Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review
Abstract
1. Introduction
2. Research Progress on FRP Bar–Concrete Members
2.1. Material Properties of FRP Bars
2.2. Interfacial Bond Properties Between FRP Bar and Concrete
2.2.1. Failure Modes of the FRP Bar–Concrete Interface
2.2.2. Influencing Factors of Bond Performance
- (1)
- Surface shape and diameter of FRP bars
- (2)
- Concrete strength and cover thickness
- (3)
- Fiber types of FRP bars
2.3. Flexural Behavior of FRP Bar-Reinforced Concrete Beams
3. Research Progress on FRP Sheet–Concrete Members
3.1. Material Properties of FRP Sheets
3.2. Interfacial Bond Properties Between FRP Sheet and Concrete
3.2.1. Failure Modes of the FRP Sheet–Concrete Interface
3.2.2. Interfacial Bond Properties Between FRP Sheets and Concrete
3.3. Ultimate Condition Compressive Behavior of FRP Sheet-Confined Concrete Columns
4. Engineering Applications
4.1. Large-Scale Application of GFRP Bars in Downstream Spillway Channel
4.1.1. Basic Information of the Project
4.1.2. Project Construction Plan
4.1.3. Project Construction Process
4.1.4. Project Implementation Effect
4.2. Application of FRP Sheets in Strengthening the Gantry Crane Rail Beam of Majingzi Dam
4.2.1. Basic Information of Majingzi Dam
4.2.2. Engineering Reinforcement and Maintenance Plan
4.2.3. Construction Technology for Engineering Reinforcement
4.2.4. Effectiveness of CFRP Reinforcement Treatment
5. Exploration on New Application Scenarios of FRP
5.1. Seepage Prevention and Crack Resistance of FRP-Concrete Composite Dam
5.2. Reinforcement and Repair of Spillway
5.3. Dam Safety Monitoring Equipment
5.4. Anchorage Systems in Dam Retrofits for Different FRP Types
6. Conclusions and Summary
6.1. Conclusions
- (1)
- In practical engineering applications, focus should be placed on the surface treatment type of FRP bars, as it significantly affects the bond performance at the FRP bar–concrete interface. Meanwhile, the flexural capacity and ductility of FRP-reinforced concrete beams can be improved through three methods: incorporating steel fibers, increasing concrete strength, and adopting hybrid reinforcement.
- (2)
- For the application of FRP sheets, the effective anchorage length of FRP sheets and concrete strength should be key considerations, as they exert a significant impact on the bond strength at the FRP sheet–concrete interface. The non-uniform confinement form provides a feasible approach to addressing the sudden brittle failure of FRP-confined concrete columns (which occurs without warning) and offers important theoretical support for the rational design and performance optimization of FRP in engineering applications such as concrete structure retrofitting.
- (3)
- Based on the advantages of FRP composites and actual conditions, they can be widely applied in hydraulic structures such as dikes, sluice gates, and aqueducts, providing innovative solutions for the construction, monitoring, repair, and reinforcement of hydraulic buildings.
6.2. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nemnem, A.M.; Tanim, A.H.; Nahian, A.; Khan, S.; Goharian, E.; Imran, J. How extreme rainfall and failing dams unleashed the Derna flood disaster. Nat. Commun. 2025, 16, 4191. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety: Technical problems of ageing concrete dams. J. Earth Sci. Geotech. Eng. 2020, 10, 241–279. [Google Scholar]
- Silva, L.C.; de Oliveira Mattos, U.A.; da Silva, J.C. Dams safety: An analysis of safety management and the difficulties of its supervision. Ciência Nat. 2023, 45, e6. [Google Scholar] [CrossRef]
- Imperatore, S.; Rinaldi, Z. Cracking in reinforced concrete structures damaged by artificial corrosion: An overview. Open Constr. Build. Technol. J. 2019, 13, 199. [Google Scholar] [CrossRef]
- Ojha, P.N.; Trivedi, A.; Singh, B.; Adarsh Kumar, N.S.; Patel, V.; Gupta, R.K. High performance fiber reinforced concrete–for repair in spillways of concrete dams. Res. Eng. Struct. Mater. 2021, 7, 505–522. [Google Scholar] [CrossRef]
- Uddin, N. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering; Woodhead Publishing: Delhi, India, 2013. [Google Scholar]
- Das, S.C.; Nizam, M. Applications of fiber reinforced polymer composites (FRP) in civil engineering. Int. J. Adv. Struct. Geotech. Eng. 2014, 3, 299–309. [Google Scholar]
- Altunişik, A.C.; Günaydin, M.; Sevim, B.; Bayraktar, A.; Adanur, S. CFRP composite retrofitting effect on the dynamic characteristics of arch dams. Soil Dyn. Earthquake Eng. 2015, 74, 1–9. [Google Scholar] [CrossRef]
- Kalamkarov, A.; Saha, G.; Rokkam, S.; Newhook, J.; Georgiades, A. Strain and deformation monitoring in infrastructure using embedded smart FRP reinforcements. Compos. Part B Eng. 2005, 36, 455–467. [Google Scholar] [CrossRef]
- Baena, M.; Torres, L.; Turon, A.; Barris, C. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Compos. Part B Eng. 2009, 40, 784–797. [Google Scholar] [CrossRef]
- GB 50608-2020; Technical Standard for Fiber Reinforced Polymer (FRP) in Construction. China Planning Press: Beijing, China, 2020.
