 | 14.8 ± 2.2 | 13.1–21.2 | 17.1 ± 3.16 | - | 1 | 
| Na | 96–155 | 119.0 ± 24.7 | 103–139 | 121.0 ± 16.85 | - | - | 
| Sr | 12.5–16.5 | 13.6 ± 1.7 | 13–15.4 | 14.8 ± 0.9 | 174 | - | 
| Tl | 0.1–0.1 | 0.1 ± 1.7 | 0.1–0.1 | 0.1 ± 0.0 | 0.7 | 1 | 
| Sn | 1.6–6.4 | 4.2 ± 2.3 | 3–5.8 | 4.0 ± 1.1 | 3.7 | - | 
| Ti | 163–441 | 251.6 ± 111.8 | 134–519 | 295.2 ± 161.0 | - | - | 
| U | 0.5–0.8 | 0.7 ± 0.2 | 0.6–0.9 | 0.8 ± 0.1 | 3 | 23 | 
| V | 30.5–36.6 | 34.7 ± 2.50 | 35.8–39.4 | 38.0 ± 1.5 | 131 | 130 | 
| Zn | 80–205 | 116.6 ± 53.97 | 60–130 | 89.2 ± 30.8 | 103 | 250 | 
3.2. Ecological Risks Assessment of Toxic Heavy Metals in Carleton Community Garden Soil
3.3. Non-Carcinogenic and Carcinogenic Risks of Toxic Heavy Metals in Carleton Community Garden Soil
3.4. Implications for the Protection of Environmental and Public Health
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, Q.; Zhuang, W.; Yuan, Y.; Yuan, Y.; Jiao, K.; Wang, M.; Chen, Q. Calculation of Thallium’s toxicity coefficient in the evaluation of potential ecological risk index: A case study. Chemosphere 2018, 194, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of soil nitrogen using near infrared sensors based on soil pretreatment and algorithms. Sensors 2017, 17, 1102. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, S.; Shreejana, K.C.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; He, X.; Li, W.; Zhang, M.; Cai, Q. Evaluation of heavy metal contamination of soil and the health risks in four potato-producing areas. Front. Environ. Sci. 2023, 11, 1071353. [Google Scholar] [CrossRef]
- Relic, D.; Sakan, S.; Anđelkovic, I.; Popovic, A.; Đorđevic, D. Pollution and Health Risk Assessments of Potentially Toxic Elements in Soil and Sediment Samples in a Petrochemical Industry and Surrounding Area. Molecules 2019, 24, 2139. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Subramanian, K.S.; Jessiman, B.J. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci. Total Environ. 2001, 267, 125–140. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Dong, Y.J.; Wang, L.; Cai, D.; Zhang, C.S.; Zhao, S.C. Risk assessment on dietary exposure to aflatoxin B1, heavy metals and phthalates in peanuts, a case study of Shandong province, China. J. Food Compos. Anal. 2023, 120, 105359. [Google Scholar] [CrossRef]
- Kizer, K.W. Extreme wildfires—A growing population health and planetary problem. JAMA 2020, 324, 1605–1606. [Google Scholar] [CrossRef]
- Singh, S.; Suresh, B.K.V. Forest fire susceptibility mapping for Uttarakhand state by using geospatial techniques. In Recent Technologies for Disaster Management and Risk Reduction; Springer International Publishing: Cham, Switzerland, 2021; pp. 173–188. [Google Scholar]
- Ozgeldinova, Z.; Mukayev, Z.; Zhanguzhina, A.; Ulykpanova, M.; Aidarkhanova, G. Impact of forest fire on the heavy metal content in the soil cover of the Amankaragay pine forest, Kostanay Region. J. Ecol. Eng. 2025, 26, 350–364. [Google Scholar] [CrossRef]
- Mouri, H. Medical Geology and its relevance in Africa. S. Afr. J. Sci. 2020, 116, 7699. [Google Scholar] [CrossRef]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P. Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa. Toxics 2022, 10, 253. [Google Scholar] [CrossRef]
- Hunter, C.M.; Williamson, D.H.Z.; Gribble, M.O.; Bradshaw, H.; Pearson, M.; Saikawa, E.; Ryan, P.B.; Kegler, M. Perspectives on Heavy Metal Soil Testing Among Community Gardeners in the United States: A Mixed Methods Approach. Int. J. Environ. Res. Public Health 2019, 16, 2350. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Shakya, K.M. Trace Metal Contamination in Community Garden Soils across the United States. Sustainability 2024, 16, 1831. [Google Scholar] [CrossRef]
