Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = return activated sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3819 KiB  
Article
Sustainable Remediation of Polluted Soils from the Oil Industry Using Sludge from Municipal Wastewater Treatment Plants
by Cristian Mugurel Iorga, Lucian Puiu Georgescu, Constantin Ungureanu and Mihaela Marilena Stancu
Processes 2025, 13(1), 245; https://doi.org/10.3390/pr13010245 - 16 Jan 2025
Cited by 2 | Viewed by 1276
Abstract
Soil pollution with hydrocarbons is a consequence of activities associated with the petroleum industry and related sectors. The effects of petroleum pollution are devastating, making the remediation of contaminated sites imperative. Consequently, soil decontamination represents a significant and costly challenge for the petroleum [...] Read more.
Soil pollution with hydrocarbons is a consequence of activities associated with the petroleum industry and related sectors. The effects of petroleum pollution are devastating, making the remediation of contaminated sites imperative. Consequently, soil decontamination represents a significant and costly challenge for the petroleum industry. The article proposes a dual-recovery bioremediation solution that is both efficient and cost-effective, exploring the potential use of dehydrated sewage sludge from municipal wastewater treatment plants to treat petroleum-contaminated soils. Over the three-month bioremediation experiment, changes in the density of indigenous bacteria in petroleum-contaminated soil samples, treated or untreated with sludge, were monitored along with the reduction in petroleum hydrocarbon concentrations. In parallel, the evolution of other contaminants, such as heavy metals, was monitored during the bioremediation experiment. Geotechnical tests were also conducted to evaluate the feasibility of returning the treated soil to its original location after the bioremediation experiment. Our results demonstrate that the proposed method effectively addresses both the remediation of petroleum-contaminated soils (hazardous waste) and the reuse of sewage sludge from municipal wastewater treatment plants. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

23 pages, 6263 KiB  
Article
Submerged Membrane Bioreactor Configurations for Biological Nutrient Removal from Urban Wastewater: Experimental Tests and Model Simulation
by Javier A. Mouthón-Bello, Oscar E. Coronado-Hernández and Vicente S. Fuertes-Miquel
Environments 2024, 11(11), 260; https://doi.org/10.3390/environments11110260 - 20 Nov 2024
Viewed by 1566
Abstract
Pilot-scale experimental measurements and simulations were utilised to evaluate the nutrient removal efficiency of three submerged membrane bioreactor designs. This study compared setups with post- and pre-denitrification processes. A 625 L pilot plant for treating primary effluent provided the operational data necessary for [...] Read more.
Pilot-scale experimental measurements and simulations were utilised to evaluate the nutrient removal efficiency of three submerged membrane bioreactor designs. This study compared setups with post- and pre-denitrification processes. A 625 L pilot plant for treating primary effluent provided the operational data necessary for calibrating the activated sludge model, specifically for chemical oxygen demand and nitrogen removal under steady-state flow. Identical influent conditions were maintained for all configurations while varying the sludge retention times (from 5 to 100 d), hydraulic retention times (ranging from 4 to 15 h), return activated sludge flow rates (between 0.1 and 3.0), and aerobic volume fractions (from 0.3 to 1.0). The pilot plant tests showed high COD and ammonia removal (above 90%) but moderate total nitrogen removal (above 70%). The simulation results successfully forecasted the effluent concentrations of COD and nitrogen for each configuration. There were noticeable variations in the kinetic parameters, such as mass transfer coefficients and biomass decay rates, related to the activated sludge model. However, increasing the sludge retention time beyond 20 d, hydraulic retention time beyond 8 h, return activated sludge rates above 2.0, or aerobic volume fractions beyond 0.4 did not significantly enhance nutrient removal. The post-denitrification setup showed a clear benefit in nitrogen removal but required a greater oxygen supply. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water)
Show Figures

Figure 1

35 pages, 8651 KiB  
Review
How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment
by Gabriel Pérez-Lucas and Simón Navarro
J. Xenobiot. 2024, 14(4), 1343-1377; https://doi.org/10.3390/jox14040076 - 1 Oct 2024
Cited by 9 | Viewed by 3412
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found [...] Read more.
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil–plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

