Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (753)

Search Parameters:
Keywords = return volatilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
54 pages, 2504 KiB  
Article
News Sentiment and Stock Market Dynamics: A Machine Learning Investigation
by Milivoje Davidovic and Jacqueline McCleary
J. Risk Financial Manag. 2025, 18(8), 412; https://doi.org/10.3390/jrfm18080412 - 26 Jul 2025
Viewed by 506
Abstract
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective [...] Read more.
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective or neutral information, with only a small portion carrying subjective or emotive weight. There is a structural market bias toward upswings (bullish market states). Market behavior appears anticipatory rather than reactive: forward-looking implied sentiment captures a substantial share (≈45–50%) of the variation in stock returns. By contrast, sentiment scores, even when disaggregated into firm- and non-firm-specific subscores, lack robust predictive power. However, weekend and holiday sentiment contains modest yet valuable market signals. Algorithm-wise, Gradient Boosting Machine (GBM) stands out in both classification (bullish vs. bearish) and regression tasks. Neither FinBERT news sentiment, historical returns, nor implied volatility offer a consistently exploitable edge over market efficiency. Thus, our findings lend empirical support to both the weak-form and semi-strong forms of the Efficient Market Hypothesis. In the realm of exploitable trading strategies, markets remain an enigma against systematic alpha. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

26 pages, 4918 KiB  
Article
Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations
by Pathairat Pastpipatkul and Htwe Ko
Int. J. Financial Stud. 2025, 13(3), 134; https://doi.org/10.3390/ijfs13030134 - 22 Jul 2025
Viewed by 446
Abstract
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets [...] Read more.
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets during the Trump (2017–2020) and Biden (2021–2024) governments. The 48-week return forecast of the Bitcoin–Gold correlation was also conducted by using the Bayesian Structural Time Series (BSTS) model. Results indicate that Bitcoin was the most volatile asset, while the U.S. Dollar remained the least volatile under both regimes. Under Trump, U.S. Dollar significantly influenced Oil and Bitcoin while Bitcoin and Gold were negatively linked to Oil and positively associated with U.S. Dollar. An inverse relationship between Bitcoin and Gold also emerged. Under Biden, Bitcoin, Gold, and U.S. Dollar all significantly affected Oil with Bitcoin showing a positive impact. Bitcoin and Gold remained negatively correlated though not significantly, and the Dollar maintained positive ties with both. Forecasts show a positive link between Bitcoin and Gold in the coming year. However, Bitcoin does not exhibit consistent characteristics of a safe-haven asset during the U.S. presidential transitions examined, largely due to its high volatility and unstable correlations with a traditional safe-haven asset, Gold. This study contributes to the understanding of shifting relationships between digital and traditional assets across political regimes. Full article
Show Figures

Figure 1

25 pages, 10024 KiB  
Article
Forecasting with a Bivariate Hysteretic Time Series Model Incorporating Asymmetric Volatility and Dynamic Correlations
by Hong Thi Than
Entropy 2025, 27(7), 771; https://doi.org/10.3390/e27070771 - 21 Jul 2025
Viewed by 220
Abstract
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the [...] Read more.
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the model to account for both asymmetric volatility and evolving correlation patterns over time. We adopt a fully Bayesian inference approach using adaptive Markov chain Monte Carlo (MCMC) techniques, allowing for the joint estimation of model parameters, Value-at-Risk (VaR), and Marginal Expected Shortfall (MES). The accuracy of VaR forecasts is assessed through two standard backtesting procedures. Our empirical analysis involves both simulated data and real-world financial datasets to evaluate the model’s effectiveness in capturing downside risk dynamics. We demonstrate the application of the proposed method on three pairs of daily log returns involving the S&P500, Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS), present the results obtained, and compare them against the original model framework. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