- Nie, X.; Huang, X.; Li, M.; Lu, Z.; Ling, X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. Toxics 2024, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Gruszka, D.; Gruss, I.; Szopka, K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. Toxics 2024, 12, 873. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Gao, S.; Shan, C.J. Effects of sodium selenite on the antioxidant capacity and the fruit yield and quality of strawberry under cadmium stress. Sci. Hortic. 2020, 260, 108876. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden hazards in urban soils: A meta-analysis review of global heavy metal contamination (2010-2022), sources and its Ecological and health consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Mugudamani, I.; Oke, S.A.; Gumede, T.P.; Senbore, S. Herbicides in Water Sources: Communicating Potential Risks to the Population of Mangaung Metropolitan Municipality, South Africa. Toxics 2023, 11, 538. [Google Scholar] [CrossRef]
- Karthikayini, S.; Chandrasekaran, A.; Manjunatha Bennal, A.S. Ecological and human health risk assessment of heavy metal contamination in soils of major industrial estates of Tamil Nadu, India. Int. J. Environ. Anal. Chem. 2024, 1–20. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C.; Sawyer, W.E.; Amabie, T. Environmental Risk Assessment of Trace Metal Pollution: A Statistical Perspective. Environ. Geochem. Health 2025, 47, 94. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhang, K.; Wang, M.; Wan, X.; Chen, W. Estimation of the accumulation rates and health risks of heavy metals in residential soils of three metropolitan cities in China. J. Environ. Sci. 2022, 115, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Pascaud, G.; Leveque, T.; Soubrand, M.; Boussen, S.; Joussein, E.; Dumat, C. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: Solid speciation and bioaccessibility. Environ. Sci. Pollut. Res. Int. 2014, 21, 4254–4264. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Praveena, S.M.; Abidin, E.Z.; Cheema, M.S. A review of heavy metals in indoor dust and its human health-risk implications. Rev. Environ. Health. 2016, 31, 447–456. [Google Scholar] [CrossRef]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Marot, F.; Douay, F. Urban Kitchen Gardens: Effect of the Soil Contamination and Parameters on the Trace Element Accumulation in Vegetables–A Review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef]
- Bosiacki, M.; Bednorz, L.; Spiżewski, T. Concentration of Heavy Metals in Urban Allotment Soils and their Uptake by Selected Vegetable Crop Species-A Case Study from Gorzów Wielkopolski, Poland. J. Elem. 2022, 27, 405–421. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Metal and metalloid accumulation in cultivated urban soils: A medium-term study of trends in Toronto, Canada. Sci. Total Environ. 2015, 538, 564–572. [Google Scholar] [CrossRef]
- Cooper, A.M.; Felix, D.; Alcantara, F.; Zaslavsky, I.; Work, A.; Watson, P.L.; Pezzoli, K.; Yu, Q.; Zhu, D.; Scavo, A.J.; et al. Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. Plant Direct 2020, 4, e00198. [Google Scholar] [CrossRef]
- Goswami, O.; Rouff, A.A. Soil Lead Concentration and Speciation in Community Farms of Newark. New Jersey, USA. Soil Syst. 2020, 5, 2. [Google Scholar] [CrossRef]
- Spliethoff, H.M.; Mitchell, R.G.; Shayler, H.; Marquez-Bravo, L.G.; Russell-Anelli, J.; Ferenz, G.; McBride, M. Estimated lead (Pb) exposures for a population of urban community gardeners. Environ. Geochem. Health 2016, 38, 955–971. [Google Scholar] [PubMed]
- Monfared, H.S. Community Garden Heavy Metal Contamination Study. Environ. Can. Ecol. Action Cent. 2011, 4–20. [Google Scholar]
- Montaño-López, F.; Biswas, A. Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Sci. Rep. 2021, 11, 11286. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, J.; Wang, Y.; Du, X.; Li, G.; Li, B. Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method. Sustainability 2021, 13, 6526. [Google Scholar] [CrossRef]
- Ferri, R.; Hashim, D.; Smith, D.R.; Guazzetti, S.; Donna, F.; Ferretti, E.; Curatolo, M.; Moneta, C.; Beone, G.M.; Lucchini, R.G. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure. Sci. Total Environ. 2015, 518–519, 507–517. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Carleton Community Centre. About Us. 2025. Available online: https://www.carletoncommunitycentre.ca/about-us-1 (accessed on 26 August 2025).