16 pages, 4004 KiB  
Article
An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration
by Atef El Jery, Houman Kosarirad, Nedasadat Taheri, Maryam Bagheri, Moutaz Aldrdery, Abubakr Elkhaleefa, Chongqing Wang and Saad Sh. Sammen
Sustainability 2023, 15(17), 12875; https://doi.org/10.3390/su151712875 - 25 Aug 2023
Cited by 7 | Viewed by 2284
Abstract
This research examines whether ultrasonic waves can enhance the hydrolysis, stability, and dewatering of activated sludge from raw urban wastewater. Sampling and physical examination of the activated sludge that was returned to the aeration pond were carried out using ultrasonic waves that were [...] Read more.
This research examines whether ultrasonic waves can enhance the hydrolysis, stability, and dewatering of activated sludge from raw urban wastewater. Sampling and physical examination of the activated sludge that was returned to the aeration pond were carried out using ultrasonic waves that were guided at frequencies of 30 and 50 kHz for periods of 0.5, 1, 3, 5, 10, 15, and 30 min. Various tests, including volatile suspended solids, inorganic solids, volatile solids, sludge resistant time, capillary suction time, total suspended solids, total solids, and volatile soluble solids, were carried out to advance further the processes of hydrolysis, stabilization, and dehydration of samples. According to the observations, the volatile soluble solids at a frequency of 30 kHz and t=15 min were raised by 72%. The capillary suction time of 30 and 50 kHz in 1 min demonstrated a drop of 29 and 22%, respectively. It is crucial to consider that, at 10 min and the frequency of 50 kHz, the greatest efficiency was found. The 30 kHz and 1 min yielded the optimum sludge dewatering conditions. Finally, artificial neural networks (ANN) are utilized to propose predictive models for concentration, and the results were also very accurate (MAE=1.37%). Regarding the computational costs, the ANN took approximately 5% of the time spent on experiments. Full article
Show Figures

Figure 1

14 pages, 2767 KiB  
Article
Upgrading the MBBR Process to Reduce Excess Sludge Production in Activated Sludge System Treating Sewage
by Duaa Natheer Khudhair, Majid Hosseinzadeh, Haider M. Zwain, Seyed Mostafa Siadatmousavi, Ali Majdi and Amin Mojiri
Water 2023, 15(3), 408; https://doi.org/10.3390/w15030408 - 19 Jan 2023
Cited by 9 | Viewed by 7533
Abstract
Excess sludge production is one of the limitations of the biological activated sludge process. Therefore, the study’s objective is to upgrade the MBBR process to an integrated fixed film-activated sludge (IFAS) process to reduce excess sludge production. Two scenarios were followed in this [...] Read more.
Excess sludge production is one of the limitations of the biological activated sludge process. Therefore, the study’s objective is to upgrade the MBBR process to an integrated fixed film-activated sludge (IFAS) process to reduce excess sludge production. Two scenarios were followed in this study to eliminate sludge production in the biological activated sludge process: first, modifying the moving bed biofilm reactor (MBBR) system by increasing the solid retention time (SRT) from 5 to 15 days; and second, upgrading the MBBR process to the integrated fixed-film activated sludge (IFAS) process by applying return activated sludge (RAS) of 50, 100 and 150% with operating hydraulic retention time (HRT) of 6, 12, 14 and 20 h. The results revealed that the first scenario reduced sludge production from 750 to 150 g/day, whereas the second scenario eliminated sludge generation. In the second scenario, operating the system as an IFAS process with complete SRT has eliminated sludge due to sludge decay and cell lysis. In part 3 of the second scenario, the results also showed that the system achieved low effluent pollutants concentrations of 3, 12, 8 and 45 mg/L for BOD, COD, TSS and NO3, respectively. Operating at complete SRT may eliminate sludge production but also result in higher NO3 effluent concentration due to the production of NH3 from sludge decay and cell lysis. To conclude, sludge elimination in an activated sludge system is possible by carefully controlling the process and applying RAS without additional treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 4158 KiB  
Article
Revisiting the Solid Flux Theory
by Giorgio Baiamonte and Cristina Baiamonte
Soil Syst. 2022, 6(4), 91; https://doi.org/10.3390/soilsystems6040091 - 30 Nov 2022
Viewed by 3712
Abstract
Several variations of the basic activated sludge process and of the related design procedures for final clarifiers have been developed, which are frequently based on the well-known solid flux theory (SFT). In this paper, by using the Lambert W function and a “virtual” [...] Read more.
Several variations of the basic activated sludge process and of the related design procedures for final clarifiers have been developed, which are frequently based on the well-known solid flux theory (SFT). In this paper, by using the Lambert W function and a “virtual” solid flux corresponding to the Vesilind parameters’ ratio, the SFT is reformulated, and dimensionless groups are detected, which highly reduce the number of parameters that are involved in the final clarifiers’ design procedure. The derived dimensionless relationships and the corresponding plots have general validity since they can be applied to all the possible design/verification parameter combinations. Moreover, it is shown that for any input dataset, the suitable domains of the SS concentration and of the solid flux can be simply expressed by the two branches of the Lambert W function. By using data retrieved from the literature, several numerical applications and validations of the dimensionless relationships are performed. Finally, it is shown that by introducing in the SFT a new reduction hydrodynamic factor, ρR, to be applied to the modified return flow formula rather than to the limiting solid flux as in the past, a significant improvement in the comparison between the results by theory and by experiments can be obtained. Full article
Show Figures