18 pages, 1349 KiB  
Article
Analysing Market Volatility and Economic Policy Uncertainty of South Africa with BRIC and the USA During COVID-19
by Thokozane Ramakau, Daniel Mokatsanyane, Sune Ferreira-Schenk and Kago Matlhaku
J. Risk Financial Manag. 2025, 18(7), 400; https://doi.org/10.3390/jrfm18070400 - 19 Jul 2025
Viewed by 385
Abstract
The contagious COVID-19 disease not only brought about a global health crisis but also a disruption in the global economy. The uncertainty levels regarding the impact of the disease increased volatility. This study analyses stock market volatility and Economic Policy Uncertainty (EPU) of [...] Read more.
The contagious COVID-19 disease not only brought about a global health crisis but also a disruption in the global economy. The uncertainty levels regarding the impact of the disease increased volatility. This study analyses stock market volatility and Economic Policy Uncertainty (EPU) of South Africa (SA) with that of the United States of America (USA) and Brazil, Russia, India, and China (BRIC) during the COVID-19 pandemic. The study aims to analyse volatility spillovers from a developed market (USA) to emerging markets (BRIC countries) and also to examine the causality between EPU and stock returns during the COVID-19 pandemic. By employing the GARCH-in-Mean model from a sample of daily returns of national equity market indices from 1 January 2020 to 31 March 2022, SA and China are shown to be the most volatile during the pandemic. By using the diagonal Baba, Engle, Kraft, and Kroner (BEKK) model to analyse spillover effects, evidence of spillover effects from the US to the emerging countries is small but statistically significant, with SA showing the strongest impact from US market shocks. From the Granger causality test, Brazil’s and India’s equity markets are shown to be highly sensitive to changes in EPU relative to the other countries. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
Financial Market Resilience in the GCC: Evidence from COVID-19 and the Russia–Ukraine Conflict
by Farrukh Nawaz, Christopher Gan, Maaz Khan and Umar Kayani
J. Risk Financial Manag. 2025, 18(7), 398; https://doi.org/10.3390/jrfm18070398 - 19 Jul 2025
Viewed by 371
Abstract
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, [...] Read more.
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, but less is known about the comparative dynamics within the Gulf Cooperation Council (GCC) markets. Our study investigated volatility and asymmetric behavior within GCC stock markets during both crises. Furthermore, the econometric model E-GARCH(1,1) was applied to the daily frequency data of financial stock market returns from 11 March 2020 to 31 July 2023. This study examined volatility fluctuation patterns and provides a comparative assessment of GCC stock markets’ behavior during crises. Our findings reveal varying degrees of market volatility across the region during the COVID-19 crisis, with Qatar and the UAE exhibiting the highest levels of volatility persistence. In contrast, the Russia–Ukraine conflict has had a distinct effect on GCC markets, with Oman exhibiting the highest volatility persistence and Kuwait having the lowest volatility persistence. This study provides significant insights for policymakers and investors in managing risk and enhancing market resilience during economic and geopolitical uncertainty. Full article
(This article belongs to the Special Issue Behavioral Finance and Financial Management)
Show Figures

Figure 1

20 pages, 546 KiB  
Article
Geopolitical Risk and Its Influence on Egyptian Non-Financial Firms’ Performance: The Moderating Role of FinTech
by Bashar Abu Khalaf, Munirah Sarhan AlQahtani, Maryam Saad Al-Naimi and Meya Mardini
FinTech 2025, 4(3), 30; https://doi.org/10.3390/fintech4030030 - 18 Jul 2025
Viewed by 309
Abstract
This study investigates the impact of geopolitical risk, firm characteristics, and macroeconomic variables on the performance of non-financial firms listed on the Egyptian Stock Exchange. The study analyzes a panel dataset consisting of 182 Egyptian firms over the period 2014–2023. Using the panel [...] Read more.
This study investigates the impact of geopolitical risk, firm characteristics, and macroeconomic variables on the performance of non-financial firms listed on the Egyptian Stock Exchange. The study analyzes a panel dataset consisting of 182 Egyptian firms over the period 2014–2023. Using the panel Generalized Method of Moments (GMM) regression technique, the study examines the effect of geopolitical risk on the return on assets. This study controls for firm characteristics such as liquidity, leverage, and growth opportunities and controls for macroeconomic variables such as inflation and GDP. This empirical evidence investigates the moderating role of FinTech on such relationship. The results reveal a significant and negative relationship between geopolitical risk and firms’ performance. Liquidity, growth opportunities, and inflation show positive and significant impacts. In contrast, leverage and GDP demonstrate significant negative relationships. Remarkably, FinTech moderates the relationship significantly and positively. Therefore, investors ought to proceed with prudence when positioning cash within elevated political volatility. The significant positive moderating effect of FinTech on this connection provides a vital strategic insight: enterprises with enhanced FinTech integration may demonstrate increased resilience to geopolitical shocks. Full article
Show Figures