- Tanoli, S.; Pickerill, R.K. Cambrian shelf deposits of the King Square Formation, Saint John Group, southern New Brunswick. Atlantic Geology. Atl. Geol. 1989, 25, 129–139. [Google Scholar] [CrossRef]
- Saleem, M.; Pierce, D.; Wang, Y.; Sens, D.A.; Somji, S.; Garrett, S.H. Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. J. Xenobiot. 2024, 14, 634–650. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Zahidi, K.; Dakak, H.; Manhou, K.; Zouahri, A. Ecological and Human Health Hazards Evaluation of Toxic Metal Contamination in Agricultural Lands Using Multi-Index and Geostatistical Techniques across the Mnasra Area of Morocco’s Gharb Plain Region. J. Hazard. Mater. Adv. 2025, 18, 100724. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; da Silva, J.B.J.; dos Santos, I.F.; de Oliveira, O.M.C.; Cerda, V.; Antonio, F.S.; Queiroz, A.F.C. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments—Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Tytła, M.; Widziewicz-Rzońca, K. Ecological and human health risk assessment of heavy metals in sewage sludge produced in Silesian Voivodeship, Poland: A case study. Environ. Monit. Assess. 2023, 195, 1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, H.; Li, X.; Zhang, Z.; Chen, Z.; Ren, D.; Zhang, S. Ecological and health risk assessments of heavy metals and their accumulation in a peanut-soil system. Environ. Res. 2024, 252, 118946. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, C.; Sönmez, V.Z.; Sivri, N. Potential Ecological Risk Assessment of Critical Raw Materials: Gallium, Gadolinium, and Germanium. Arch. Environ. Contam. Toxicol. 2023, 84, 368–376. [Google Scholar] [CrossRef]
- Shahla, K.; Sakine, S.; Gholamreza, M. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. R. Soc. Chem. 2021, 11, 8080–8095. [Google Scholar]
- Liu, X.; Liu, F.; Huang, W.; Peng, J.; Shen, T.; He, Y. Quantitative Determination of Cd in Soil Using Laser-Induced Breakdown Spectroscopy in Air and Ar Conditions. Molecules 2018, 23, 2492. [Google Scholar] [CrossRef]
- Xu, D.; Gao, B.; Peng, W.; Liu, L.; Wu, W.; Liu, X. Boron toxicity coefficient calculation and application for ecological risk assessment in reservoir sediments. Sci. Total Environ. 2020, 739, 139703. [Google Scholar] [CrossRef]
- Gu, Y.G. Calculation of beryllium toxic factor for potential ecological risk evaluation: A case study. Environ. Technol. Innov. 2021, 21, 101361. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X. Quantitative source apportionment and ecological risk assessment of heavy metals in soil of a grain base in Henan Province, China, using PCA, PMF modeling, and geostatistical techniques. Environ. Monit. Assess. 2021, 193, 655. [Google Scholar] [CrossRef]
- Ennaji, W.; Barakat, A.; El Baghdadi, M.; Rais, J. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J. Sediment. Environ. 2020, 5, 307–320. [Google Scholar] [CrossRef]
- Weissmannova, H.D.; Pavlovsky, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef] [PubMed]
- Klik, B.K.; Gusiatin, Z.M.; Kulikowska, D. Suitability of environmental indices in assessment of soil remediation with conventional and next generation washing agents. Sci. Rep. 2020, 10, 20586. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, H.; Nawaz, R.; Nasim, I.; Irshad, M.A.; Irfan, A.; Khurshid, I.; Okla, M.K.; Wondmie, G.F.; Ahmed, Z.; Bourhia, M. Comprehensive human health risk assessment of heavy metal contamination in urban soils: Insights from selected metropolitan zones. Front. Environ. Sci. 2023, 11, 1260317. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef]
- Liang, Q.; Tian, K.; Li, L.; He, Y.; Zhao, T.; Liu, B.; Wu, Q.; Huang, B.; Zhao, L.; Teng, Y. Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an e-waste dismantling site, Southeast China. Ecotoxicol. Environ. Saf. 2022, 242, 113929. [Google Scholar] [CrossRef]
- Saleem, M.; Sens, D.A.; Somji, S.; Pierce, D.; Wang, Y.; Leopold, A.; Haque, M.E.; Garrett, S.H. Contamination Assessment and Potential Human Health Risks of Heavy Metals in Urban Soils from Grand Forks, North Dakota, USA. Toxics 2023, 11, 132. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA, 2002. Available online: https://epa.gov/superfund/superfund-soil-screening-guidance (accessed on 18 August 2025).