- Feng, G.; Zhu, D.; Guo, S.; Rahman, M.Z.; Jin, Z.; Shi, C. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cem. Concr. Comp. 2022, 134, 104758. [Google Scholar] [CrossRef]
- EI-Sayed, A.K.; EI-Salakawy, E.F.; Benmokrane, B. Shear strength of FRP-reinforced concrete beams without transverse reinforcement. ACI Mater. J. 2006, 103, 235. [Google Scholar]
- Allen, J.H.; Felder, A.L.; McDermott, J.F.; Azizinamini, A.; Frosch, R.J.; Mitchell, D.; Matamoros, A.B. Bond and Development of Straight Reinforcing Bars in Tension; Report no. ACI 408R-03; American Concrete Institute: Detroit, MI, USA, 2003. [Google Scholar]
- Gao, J.; Fan, L.Y. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism. Acta Mater. Compos. Sin. 2022, 39, 1194–1204. (In Chinese) [Google Scholar]
- Wang, L.; Li, W.; Chen, S.; Mao, Y.D.; Wang, K. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete. Acta Mater. Compos. Sin. 2018, 35, 3458–3465. (In Chinese) [Google Scholar]
- Taha, A.; Alnahhal, W. Bond durability and service life prediction of BFRP bars to steel FRC under aggressive environmental conditions. Compos. Struct. 2021, 269, 114034. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cao, R.M.; Ding, J.; Chen, X. Feasibility of using geopolymers to investigate the bond behavior of FRP bars in seawater sea-sand concrete. Constr. Build. Mater. 2021, 282, 122636. [Google Scholar] [CrossRef]
- Wang, J.Z.; Xiao, F.D.; Lai, Z.Y.; Yang, J.L.; Tian, S.Y. Bond of FRP bars with different surface characteristics to concrete. Structures 2024, 59, 105731. [Google Scholar] [CrossRef]
- Solyom, S.; Balázs, G.L. Bond of FRP bars with different surface characteristics. Constr. Build. Mater. 2020, 264, 119839. [Google Scholar] [CrossRef]
- Achillides, Z.; Pilakoutas, K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions. J. Compos. Constr. 2004, 8, 173–181. [Google Scholar] [CrossRef]
- Firas, S.A.; Gilles, F.; Robert, L.R. Bond between carbon fibre-reinforced polymer (CFRP) bars and ultra high performance fibre reinforced concrete (UHPFRC): Experimental study. Constr. Build. Mater. 2011, 25, 479–485. [Google Scholar] [CrossRef]
- Refai, A.E.; Ammar, M.A.; Masmoudi, R. Bond performance of basalt fiber reinforced polymer bars to concrete. J. Compos. Constr. 2015, 19, 04014050. [Google Scholar] [CrossRef]
- Shen, D.; Ojha, B.; Shi, X.; Zhang, H.; Shen, J. Bond stress-slip relationship between basalt fiber-reinforced polymer bars and concrete using a pull-out test. J. Reinf. Plast. Comp. 2016, 35, 747–763. [Google Scholar] [CrossRef]
- Chang, Y.F.; Wang, Y.L.; Wang, M.F.; Zhou, Z.; Ou, J.P. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load. Constr. Build. Mater. 2021, 307, 124878. [Google Scholar] [CrossRef]
- Zeng, J.J.; Liao, J.J.; Yan, Z.G.; Guo, Y.C.; Zhou, J.K.; Huang, Z.H.; Zhang, L.H. Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete. Eng. Struct. 2022, 254, 113787. [Google Scholar] [CrossRef]
- Huang, Z.H. Bond-Slip Behavior Between GFRP Bar and High Strength PE Fiber Reinforced Seawater Sea-Sand Concrete. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2021. (In Chinese). [Google Scholar]
- Tong, G.Q. Experimental Research on the Bond Performance of FRP Bars in Seawater and Sea Sand Concrete. Master’s Thesis, Hunan University, Changsha, China, 2020. (In Chinese). [Google Scholar]