Figure 1

14 pages, 629 KiB  
Article
In Vitro Evaluation of Enhanced Efficiency Nitrogen Fertilizers Using Two Different Soils
by Samuel Okai, Xinhua Yin, Lori Allison Duncan, Daniel Yoder, Debasish Saha, Forbes Walker, Sydney Logwood, Jones Akuaku and Nutifafa Adotey
Soil Syst. 2025, 9(3), 80; https://doi.org/10.3390/soilsystems9030080 - 16 Jul 2025
Viewed by 211
Abstract
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have [...] Read more.
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have investigated the performance of urea- and urea ammonium nitrate (UAN)-based EENF on soils with contrasting properties. Controlled-environment incubation experiments were conducted on two soils with different properties to evaluate the efficacy of urea and UAN forms of EENF to minimize ammonia volatilization losses. The experiments were set up as a completely randomized design, with seven treatments replicated four times for 16 days. The N treatments, which were surface-applied at 134 kg N ha−1, included untreated urea, untreated UAN, urea+ANVOLTM (urease inhibitor product), UAN+ANVOLTM, environmentally smart nitrogen (ESN®), SUPERU® (urease and nitrification inhibitor product), and urea+Excelis® (urease and nitrification inhibitor product). In this study, urea was more susceptible to ammonia loss (24.12 and 26.49% of applied N) than UAN (5.24 and 16.17% of applied N), with lower ammonia volatility from soil with a pH of 5.8 when compared to 7.0. Urea-based EENF products performed better in soil with a pH of 5.8 compared to the soil with pH 7.0, except for ESN, which was not influenced by pH. In contrast, the UAN-based EENF was more effective in the high-pH soil (7.0). Across both soils, all EENFs reduced cumulative ammonia loss by 32–91% in urea and 27–70% in UAN, respectively, when compared to their untreated forms. The urea-based EENF formulations containing both nitrification and urease inhibitors were the least effective among the EENF types, performing particularly poorly in high-pH soil (pH 7.0). In conclusion, the efficacy of EENF is dependent on soil pH, N source, and the form of EENF. These findings underscore the importance of tailoring EENF applications to specific soil conditions and N sources to optimize N use efficiency (NUE), enhance economic returns for producers, and minimize environmental impacts. Full article
Show Figures

Figure 1

27 pages, 792 KiB  
Article
The Role of Human Capital in Explaining Asset Return Dynamics in the Indian Stock Market During the COVID Era
by Eleftherios Thalassinos, Naveed Khan, Mustafa Afeef, Hassan Zada and Shakeel Ahmed
Risks 2025, 13(7), 136; https://doi.org/10.3390/risks13070136 - 11 Jul 2025
Viewed by 1032
Abstract
Over the past decade, multifactor models have shown enhanced capability compared to single-factor models in explaining asset return variability. Given the common assertion that higher risk tends to yield higher returns, this study empirically examines the augmented human capital six-factor model’s performance on [...] Read more.
Over the past decade, multifactor models have shown enhanced capability compared to single-factor models in explaining asset return variability. Given the common assertion that higher risk tends to yield higher returns, this study empirically examines the augmented human capital six-factor model’s performance on thirty-two portfolios of non-financial firms sorted by size, value, profitability, investment, and labor income growth in the Indian market over the period July 2010 to June 2023. Moreover, the current study extends the Fama and French five-factor model by incorporating a human capital proxy by labor income growth as an additional factor thereby proposing an augmented six-factor asset pricing model (HC6FM). The Fama and MacBeth two-step estimation methodology is employed for the empirical analysis. The results reveal that small-cap portfolios yield significantly higher returns than large-cap portfolios. Moreover, all six factors significantly explain the time-series variation in excess portfolio returns. Our findings reveal that the Indian stock market experienced heightened volatility during the COVID-19 pandemic, leading to a decline in the six-factor model’s efficiency in explaining returns. Furthermore, Gibbons, Ross, and Shanken (GRS) test results reveal mispricing of portfolio returns during COVID-19, with a stronger rejection of portfolio efficiency across models. However, the HC6FM consistently shows lower pricing errors and better performance, specifically during and after the pandemic era. Overall, the results offer important insights for policymakers, investors, and portfolio managers in optimizing portfolio selection, particularly during periods of heightened market uncertainty. Full article
Show Figures