- Pavlovic, D.; Pavlovic, M.; Perovic’, V.; Mataruga, Z.; Cakmak, D.; Mitrovic, M.; Pavlovic, P. Chemical Fractionation, Environmental, and Human Health Risk Assessment of Potentially Toxic Elements in Soil of Industrialised Urban Areas in Serbia. Int. J. Environ. Res. Public Health 2021, 18, 9412. [Google Scholar] [CrossRef]
- Chakraborty, T.K.; Islam, S.M.; Ghosh, G.C.; Ghosh, P.; Zaman, S.; Hossain, M.R.; Habib, A.; Nice, M.S.; Rahman, M.S.; Islam, K.R.; et al. Receptor model-based sources and risks appraisal of potentially toxic elements in the urban soils of Bangladesh. Toxicol. Rep. 2023, 10, 308–319. [Google Scholar] [CrossRef]
- United State Environmental Protection Agency (USEPA). IRIS Toxicological Review of Inorganic Arsenic (Final Report, 2025); U.S. EPA: Washington, DC, USA, EPA/635/R-25/005; 2025. Available online: https://iris.epa.gov/document/&deid=363892 (accessed on 19 August 2025).
- United State Environmental Protection Agency (USEPA). Assessment. Risk Assessment Guidance for Superfund (Rags), Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. 2009. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 10 August 2025).
- Tan, B.; Wang, H.; Wang, X.; Ma, C.; Zhou, J.; Dai, X. Health Risks and Source Analysis of Heavy Metal Pollution from Dust in Tianshui, China. Minerals 2021, 11, 502. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Acosta, J.A. Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. J. Geochem. Explor. 2017, 172, 174–183. [Google Scholar] [CrossRef]
- McDonough, R.; Shakya, K.M. Trace Metal Contamination in Community Gardens in Pittsburgh, Pennsylvania. Environments 2025, 12, 159. [Google Scholar] [CrossRef]
- Bassetti, O.G.; McDonough, R.A.; Shakya, K.M. Soil contamination in community gardens of Philadelphia and Pittsburgh, Pennsylvania. Environ. Monit. Assess. 2023, 195, 782. [Google Scholar] [CrossRef]
- Bvenura, C.; Afolayan, A.J. Heavy metal contamination of vegetables cultivated in home gardens in the Eastern Cape. S. Afr. J. Sci. 2012, 108, 696. [Google Scholar] [CrossRef]
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2013; Available online: https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines (accessed on 8 August 2025).