- Su, X.; Yin, S.P.; Zhao, Y.D.; Hua, Y.T. Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete. J. Cent. South. Univ. 2021, 28, 2193–2205. [Google Scholar] [CrossRef]
- Zemour, N.; Asadian, A.; Ahmed, E.A.; Khayat, K.H.; Benmokrane, B. Experimental study on the bond behavior of GFRP bars in normal and self-consolidating concrete. Constr. Build. Mater. 2018, 189, 869–881. [Google Scholar] [CrossRef]
- Liu, H.X.; Yang, J.W.; Wang, X.Z. Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber. Constr. Build. Mater. 2017, 135, 477–483. [Google Scholar] [CrossRef]
- Wang, Z.K.; Zhao, X.L.; Xian, G.J.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Nepomuceno, E.; Sena-Cruz, J.; Correia, L.; Antino, T.D. Review on the bond behavior and durability of FRP bars to concrete. Constr. Build. Mater. 2021, 287, 123042. [Google Scholar] [CrossRef]
- Peng, K.D.; Zeng, J.J.; Huang, B.T.; Huang, J.Q.; Zhuge, Y.; Dai, J.G. Bond performance of FRP bars in plain and fiber-reinforced geopolymer under pull-out loading. J. Build. Eng. 2022, 57, 104893. [Google Scholar] [CrossRef]
- Shen, X.; Li, B.; Shi, W.; Chen, Y.T. Numerical study on flexural behaviour of FRP reinforced concrete beams with compression yielding blocks. Case Stud. Constr. Mater. 2022, 17, e01169. [Google Scholar]
- Elgabbas, F.; Ahmed, E.A.; Benmokrane, B. Flexural behavior of concrete beams reinforced with ribbed basalt-FRP bars under static loads. J. Compos. Constr. 2017, 21, 04016098. [Google Scholar] [CrossRef]
- Khorasani, A.M.M.; Esfahani, M.R.; Sabzi, J. The effect of transverse and flexural reinforcement on deflection and cracking of GFRP bar reinforced concrete beams. Compos. Part B Eng. 2019, 161, 530–546. [Google Scholar] [CrossRef]
- Sun, S.J.; Guo, Y.P.; Gui, P.; Xing, L.L.; Mei, K.H. Flexural behaviour of steel–basalt fibre composite bar-reinforced concrete beams. Eng. Struct. 2023, 289, 116246. [Google Scholar] [CrossRef]
- Zhu, H.T.; Cheng, S.Z.; Gao, D.Y.; Neaz, S.M.; Li, C.C. Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars. Constr. Build. Mater. 2018, 161, 587–597. [Google Scholar] [CrossRef]
- Wang, H.Z.; Belarbi, A. Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Constr. Build. Mater. 2011, 25, 2391–2401. [Google Scholar] [CrossRef]
- Li, Z.Z.; Zhu, H.T.; Du, C.X.; Cao, D.Y.; Yuan, J.S.; Wen, C.C. Experimental study on cracking behavior of steel fiber-reinforced concrete beams with BFRP bars under repeated loading. Compos. Struct. 2021, 267, 113878. [Google Scholar] [CrossRef]
- Zhu, H.T.; Cheng, S.Z.; Gao, D.Y.; Gui, G.H. Bending experimental study and crack width calculation method of high-strength concrete beams reinforced with BFRP bars and steel fiber. J. Build. Struct. 2020, 41, 133–142. [Google Scholar]
- Lau, D.; Pam, H.J. Experimental study of hybrid FRP reinforced concrete beams. Eng. Struct. 2010, 32, 3857–3865. [Google Scholar] [CrossRef]
- Refai, A.E.; Abed, F.; Rahmani, A.A. Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Constr. Build. Mater. 2015, 96, 518–529. [Google Scholar] [CrossRef]
- Leung, H.Y.; Balendran, R.V. Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars. Struct. Surv. 2003, 21, 146–157. [Google Scholar] [CrossRef]