Figure 1

16 pages, 1792 KiB  
Article
The Russia–Ukraine Conflict and Stock Markets: Risk and Spillovers
by Maria Leone, Alberto Manelli and Roberta Pace
Risks 2025, 13(7), 130; https://doi.org/10.3390/risks13070130 - 4 Jul 2025
Viewed by 667
Abstract
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of [...] Read more.
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of each country. Alongside oil and gold, the main commodities traded include industrial metals, such as aluminum and copper, mineral products such as gas, electrical and electronic components, agricultural products, and precious metals. The conflict between Russia and Ukraine tested the unification of markets, given that these are countries with notable raw materials and are strongly dedicated to exports. This suggests that commodity prices were able to influence the stock markets, especially in the countries most closely linked to the two belligerents in terms of import-export. Given the importance of industrial metals in this period of energy transition, the aim of our study is to analyze whether Industrial Metals volatility affects G7 stock markets. To this end, the BEKK-GARCH model is used. The sample period spans from 3 January 2018 to 17 September 2024. The results show that lagged shocks and volatility significantly and positively influence the current conditional volatility of commodity and stock returns during all periods. In fact, past shocks inversely influence the current volatility of stock indices in periods when external events disrupt financial markets. The results show a non-linear and positive impact of commodity volatility on the implied volatility of the stock markets. The findings suggest that the war significantly affected stock prices and exacerbated volatility, so investors should diversify their portfolios to maximize returns and reduce risk differently in times of crisis, and a lack of diversification of raw materials is a risky factor for investors. Full article
(This article belongs to the Special Issue Risk Management in Financial and Commodity Markets)
Show Figures

Figure 1

17 pages, 632 KiB  
Article
Modeling Sustainable Economic Decisions Under Uncertainty: A Robust Optimization Framework via Nonlinear Scalarization
by Florentin Șerban and Silvia Dedu
Sustainability 2025, 17(13), 6157; https://doi.org/10.3390/su17136157 - 4 Jul 2025
Viewed by 294
Abstract
Sustainable economic decision making increasingly requires robust methodologies capable of withstanding deep uncertainty, particularly in volatile financial and resource-constrained environments. This paper introduces a unified optimization framework based on nonlinear scalarizing functionals, designed to support resilient planning under structural ambiguity. By integrating performance [...] Read more.
Sustainable economic decision making increasingly requires robust methodologies capable of withstanding deep uncertainty, particularly in volatile financial and resource-constrained environments. This paper introduces a unified optimization framework based on nonlinear scalarizing functionals, designed to support resilient planning under structural ambiguity. By integrating performance objectives with risk boundaries, the proposed model generalizes classical robustness paradigms—such as strict and reliable robustness—into a single tractable and economically interpretable formulation. A key innovation lies in translating scenario-based uncertainty into a directional performance index, aligned with stakeholder-defined sustainability criteria and encoded via a preference vector k. This scalarization approach supports behaviorally consistent and computationally efficient decision-making even in the absence of complete probabilistic information. A case study in multi-scenario portfolio allocation demonstrates the model’s capacity to maintain return stability while respecting predefined risk tolerances. Computational benchmarks confirm the framework’s scalability to larger problem instances, validating its practical applicability. Beyond financial applications, the model also holds promise for sustainable policy design, infrastructure planning, and resource allocation under deep uncertainty. This work contributes to bridging the gap between abstract optimization theory and applied sustainability challenges, offering a robust and adaptive decision-support tool for real-world implementation. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

18 pages, 836 KiB  
Article
Training Set Optimization for Machine Learning in Day Trading: A New Financial Indicator
by Angelo Darcy Molin Brun and Adriano César Machado Pereira
Int. J. Financial Stud. 2025, 13(3), 121; https://doi.org/10.3390/ijfs13030121 - 2 Jul 2025
Viewed by 483
Abstract
Predicting and trading assets in the global financial market represents a complex challenge driven by the dynamic and volatile nature of the sector. This study proposes a day trading strategy that optimizes asset purchase and sale parameters using differential evolution. To this end, [...] Read more.
Predicting and trading assets in the global financial market represents a complex challenge driven by the dynamic and volatile nature of the sector. This study proposes a day trading strategy that optimizes asset purchase and sale parameters using differential evolution. To this end, an innovative financial indicator was developed, and machine learning models were employed to improve returns. The work highlights the importance of optimizing training sets for machine learning algorithms based on probable asset behaviors (scenarios), which allows the development of a robust model for day trading. The empirical results demonstrate that the LSTM algorithm excelled, achieving approximately 98% higher returns and an 82% reduction in DrawDown compared to asset variation. The proposed indicator tracks asset fluctuation with comparable gains and exhibits lower variability in returns, offering a significant advantage in risk management. The strategy proves to be adaptable to periods of turbulence and economic changes, which is crucial in emerging and volatile markets. Full article
Show Figures