Figure 1

4 pages, 988 KiB  
Proceeding Paper
Application of Oxic-Settling-Anaerobic (OSA) Process for Excess Sludge Reduction and Valorization: A Pilot Plant Experiment
by Santo Fabio Corsino, Alida Cosenza, Federica De Marines, Daniele Di Trapani, Alice Sorrenti, Francesco Traina, Michele Torregrossa and Gaspare Viviani
Environ. Sci. Proc. 2022, 21(1), 21; https://doi.org/10.3390/environsciproc2022021021 - 19 Oct 2022
Viewed by 1266
Abstract
In this study, the effects of different operating conditions on excess sludge minimization in an oxic-settling-anaerobic (OSA) process were evaluated. The experiment involved two systems operating in parallel, one implementing the OSA process and a conventional activated sludge (CAS) system as control, both [...] Read more.
In this study, the effects of different operating conditions on excess sludge minimization in an oxic-settling-anaerobic (OSA) process were evaluated. The experiment involved two systems operating in parallel, one implementing the OSA process and a conventional activated sludge (CAS) system as control, both configured according to a pre-denitrification scheme. Five periods (P1–P5) were studied, during which the OSA was operated under different layouts, which differed from the returned sludge to the anoxic (A) or aerobic (B) mainstream reactors and the hydraulic retention time in the anaerobic reactor of the OSA system (8–12 h). The excess sludge production in the OSA plant was lower in all the investigated configurations, indicating that successful sludge minimization was achieved. Specifically, the sludge production was lowered by approximately 12% (P1), 29% (P2), 40% (P3), 26% (P4) and 41% (P5). Scheme A enabled the establishment of the uncoupling metabolism and the extracellular polymeric substance (EPS) destructuration. In contrast, scheme B enabled the establishment of the maintenance metabolism in addition to the uncoupling metabolisms, whereas cell lysis and EPS destruction were minimized. This allowed for obtaining higher sludge reduction yield (26–40%) without compromising the effluent quality. Full article
Show Figures

Figure 1

11 pages, 967 KiB  
Article
Efficiency of Sidestream Nitritation for Modern Two-Stage Activated Sludge Plants
by Thomas Baumgartner, Lydia Jahn, Vanessa Parravicini, Karl Svardal and Jörg Krampe
Int. J. Environ. Res. Public Health 2022, 19(19), 12871; https://doi.org/10.3390/ijerph191912871 - 8 Oct 2022
Cited by 4 | Viewed by 1658
Abstract
The operational costs of wastewater treatment plants (WWTPs) are mainly driven by electric power consumption, making the energy-efficient operation an all-time present target for engineers and operators. A well known approach to reduce the demand for purchased electricity is the operation of an [...] Read more.
The operational costs of wastewater treatment plants (WWTPs) are mainly driven by electric power consumption, making the energy-efficient operation an all-time present target for engineers and operators. A well known approach to reduce the demand for purchased electricity is the operation of an anaerobic sludge stabilisation process. Although anaerobic digesters make it possible to recover large quantities of energy-rich methane gas, additional strategies are required to handle the increased internal return flow of nitrogen, which arises with the sludge dewatering effluent (SDE). SDE treatment increases the oxygen demand and in turn the energy required for aeration. In this study, different SDE treatment processes were compared with regard to the treatment in mainstream, sidestream nitritation, as well as nitritation combined with anammox for two-stage and single-stage WWTPs. Although SDE treatment in sidestream nitritation was found to have no effect on the energy demand of single-stage WWTPs, this concept allows the treatment capacity in the activated sludge tank to be raised, while contributing to a high nitrogen removal under carbon limitation. In contrast, SDE sidestream treatment showed great potential for saving energy at two-stage WWTPs, whereby sidestream nitritation and the further treatment in the first stage was found to be the most efficient concept, with a savings of approx. 11% of the aeration energy. Full article
(This article belongs to the Special Issue Second Edition of Municipal Wastewater Treatment)
Show Figures