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- Sage, L.; Bassetti, O.; Johnson, E.; Shakya, K.; Weston, N. Assessment of heavy metal contamination in soil and produce of Philadelphia community gardens. Environ. Pollut. Bioavailab. 2023, 35, 2209283. [Google Scholar] [CrossRef]
- Evseev, A.V.; Krasovskaya, T.M. Toxic metals in soils of the Russian North. J. Geochem. Explor. 2017, 174, 128–131. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Cappuyns, V. Downstream Distribution and Postdepositional Mobilization of Cadmium in Alluvial Soils. Appl. Environ. Soil Sci. 2023, 2023, 9915654. [Google Scholar] [CrossRef]
- Senderewich, T.; Goltz, D.; Rodriguez-Gil, J.L.; Laird, B.; Prosser, R.S.; Hanson, M.L. Human health and environmental risk assessment of metals in community gardens of Winnipeg, Manitoba, Canada. Environ. Sci. Pollut. Res. 2024, 1, 20293–20310. [Google Scholar] [CrossRef]
- Rizwan, M.; Usman, K.; Alsafran, M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. Chemosphere 2024, 357, 142028. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, M.; Hossain, M.S.; Singh, B.; Ahmed, T.; Anawar, H.M.; Shakil, M.A. Toxic trace elements in urban community gardens in Winnipeg, Canada: Human health risk assessment. Environ. Sci. Pollut. Res. 2024, 31, 39152–39165. [Google Scholar]
- Antwi-Agyei, P.; Yousefi, M.; Guo, D.; Lake, C.B.; Bonnycastle, M.M. Soil contamination in community gardens in the city of Guelph, Canada: Implications for gardeners’ health and wellbeing. Int. J. Environ. Res. Public Health 2021, 18, 4932. [Google Scholar]
- Misenheimer, J.; Nelson, C.; Huertas, E.; Medina-Vera, M.; Prevatte, A.; Bradham, K. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico. Geosciences 2018, 8, 43. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, D.; Proshad, R.; Uwiringiyimana, E.; Wang, Z. Assessment of the pollution levels of potential toxic elements in urban vegetable gardens in southwest China. Sci. Rep. 2021, 11, 22824. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 35. [Google Scholar] [CrossRef]
- Meharg, A.A.; Rahman, M.M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef]
- Demissie, S.; Mekonen, S.; Awoke, T.; Mengistie, B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. Environ. Health Insights 2024, 18, 11786302241257365. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Scientific Criteria Document for the Development of Soil Quality Guidelines for Nickel: Environmental and Human Health; CCME: Winnipeg, MB, Canada, 2015; Available online: https://ccme.ca/en/chemical/139 (accessed on 23 August 2025).
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around mining areas in Egypt. J. Environ. Manag. 2019, 251, 109572. [Google Scholar]
- Charlesworth, S.; Everett, M.; McCarthy, R.; Ordonez, A.; De Miguel, E. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health 2011, 33, 103–123. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Arsenic: Fact Sheet; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 23 August 2025).