- Zhou, B.B.; Wu, R.Y.; Liu, Y.Q.; Zhang, X.H.; Yin, S.P. Flexural strength design of hybrid FRP-steel reinforced concrete beams. Materials 2021, 14, 6400. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.C. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Ye, Y.Y.; Liang, S.D.; Feng, P.; Zeng, J.J. Recyclable LRS FRP composites for engineering structures: Current status and future opportunities. Compos. Part. B Eng. 2021, 212, 108689. [Google Scholar] [CrossRef]
- Dai, J.G.; Bai, Y.L.; Teng, J.G. Behavior and modeling of concrete confined with FRP composites of large deformability. J. Compos. Constr. 2011, 15, 963–973. [Google Scholar] [CrossRef]
- Daud, R.A.; Cunningham, L.S.; Wang, Y.C. Static and fatigue behaviour of the bond interface between concrete and externally bonded CFRP in single shear. Eng. Struct. 2015, 97, 54–67. [Google Scholar] [CrossRef]
- Bizindavyi, L.; Neale, K.W.; Erki, M.A. Experimental Investigation of Bonded Fiber Reinforced Polymer-Concrete Joints under Cyclic Loading. J. Compos. Constr. 2003, 7, 127–134. [Google Scholar] [CrossRef]
- Carloni, C.; Subramaniam, K.V.; Savoia, M.; Mazzotti, C. Experimental determination of FRP-concrete cohesive interface properties under fatigue loading. Compos. Struct. 2012, 94, 1288–1296. [Google Scholar] [CrossRef]
- Cornetti, P.; Muñoz-Reja, M.; Mantič, V. Cohesive crack models and finite fracture mechanics analytical solutions for FRP-concrete single-lap shear test: An overview. Theor. Appl. Fract. Mech. 2022, 122, 103529. [Google Scholar] [CrossRef]
- Calabrese, A.S.; Colombi, P.; D'antino, T. Analytical solution of the full-range behavior of adhesively bonded FRP-steel joints made with toughened adhesives. Eng. Fract. Mech. 2023, 292, 109569. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Z. Numerical modeling of response of CFRP concrete interfaces subjected to fatigue loading. J. Compos. Constr. 2021, 25, 04021043. [Google Scholar] [CrossRef]
- Al-Saoudi, A.; Kalfat, R.; Al-Mahaidi, R.; Cervenka, J.; Pryl, D. Numerical and experimental investigation into the fatigue life of FRP bonded to concrete and anchored with bidirectional fabric patches. Eng. Struct. 2021, 239, 112335. [Google Scholar] [CrossRef]
- Ferrier, E.; Bigaud, D.; Hamelin, P.; Bizindavyi, L.; Neale, K.W. Fatigue of CFRPs externally bonded to concrete. Mater. Struct. 2005, 38, 39–46. [Google Scholar] [CrossRef]
- Diab, H.; Wu, Z. Nonlinear constitutive model for time-dependent behavior of FRP-concrete interface. Compos. Sci. Tech. 2007, 67, 2323–2333. [Google Scholar] [CrossRef]
- Yun, Y.; Wu, Y.F.; Tang, W.C. Performance of FRP bonding systems under fatigue loading. Eng. Struct. 2008, 30, 3129–3140. [Google Scholar] [CrossRef]
- Ko, H.; Sato, Y. Bond stress-slip relationship between FRP sheet and concrete under cyclic load. J. Compos. Constr. 2007, 11, 419–426. [Google Scholar] [CrossRef]
- Fathi, A.; El-Saikaly, G.; Chaallal, O. Fatigue behavior in the Carbon-Fiber-Reinforced Polymer-to-Concrete bond by cyclic pull-out test: Experimental and analytical study. J. Compos. Constr. 2023, 27, 04023033. [Google Scholar] [CrossRef]
- Li, K.; Zhao, D.P.; Wang, X.L.; Feng, H.; Zou, X.Y. Investigation of crack growth in CFRP-concrete interface under fatigue loading. Structures 2021, 34, 356–367. [Google Scholar] [CrossRef]