Figure 1

13 pages, 3153 KiB  
Article
Identification and Classification of the Dissolved Substances from Sludge Biochar and Their Effects on the Activity of Acid Phosphomonoesterase
by Junyuan Zhang, Yang Liu, Bowen Li, Chunling Tan, Dandan Zhou, Martina G. Vijver and Willie J. G. M. Peijnenburg
Sustainability 2022, 14(15), 9749; https://doi.org/10.3390/su14159749 - 8 Aug 2022
Viewed by 1801
Abstract
Soil extra-cellular enzymes are the main driving force for microbial and biochemical processes, which makes them sensitive indicators for soil health and quality. Returning large amounts of sludge or its biochar to farmland may introduce exogenous substances into soil and have a significant [...] Read more.
Soil extra-cellular enzymes are the main driving force for microbial and biochemical processes, which makes them sensitive indicators for soil health and quality. Returning large amounts of sludge or its biochar to farmland may introduce exogenous substances into soil and have a significant impact on soil enzymatic activity. This study aimed to evaluate the effects of substances dissolved from sludge biomass and its biochar added at different amounts and produced at various temperatures (200 °C, 300 °C, and 450 °C) on the activity of acid phosphomonoesterase. Results showed that the activity of acid phosphomonoesterase was significantly inhibited by these dissolved substances from biochar pyrolyzed at different temperatures, especially at high concentrations of 50 mgC L−1 and upon the exposure to DBC200. The conformation of acid phosphomonoesterase became loose and flexible after exposure to dissolved organic matter (DOM) extracted from biochar in terms of reduced α-Helix contents and increased β-Turn contents as deduced from circular dichroism spectra. According to the results of multiple linear regression, it can be concluded that the increased contents of arsenic as well as protein-like components within dissolved substances may be responsible for the inhibited enzymatic activities and the altered enzymatic conformation. Our findings provide evidence that the pyrolysis of sludge at a higher temperature would be helpful to reduce its negative impacts on the soil ecosystem. Full article
Show Figures

Figure 1

12 pages, 1990 KiB  
Article
Bacterial Community Composition and Function in a Tropical Municipal Wastewater Treatment Plant
by Yaqiong Gu, Beiying Li, Xiang Zhong, Conghe Liu and Bin Ma
Water 2022, 14(10), 1537; https://doi.org/10.3390/w14101537 - 11 May 2022
Cited by 29 | Viewed by 3983
Abstract
Bacterial diversity and community composition are of great importance in wastewater treatment; however, little is known about the diversity and community structure of bacteria in tropical municipal wastewater treatment plants (WWTPs). Therefore, in this study, activated sludge samples were collected from the return [...] Read more.
Bacterial diversity and community composition are of great importance in wastewater treatment; however, little is known about the diversity and community structure of bacteria in tropical municipal wastewater treatment plants (WWTPs). Therefore, in this study, activated sludge samples were collected from the return sludge, anaerobic sludge, anoxic sludge, and aerobic sludge of an A2O WWTP in Haikou, China. Illumina MiSeq high-throughput sequencing was used to examine the 16S ribosomal RNA (rRNA) of bacteria in the samples. The microbial community diversity in this tropical WWTP was higher than in temperate, subtropical, and plateau WWTPs. Proteobacteria, Bacteroidota, Patescibacteria, and Chloroflexi were the dominant phyla. Nitrification bacteria Nitrosomonas, and Nitrospira were also detected. Tetrasphaera, instead of Candidatus Accumulibacter, were the dominant polyphosphate accumulating organisms (PAOs), while, glycogen accumulating organisms (GAOs), such as Candidatus Competibacter and Defluviicoccus were also detected. The bacterial community functions predicted by PICRUSt2 were related to metabolism, genetic information processing, and environmental information processing. This study provides a reference for the optimization of tropical municipal WWTPs. Full article
Show Figures