- World Health Organisation (WHO). Human Health Effects of Benzene, Arsenic, Cadmium, Nickel, Lead and Mercury: Report of an Expert Consultation. 2024. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-8983-48755-72523?utm_source=chatgpt.com (accessed on 23 August 2025).
- Tian, Y.; Hou, Q.; Zhang, M.; Gao, E.; Wu, Y. Exposure to arsenic and cognitive impairment in children: A systematic review. PLoS ONE 2025, 20, e0319104. [Google Scholar] [CrossRef]
- Notario-Barandiaran, L.; Compañ-Gabucio, L.M.; Bauer, J.A.; Vioque, J.; Karagas, M.R.; Signes-Pastor, A.J. Arsenic Exposure and Neuropsychological Outcomes in Children: A Scoping Review. Toxics 2025, 13, 542. [Google Scholar] [CrossRef]
- Chmielewski, J.; Wszelaczyńska, E.; Pobereżny, J.; Florek-Łuszczki, M.; Gworek, B. Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment. Sustainability 2024, 17, 6666. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Di Stasio, L.; Gentile, A.; Tangredi, D.N.; Piccolo, P.; Oliva, G.; Vigliotta, G.; Cicatelli, A.; Guarino, F.; Guidi Nissim, W.; Labra, M.; et al. Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability. Plants 2025, 14, 2057. [Google Scholar] [CrossRef]

| Metals | RDL (mg/kg) | RPD (%) | Recoveries (%) | 
|---|---|---|---|
| Al | 6 | 2.8 | 97 | 
| Sb | 0.5 | NA | 97 | 
| As | 1 | NA | 95 | 
| Ba | 0.5 | 0.5 | 81 | 
| Be | 0.5 | NA | 99 | 
| B | 0.5 | 6.7 | 99 | 
| Cd | 0.3 | NA | 80 | 
| Cr | 0.5 | 2.5 | 90 | 
| Co | 0.5 | 2.9 | 96 | 
| Cu | 0.5 | 3.2 | NA | 
| Fe | 10 | 2.5 | 91 | 
| Pb | 0.5 | 1.2 | NA | 
| Li | 0.3 | 0.7 | 104 | 
| Mn | 0.5 | 2.4 | NA | 
| Mo | 0.5 | NA | 76 | 
| Ni | 0.5 | 1.5 | 86 | 
| Se | 0.5 | NA | 118 | 
| Ag | 0.5 | NA | NA | 
| Na | 30 | NA | 70 | 
| Sr | 0.5 | 5.1 | 84 | 
| Tl | 0.1 | NA | 89 | 
| Sn | 0.5 | 6.1 | NA | 
| Ti | 0.5 | 7.2 | NA | 
| U | 0.1 | 8.1 | 93 | 
| V | 0.5 | 2.2 | NA | 
| Zn | 1 | 1.6 | 90 | 
| Hg | 0.5 | NA | 89 | 
| Elements | Ecological Risk | |||
|---|---|---|---|---|
| UCCV | Classification | CCME | Classification | |
| Top Soil (0–0.15 cm) | ||||
| Al | - | - | - | - | 
| Sb | - | - | - | - | 
| As | 5.8 | Low ecological risk | 6.0 | Low ecological risk | 
| Ba | 0.09 | Low ecological risk | 0.07 | Low ecological risk | 
| Be | 9.9 | Low ecological risk | 4.5 | Low ecological risk | 
| B | - | - | - | - | 
| Cr | 0.6 | Low ecological risk | 0.6 | Low ecological risk | 
| Co | 4.0 | Low ecological risk | 1.1 | Low ecological risk | 
| Cu | 11.1 | Low ecological risk | 5.1 | Low ecological risk | 
| Fe | - | Low ecological risk | - | - | 
| Pb | 11.6 | Low ecological risk | 11.6 | Low ecological risk | 
| Li | - | - | - | - | 
| Mn | - | - | - | - | 
| Mo | 0.6 | Low ecological risk | 0.3 | Low ecological risk | 
| Ni | - | - | 85.5 ** | High ecological risk ** | 
| Na | - | - | - | - | 
| Sr | - | - | - | - | 