- Yuan, H.; Luo, G.Y.; Liu, C.; Zeng, L. Interfacial properties of CFRP sheets and concrete subjected to variable amplitude fatigue loading. Struct. Concr. 2021, 22, 1927–1945. [Google Scholar] [CrossRef]
- Bizindavyi, L.; Neale, K. Transfer lengths and bond strengths for composites bonded to concrete. J. Compos. Constr. 1999, 3, 153–160. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.S.; Fernando, D.; Huang, T.L. The bond-behaviour of CFRP-to-concrete bonded joints under fatigue loading: A damage accumulation model. Eng. Fract. Mech. 2023, 284, 109272. [Google Scholar] [CrossRef]
- Chen, J.F.; Teng, J. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- Liu, X.Z. Studies on FRP-Concrete Interface. Ph.D. Thesis, Tsinghua University, Beijing, China, 2004. (In Chinese). [Google Scholar]
- Sato, Y.; Vecchio, F.J. Tension stiffening and crack formation in reinforced concrete members with fiber-reinforced polymer sheets. J. Struct. Eng. 2003, 129, 717–724. [Google Scholar] [CrossRef]
- Izumo, K.; Saeki, N.; Fukao, M.; Takashi, H. Bond behavior and strength between fiber sheets and concrete. Trans. Jpn. Concr. Inst. 2000, 21, 423–430. [Google Scholar]
- Gemert, V.D. Force transfer in epoxy bonded steel/concrete joints. Int. J. Adhes. 1980, 1, 67–72. [Google Scholar] [CrossRef]
- Chaallal, O.; Nollet, M.J.; Perraton, D. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: Design guidelines for shear and flexure. Can. J. Civ. Eng. 1998, 25, 692–704. [Google Scholar] [CrossRef]
- Yoshizawa, H. Analysis of debonding fracture properties of CFS strengthened RC member subject to tension. In Non-Metallic (FRP) Reinforcement for Concrete Structures, Proceedings of the Third International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-3), Sapporo, Japan, 14–16 October 1997; Japan Concrete Institute: Tokyo, Japan, 1997; pp. 287–294. [Google Scholar]
- Wei, M.W.; Xie, J.H.; Zhang, H.; Li, J.L. Bond-slip behaviors of BFRP-to-concrete interfaces exposed to wet/dry cycles in chloride environment. Compos. Struct. 2019, 219, 185–193. [Google Scholar] [CrossRef]
- Chalot, A.; Michel, L.; Ferrier, E. Experimental study of external bonded CFRP-concrete interface under low cycle fatigue loading. Compos. B. Eng. 2019, 177, 107255. [Google Scholar] [CrossRef]
- Fardis, M.N.; Khalili, H. Concrete encased in fiberglass-reinforced plastic. J. Proc. 1981, 78, 440–446. [Google Scholar]
- Richart, F.E.; Brandtzaeg, A.; Brown, R.L. A Study of the Failure of Concrete Under Combined Compressive Stresses; Bulletin No. 185; University of Illinois at Urbana Champaign: Champaign, IL, USA, 1928. [Google Scholar]
- Mirmiran, A.; Shahawy, M. Dilation characteristics of confined concrete. Mech. Cohes. Frict. Mater. 1997, 2, 237–249. [Google Scholar] [CrossRef]
- Samaan, M.; Mirmiran, A.; Shahawy, M. Model of concrete confined by fiber composites. J. Struct. Eng. 1998, 124, 1025–1031. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wei, Y. General stress-strain model for steel- and FRP-confined concrete. J. Compos. Constr. 2015, 19, 04014069. [Google Scholar] [CrossRef]