Figure 1

15 pages, 880 KiB  
Article
Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System
by Xuefei Yang and Víctor López-Grimau
Membranes 2021, 11(11), 892; https://doi.org/10.3390/membranes11110892 - 19 Nov 2021
Cited by 13 | Viewed by 4885
Abstract
A hybrid Moving Bed Biofilm Reactor—Membrane Bioreactor (MBBR-MBR) was developed for the treatment of wastewater from a Spanish textile company. Compared with conventional activated sludge (CAS) treatment, the feasibility of this hybrid system to reduce economic and environmental impact on an industrial scale [...] Read more.
A hybrid Moving Bed Biofilm Reactor—Membrane Bioreactor (MBBR-MBR) was developed for the treatment of wastewater from a Spanish textile company. Compared with conventional activated sludge (CAS) treatment, the feasibility of this hybrid system to reduce economic and environmental impact on an industrial scale was conducted. The results showed that, technically, the removal efficiency of COD, TSS and color reached 93%, 99% and 85%, respectively. The newly dyed fabrics performed with the treated wastewater were qualified under the standards of the textile industry. Economically, the values of Capital Expenditure (CAPEX) calculated for the hybrid MBBR-MBR system are profitable because of the reduction in Operational Expenditure (OPEX) when compared with CAS treatment, due to the lower effluent discharge tax thanks to the higher quality of the effluent and the decolorizing agent saved. The result of Net Present Value (NPV) and the Internal Rate of Return (IRR) of 18% suggested that MBBR-MBR is financially applicable for implantation into the industrial scale. The MBBR-MBR treatment also showed lower environmental impacts than the CAS process in the life cycle assessment (LCA) study, especially in the category of climate change, thanks to the avoidance of using extra decolorizing agent, a synthetic product based on a triamine. Full article
Show Figures

Figure 1

12 pages, 4858 KiB  
Article
Long-Term Stability of Nitrifying Granules in a Membrane Bioreactor without Hydraulic Selection Pressure
by Zhaohui An, Xueyao Zhang, Charles B. Bott and Zhi-Wu Wang
Processes 2021, 9(6), 1024; https://doi.org/10.3390/pr9061024 - 10 Jun 2021
Cited by 1 | Viewed by 2708
Abstract
To understand the long-term stability of nitrifying granules in a membrane bioreactor (GMBR), a membrane module was submerged in an airlift reactor to eliminate the hydraulic selection pressure that was believed to be the driving force of aerobic granulation. The long-term monitoring results [...] Read more.
To understand the long-term stability of nitrifying granules in a membrane bioreactor (GMBR), a membrane module was submerged in an airlift reactor to eliminate the hydraulic selection pressure that was believed to be the driving force of aerobic granulation. The long-term monitoring results showed that the structure of nitrifying granules could remain stable for 305 days in the GMBR without hydraulic selection pressure; however, the majority of the granule structure was actually inactive due to mass diffusion limitation. As a consequence, active biomass free of mass diffusion limitation only inhabited the top 60–80 µm layer of the nitrifying granules. There was a dynamic equilibrium between bioflocs and membrane, i.e., 25% of bioflocs attached on the membrane surface within the last nine days of the backwash cycle in synchronization with the emergence of a peak of soluble extracellular polymeric substances (sEPS), with a concentration of around 47 mg L−1. Backwash can eventually detach and return these bioflocs to the bulk solution. However, the rate of membrane fouling did not change with and without the biofloc attachment. In a certain sense, the GMBR investigated in this study functioned in a similar fashion as an integrated fixed-film activated sludge membrane bioreactor and thus defeated the original purpose of GMBR development. The mass diffusion problem and sEPS production should be key areas of focus in future GMBR research. Full article
(This article belongs to the Special Issue Environmental Protection by Aerobic Granular Sludge Process)
Show Figures