| Tl | 1.4 | Low ecological risk | 1 | Low ecological risk | 
| Sn | - | - | - | - | 
| Ti | - | - | - | - | 
| U | - | - | - | - | 
| V | 0.6 | Low ecological risk | 0.6 | Low ecological risk | 
| Zn | 0.9 | Low ecological risk | 0.9 | Low ecological risk | 
| PERI (ΣEr) | 46.6 | Low ecological risk | 117.3 | Low ecological risk | 
| Subsoil (0.15–30 cm) | ||||
| Al | - | - | - | - | 
| Sb | - | - | - | - | 
| As | 5.8 | Low ecological risk | 6.0 | Low ecological risk | 
| Ba | 0.09 | Low ecological risk | 0.07 | Low ecological risk | 
| Be | 9.9 | Low ecological risk | 4.5 | Low ecological risk | 
| B | - | - | - | - | 
| Cr | 0.6 | Low ecological risk | 0.6 | Low ecological risk | 
| Co | 4.0 | Low ecological risk | 1.1 | Low ecological risk | 
| Cu | 11.1 | Low ecological risk | 5.1 | Low ecological risk | 
| Fe | - | - | - | - | 
| Pb | 11.6 | Low ecological risk | 11.6 | Low ecological risk | 
| Li | - | - | - | - | 
| Mn | - | - | - | - | 
| Mo | 0.6 | Low ecological risk | 0.3 | Low ecological risk | 
| Ni | - | - | 85.5 ** | High ecological risk ** | 
| Na | - | - | - | - | 
| Sr | - | - | - | - | 
| Tl | 0.1 | Low ecological risk | 0.1 | Low ecological risk | 
| Sn | - | - | - | - | 
| Ti | - | - | - | - | 
| U | - | - | - | - | 
| V | 0.6 | Low ecological risk | 0.6 | Low ecological risk | 
| Zn | 0.9 | Low ecological risk | 0.4 | Low ecological risk | 
| PERI (ΣEr) | 45.9 | Low ecological risk | 115.7 | Low ecological risk | 
| Toxic Heavy Metals | Top Soil | Subsoil | ||
|---|---|---|---|---|
| ADD | HQ | ADD | HQ | |
| Children | ||||
| Al | 0.15 | 0.15 | 0.16 | 1.6 × 10−1 | 
| Sb | 8.9 × 10−6 | 2.0 × 10−2 | 8.9 × 10−6 | 2.2 × 10−1 | 
| As | 8.4 × 10−5 | 1.4 × 100 | 9.2 × 10−5 | 1.5 × 100 | 
| Ba | 6.3 × 10−4 | 3.0 × 10−3 | 6.4 × 10−4 | 3.0 × 10−3 | 
| Be | 7.7 × 10−6 | 4.0 × 10−3 | 7.6 × 10−6 | 4.0 × 10−3 | 
| B | 4.3 × 10−5 | 2.0 × 10−5 | 3.6 × 10−5 | 2.0 × 10−4 | 
| Cr (VI) | 2.2 × 10−4 | 2.0 × 10−2 | 2.5 × 10−4 | 2.8 × 10−1 | 
| Co | 9.5 × 10−5 | 3.2 × 10−1 | 1.1 × 10−4 | 3.7 × 10−1 | 
| Cu | 6.9 × 10−4 | 1.2 × 10−1 | 8.1 × 10−4 | 2.0 × 10−2 | 
| Fe | 3.2 × 10−1 | - | 3.4 × 10−1 | - | 
| Pb | 8.9 × 10−4 | 2.5 × 10−1 | 9.2 × 10−4 | 2.6 × 10−1 | 
| Li | 2.4 × 10−4 | - | 2.1 × 10−4 | 4.0 × 10−2 | 
| Mn | 5.9 × 10−3 | 4.0 × 10−3 | 6.1 × 10−3 | 3.0 × 10−3 | 
| Mo | 1.3 × 10−5 | 3.0 × 10−3 | 1.3 × 10−5 | 1.0 × 10−3 | 
| Ni | 2.0 × 10−3 | 1.0 × 10−1 | 2.2 × 10−5 | 1.0 × 10−3 | 
| Na | 1.5 × 10−3 | - | 1.5 × 10−3 | - | 
| Sr | 1.7 × 10−4 | 6.0 × 10−4 | 1.9 × 10−4 | 6.0 × 10−4 | 
| Tl | 1.3 × 10−6 | 2.0 × 10−2 | 1.3 × 10−6 | 2.0 × 10−2 | 
| Sn | 5.4 × 10−5 | 2.0 × 10−4 | 5.1 ×10−5 | 2.0 × 10−4 | 
| Ti | 3.2 × 10−3 | - | 3.8 × 10−3 | - | 
| U | 8.9 × 10−6 | 3.0 × 10−3 | 1.0 × 10−5 | 3.0 × 10−3 | 
| V | 4.4 × 10−4 | 6.0 × 10−2 | 4.9 × 10−4 | 7.0 × 10−2 | 
| Zn | 1.5 × 10−3 | 5.0 × 10−4 | 1.1 × 10−3 | 4.0 × 10−3 | 
| Total | 4.9 × 10−1 | 2.5 × 100 | 5.2 × 10−1 | 3.0 × 100 | 
| Adults | ||||