- Toutanji, H.A. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACI Mater. J. 1999, 96, 397–404. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, H. Compressive behavior of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. 2000, 12, 139–146. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 2004, 8, 539–548. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, S.Q.; Bisby, L.A. Factors affecting the ultimate condition of FRP-wrapped concrete columns. J. Compos. Constr. 2013, 17, 67–78. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wu, H.L. Size effect of concrete short columns confined with aramid FRP jackets. J. Compos. Constr. 2011, 15, 535–544. [Google Scholar] [CrossRef]
- Zeng, J.J.; Teng, J.G.; Lin, G.; Li, L.H. Large-scale FRP-confined rectangular RC columns with section curvilinearization under axial compression. J. Compos. Constr. 2021, 25, 04021020. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J.G. Theoretical model for slender FRP-confined circular RC columns. Constr. Build. Mater. 2012, 32, 66–76. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J.G. Slenderness limit for short FRP-confined circular RC columns. J. Compos. Constr. 2012, 16, 650–661. [Google Scholar] [CrossRef]
- Wu, H.L.; Wang, Y.F.; Yu, L.; Li, X.R. Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets. J. Compos. Constr. 2009, 13, 125–134. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T. Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes. J. Compos. Constr. 2013, 17, 151–161. [Google Scholar] [CrossRef]
- Zeng, J.J.; Guo, Y.C.; Gao, W.Y.; Chen, W.P.; Li, L.J. Stress-strain behavior of concrete in circular concrete columns partially wrapped with FRP strips. Compos. Struct. 2018, 200, 810–828. [Google Scholar] [CrossRef]
- Saadatmanesh, H.; Ehsani, M.R.; Li, M.W. Strength and ductility of concrete columns externally reinforced with fiber composite straps. Struct. J. 1994, 91, 434–447. [Google Scholar]
- Barros, J.A.O.; Ferreira, D.R.S.M. Assessing the efficiency of CFRP discrete confinement systems for concrete cylinders. J. Compos. Constr. 2008, 12, 134–148. [Google Scholar] [CrossRef]
- Zeng, J.J.; Duan, Z.J.; Guo, Y.C.; Xie, Z.H.; Li, L.J. Novel fiber-reinforced polymer cross wrapping strengthening technique: A comparative study. Adv. Struct. Eng. 2019, 23, 979–996. [Google Scholar] [CrossRef]
- Zeng, J.J.; Chen, S.P.; Zhuge, Y.; Gao, W.Y.; Duan, Z.J.; Guo, Y.C. Three-dimensional finite element modeling and theoretical analysis of concrete confined with FRP rings. Eng. Struct. 2021, 234, 111966. [Google Scholar] [CrossRef]
- Zeng, J.J.; Liao, J.J.; Ye, Y.Y.; Guo, Y.C.; Zheng, Y.; Tan, L.H. Behavior of FRP spiral strip-confined concrete under cyclic axial compression. Constr. Build. Mater. 2021, 295, 123544. [Google Scholar] [CrossRef]
- Mai, A.D.; Sheikh, M.N.; Yamakado, K.; Hadi, M.N. S Nonuniform CFRP wrapping to prevent sudden failure of FRP confined square RC columns. J. Compos. Constr. 2020, 24, 04020063. [Google Scholar] [CrossRef]
- Mostafaei, H.; Chamasemani, N.F.; Mashayekhi, M.; Hamzehkolaei, N.S.; Santos, P. Sustainability enhancement and evaluation of a concrete dam using recycling. Appl. Sci. 2025, 15, 2479. [Google Scholar] [CrossRef]
- Möhring, H.C.; Wiederkehr, P.; Lerez, C.; Schmitz, H.; Goldau, H.; Czichy, C. Sensor integrated CFRP structures for intelligent fixtures. Procedia Technol. 2016, 26, 120–128. [Google Scholar] [CrossRef]
- Sneed, L.H.; Verre, S.; Ombres, L.; Carloni, C. Flexural behavior RC beams strengthened and repaired with SRP composite. Eng. Struct. 2022, 258, 114084. [Google Scholar] [CrossRef]