Figure 1

21 pages, 1175 KiB  
Article
The Effects of ESG Scores and ESG Momentum on Stock Returns and Volatility: Evidence from U.S. Markets
by Luis Jacob Escobar-Saldívar, Dacio Villarreal-Samaniego and Roberto J. Santillán-Salgado
J. Risk Financial Manag. 2025, 18(7), 367; https://doi.org/10.3390/jrfm18070367 - 2 Jul 2025
Viewed by 1156
Abstract
The impact of Environmental, Social, and Governance (ESG) scores on financial performance remains a subject of debate, as the literature reports mixed evidence regarding their effect on stock returns. This research aims to examine the relationship between ESG ratings and the change in [...] Read more.
The impact of Environmental, Social, and Governance (ESG) scores on financial performance remains a subject of debate, as the literature reports mixed evidence regarding their effect on stock returns. This research aims to examine the relationship between ESG ratings and the change in ESG scores, or ESG Momentum, concerning both returns and risk of a large sample of stocks traded on U.S. exchanges. The study examined a sample of 3856 stocks traded on U.S. exchanges, considering 20 years of quarterly data from December 2002 to December 2022. We applied multi-factor models and tested them through pooled ordinary, fixed effects, and random effects panel regression methods. Our results show negative relationships between ESG scores and stock returns and between ESG Momentum and volatility. Contrarily, we find positive associations between ESG Momentum and returns and between ESG scores and volatility. Although high ESG scores are generally associated with lower long-term stock returns, an increase in a company’s ESG rating tends to translate into immediate positive returns and reduced risk. Accordingly, investors may benefit from strategies that focus on companies actively improving their ESG performance, while firms themselves stand to gain by signaling continuous advancement in ESG-related areas. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

13 pages, 2983 KiB  
Article
AI-Driven Intelligent Financial Forecasting: A Comparative Study of Advanced Deep Learning Models for Long-Term Stock Market Prediction
by Sira Yongchareon
Mach. Learn. Knowl. Extr. 2025, 7(3), 61; https://doi.org/10.3390/make7030061 - 1 Jul 2025
Viewed by 953
Abstract
The integration of artificial intelligence (AI) and advanced deep learning techniques is reshaping intelligent financial forecasting and decision-support systems. This study presents a comprehensive comparative analysis of advanced deep learning models, including state-of-the-art transformer architectures and established non-transformer approaches, for long-term stock market [...] Read more.
The integration of artificial intelligence (AI) and advanced deep learning techniques is reshaping intelligent financial forecasting and decision-support systems. This study presents a comprehensive comparative analysis of advanced deep learning models, including state-of-the-art transformer architectures and established non-transformer approaches, for long-term stock market index prediction. Utilizing historical data from major global indices (S&P 500, NASDAQ, and Hang Seng), we evaluate ten models across multiple forecasting horizons. A dual-metric evaluation framework is employed, combining traditional predictive accuracy metrics with critical financial performance indicators such as returns, volatility, maximum drawdown, and the Sharpe ratio. Statistical validation through the Mann–Whitney U test ensures robust differentiation in model performance. The results highlight that model effectiveness varies significantly with forecasting horizons and market conditions—where transformer-based models like PatchTST excel in short-term forecasts, while simpler architectures demonstrate greater stability over extended periods. This research offers actionable insights for the development of AI-driven intelligent financial forecasting systems, enhancing risk-aware investment strategies and supporting practical applications in FinTech and smart financial analytics. Full article
Show Figures

Figure 1

21 pages, 699 KiB  
Article
Stock Market Hype: An Empirical Investigation of the Impact of Overconfidence on Meme Stock Valuation
by Richard Mawulawoe Ahadzie, Peterson Owusu Junior, John Kingsley Woode and Dan Daugaard
Risks 2025, 13(7), 127; https://doi.org/10.3390/risks13070127 - 1 Jul 2025
Viewed by 810
Abstract
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A [...] Read more.
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A range of overconfidence proxies is employed, including changes in trading volume, turnover rate, changes in outstanding shares, and alternative measures of excessive trading. We observe a significant positive relationship between overconfidence (as measured by changes in trading volume) and firm valuation, suggesting that investor biases contribute to notable pricing distortions. Leverage has a significant negative relationship with firm valuation. In contrast, market capitalization has a significant positive relationship with firm valuation, implying that meme stock investors respond to both speculative sentiment and traditional firm fundamentals. Robustness checks using alternative proxies reveal that turnover rate and changes in the number of shares are negatively related to valuation. This shows the complex dynamics of meme stocks, where psychological factors intersect with firm-specific indicators. However, results from a dynamic panel model estimated using the Dynamic System Generalized Method of Moments (GMM) show that the turnover rate has a significantly positive relationship with firm valuation. These results offer valuable insights into the pricing behavior of meme stocks, revealing how investor sentiment impacts periodic valuation adjustments in speculative markets. Full article
(This article belongs to the Special Issue Theoretical and Empirical Asset Pricing)
Show Figures

Figure 1

Back to TopTop