| Al | 2.0 × 10−2 | 6.0 × 10−3 | 2.0 × 10−2 | 1.6 × 10−1 | 
| Sb | 9.1 × 10−7 | 2.0 × 10−3 | 9.1 × 10−7 | 2.0 × 10−2 | 
| As | 8.6 × 10−6 | 1.4 × 10−1 | 2.3 × 10−6 | 4.0 × 10−2 | 
| Ba | 6.4 × 10−5 | 3.0 × 10−4 | 6.5 × 10−5 | 3.0 × 10−4 | 
| Be | 7.8 × 10−7 | 4.0 × 10−4 | 1.6 × 10−6 | 1.0 × 10−3 | 
| B | 4.4 × 10−6 | 2.0 × 10−5 | 3.6 × 10−6 | 2.0 × 10−5 | 
| Cr (VI) | 2.2 × 10−5 | 2.0 × 10−2 | 2.5 × 10−5 | 3.0 × 10−2 | 
| Co | 9.6 × 10−6 | 3.0 × 10−2 | 1.1 × 10−5 | 4.0 × 10−2 | 
| Cu | 7.0 × 10−5 | 2.0 × 10−3 | 8.2 × 10−5 | 2.0 × 10−3 | 
| Fe | 3.0 × 10−2 | - | 3.0 × 10−2 | - | 
| Pb | 9.0 × 10−5 | 3.0 × 10−3 | 9.3 × 10−5 | 3.0 × 10−2 | 
| Li | 2.0 × 10−5 | - | 2.2 × 10−5 | - | 
| Mn | 5.9 × 10−4 | 6.0 × 10−3 | 6.2 × 10−4 | 4.0 × 10−3 | 
| Mo | 1.3 × 10−6 | 3.0 × 10−3 | 1.3 × 10−6 | 3.0 × 10−4 | 
| Ni | 1.9 × 10−5 | 1.0 × 10−3 | 2.2 × 10−5 | 1.0 × 10−3 | 
| Na | 1.5 × 10−4 | - | 1.6 × 10−4 | - | 
| Sr | 1.8 × 10−5 | 6.0 × 10−5 | 1.9 × 10−5 | 6.0 × 10−5 | 
| Tl | 1.3 × 10−7 | 2.0 × 10−3 | 1.3 × 10−7 | 2.0 × 10−3 | 
| Sn | 5.4 × 10−6 | 2.0 × 10−5 | 5.2 × 10−6 | 1.7 × 10−5 | 
| Ti | 3.3 × 10−4 | - | 3.8 × 10−4 | - | 
| U | 9.1 × 10−7 | 3.0 × 10−5 | 1.0 × 10−6 | 3.0 × 10−3 | 
| V | 1.5 × 10−5 | 2.0 × 10−3 | 4.9 × 10−5 | 7.0 × 10−2 | 
| Zn | 1.5 × 10−4 | 5.0 × 10−4 | 1.2 × 10−4 | 4.0 × 10−3 | 
| Total | 5.7 × 10−2 | 2.2 × 10−1 | 5.2 × 10−2 | 4.1 × 10−1 | 
| Toxic Heavy Metals | Top Soil | Subsoil | ||
|---|---|---|---|---|
| ADD | CR | ADD | CR | |
| Children | ||||
| As | 7.2 × 10−5 | 2.0 × 10−3 | 7.9 × 10−6 | 3.0 × 10−4 | 
| Cr (VI) | 1.9 × 10−5 | 5.0 × 10−6 | 2.1 × 10−5 | 2.6 × 10−5 | 
| Pb | 7.7 × 10−5 | 2.7 × 10−7 | 7.9 × 10−5 | 2.8 × 10−8 | 
| Ni | 1.6 × 10−5 | 2.8 × 10−5 | 1.9 × 10−5 | 3.0 × 10−5 | 
| Total | 1.8 × 10−4 | 2.0 × 10−3 | 1.2 × 10−4 | 3.6 × 10−4 | 
| Adults | ||||
| As | 2.9 × 10−6 | 9.0 × 10−5 | 3.2 × 10−6 | 1.0 × 10−4 | 
| Cr (VI) | 7.7 × 10−6 | 2.0 × 10−6 | 8.5 × 10−6 | 2.0 × 10−6 | 
| Pb | 3.1 × 10−5 | 1.1 × 10−7 | 3.2 × 10−5 | 1.0 × 10−7 | 
| Ni | 6.6 × 10−6 | 1.0 × 10−5 | 7.6 × 10−6 | 1.3 × 10−5 | 
| Total | 4.8 × 10−5 | 1.0 × 10−4 | 5.1 × 10−5 | 1.2 × 10−4 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikrema, H.; Mugudamani, I.; Oke, S.A. Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada. Environments 2025, 12, 362. https://doi.org/10.3390/environments12100362
Ikrema H, Mugudamani I, Oke SA. Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada. Environments. 2025; 12(10):362. https://doi.org/10.3390/environments12100362
Chicago/Turabian StyleIkrema, Hassan, Innocent Mugudamani, and Saheed Adeyinka Oke. 2025. "Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada" Environments 12, no. 10: 362. https://doi.org/10.3390/environments12100362
APA StyleIkrema, H., Mugudamani, I., & Oke, S. A. (2025). Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada. Environments, 12(10), 362. https://doi.org/10.3390/environments12100362
 
        





 
       