Fiber Type | Standard Tensile Strength (MPa) | Elastic Modulus (GPa) | Elongation After Fracture (%) |
---|---|---|---|
BFRP bar | ≥802 | ≥50 | ≥1.7 |
CFRP bar | ≥1802 | ≥140 | ≥1.6 |
GFRP bar | d ≤ 11 mm, ≥700 | ≥40 | ≥1.7 |
11 ≤ d ≤ 23 mm, ≥600 | ≥1.4 | ||
d ≥ 23 mm, ≥500 | ≥1.2 | ||
AFRP bar | ≥1300 | ≥65 | ≥2.1 |
Fiber Type | Density (g/cm3) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Fracture Strain (%) |
---|---|---|---|---|
CFRP sheets | 1.55–1.76 | 1720–3690 | 120–580 | 0.5–1.9 |
GFRP sheets | 2.11–2.70 | 480–1600 | 35–51 | 1.2–3.1 |
AFRP sheets | 1.28–2.6 | 1720–2540 | 41–125 | 1.9–4.4 |
BFRP sheets | 2.15–2.70 | 1035–1650 | 45–59 | 1.6–3.0 |
PET sheets | 1.44 | 740 | 9–11 | >7.0 |
PEN sheets | 1.41 | 790 | 13–17 | >5.0 |
No. | Reference | Bond Strength Model | Effective Anchorage Length | FRP Sheet Thickness/Stiffness | Concrete Strength | Wet Conditions | Cycling Loading Conditions |
---|---|---|---|---|---|---|---|
1 | Chen &Teng [66] | √ | √ | √ | × | × | |
2 | Lu [67] | √ | √ | √ | × | × | |
3 | Sato [68] | √ | √ | √ | × | × | |
4 | Izumo [69] | × | √ | √ | × | × | |
5 | Gemert [70] | × | × | √ | × | × | |
6 | Chaallal [71] | × | √ | × | × | × | |
7 | Yoshizawa [72] | × | × | × | × | × | |
8 | Wei et al. [73] | × | √ | × | √ | × | |
9 | Chalot et al. [74] | × | × | × | × | √ |
No. | Portion of Total Quantity of GFRP Bars (%) | Nominal Bar Diameter (mm) | Nominal Cross-Sectional Area (mm2) | Guaranteed/Measured Ultimate Tensile Strength (MPa) | Ultimate Tensile Strain (%) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|---|
1 | 50 | 14 | 149 | 850/>900 | 1.6 | 52 |
2 | 25 | 12.45 | 121.7 | 1065/1223 | 3.4 | 50.1 |
3 | 25 | 12.7 | 127 | 900 | 1.8 | 50 |
Requirements | CFRP Sheets | |||
---|---|---|---|---|
Standard Tensile Strength (MPa) | Tensile Elastic Modulus (MPa) | Elongation (%) | Tensile Bond Strength of FRP-Concrete Under Overhead Bonding Condition (MPa) | |
Specification | ≥3400 | ≥240,000 | ≥1.7 | ≥2.5 |
Test value | 4100 | 310,000 | 2.4 | 4.5 |
Requirements | Matching Class A Adhesive | |||||
---|---|---|---|---|---|---|
Standard Tensile Strength (MPa) | Tensile Elastic Modulus (MPa) | Elongation (%) | Flexural Strength (MPa) | Compressive Strength (MPa) | FRP-Concrete Direct Tensile Bond Strength (MPa) | |
Specification | ≥40 | ≥2500 | ≥1.5 | ≥50 | ≥70 | ≥2.5 |
Test value | 49 | 3200 | 2.3 | 62 | 92 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Xiao, F.; Liu, P.; Bai, G.; Pan, L.; Chen, J.; Yan, D. Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review. Buildings 2025, 15, 3558. https://doi.org/10.3390/buildings15193558
Zhao L, Xiao F, Liu P, Bai G, Pan L, Chen J, Yan D. Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review. Buildings. 2025; 15(19):3558. https://doi.org/10.3390/buildings15193558
Chicago/Turabian StyleZhao, Lei, Fangduo Xiao, Pengfei Liu, Guanghui Bai, Litan Pan, Jiankang Chen, and Dongming Yan. 2025. "Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review" Buildings 15, no. 19: 3558. https://doi.org/10.3390/buildings15193558
APA StyleZhao, L., Xiao, F., Liu, P., Bai, G., Pan, L., Chen, J., & Yan, D. (2025). Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review. Buildings, 15(19), 3558. https://doi.org/10.3390/buildings15193558