Graphical abstract

18 pages, 4997 KiB  
Article
Impact of Effluent from the Leachate Treatment Plant of Taman Beringin Solid Waste Transfer Station on the Quality of Jinjang River
by Pui Mun Chin, Aine Nazira Naim, Fatihah Suja and Muhammad Fadly Ahmad Usul
Processes 2020, 8(12), 1553; https://doi.org/10.3390/pr8121553 - 27 Nov 2020
Cited by 15 | Viewed by 5242
Abstract
Rapid population growth has contributed to increased solid waste generated in Malaysia. Most landfills that have reached the design capacity are now facing closure. Taman Beringin Landfill was officially closed, so the Taman Beringin Solid Waste Transfer Station was built to manage the [...] Read more.
Rapid population growth has contributed to increased solid waste generated in Malaysia. Most landfills that have reached the design capacity are now facing closure. Taman Beringin Landfill was officially closed, so the Taman Beringin Solid Waste Transfer Station was built to manage the relocation, consolidation, and transportation of solid waste to Bukit Tagar Sanitary Landfill. Leachates are generated as a consequence of rainwater percolation through waste and biochemical processes in waste cells. Leachate treatment is needed, as leachates cause environmental pollution and harm human health. This study investigates the impact of treated leachate discharge from a Leachate Treatment Plant (LTP) on the Jinjang River water quality. The performance of the LTP in Taman Beringin Solid Waste Transfer Station was also assessed. Leachate samples were taken at the LTP’s anoxic tank, aeration tank, secondary clarifier tank, and final discharge point, whereas river water samples were taken upstream and downstream of Jinjang River. The untreated leachate returned the following readings: biochemical oxygen demand (BOD) (697.50 ± 127.94 mg/L), chemical oxygen demand (COD) (2419.75 ± 1155.22 mg/L), total suspended solid (TSS) (2710.00 ± 334.79 mg/L), and ammonia (317.08 ± 35.45 mg/L). The LTP’s overall performance was satisfactory, as the final treated leachates were able to meet the standard requirements of the Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009. However, the LTP’s activated sludge system performance was not satisfactory, and the parameters did not meet the standard limits. The result shows a low functioning biological treatment method that could not efficiently treat the leachate. However, a subsequent step of combining the biological and chemical process (coagulation, flocculation, activated sludge system, and activated carbon adsorption) helped the treated leachate to meet the standard B requirement stipulated by the Department of Environment (DOE), i.e., to flow safely into the river. This study categorized Jinjang River as polluted, with the discharge of the LTP’s treated leachates, possibly contributing to the river pollution. However, other factors, such as the upstream sewage treatment plant and the ex-landfill downstream, may have also affected the river water quality. The LTP’s activated sludge system performance at the transfer station still requires improvement to reduce the cost of the chemical treatment. Full article
(This article belongs to the Special Issue Processes for Biofuel, Biogas and Resource Recovery from Biomass)
Show Figures

Figure 1

20 pages, 2120 KiB  
Article
Optimising the Hydraulic Retention Time in a Pilot-Scale Microbial Electrolysis Cell to Achieve High Volumetric Treatment Rates Using Concentrated Domestic Wastewater
by Daniel D. Leicester, Jaime M. Amezaga, Andrew Moore and Elizabeth S. Heidrich
Molecules 2020, 25(12), 2945; https://doi.org/10.3390/molecules25122945 - 26 Jun 2020
Cited by 36 | Viewed by 6060
Abstract
Bioelectrochemical systems (BES) have the potential to deliver energy-neutral wastewater treatment. Pilot-scale tests have proven that they can operate at low temperatures with real wastewaters. However, volumetric treatment rates (VTRs) have been low, reducing the ability for this technology to compete with activated [...] Read more.
Bioelectrochemical systems (BES) have the potential to deliver energy-neutral wastewater treatment. Pilot-scale tests have proven that they can operate at low temperatures with real wastewaters. However, volumetric treatment rates (VTRs) have been low, reducing the ability for this technology to compete with activated sludge (AS). This paper describes a pilot-scale microbial electrolysis cell (MEC) operated in continuous flow for 6 months. The reactor was fed return sludge liquor, the concentrated filtrate of anaerobic digestion sludge that has a high chemical oxygen demand (COD). The use of a wastewater with increased soluble organics, along with optimisation of the hydraulic retention time (HRT), resulted in the highest VTR achieved by a pilot-scale MEC treating real wastewater. Peak HRT was 0.5-days, resulting in an average VTR of 3.82 kgCOD/m3∙day and a 55% COD removal efficiency. Finally, using the data obtained, a direct analysis of the potential savings from the reduced loading on AS was then made. Theoretical calculation of the required tank size, with the estimated costs and savings, indicates that the use of an MEC as a return sludge liquor pre-treatment technique could result in an industrially viable system. Full article
Show Figures

Graphical abstract

10 pages, 1136 KiB  
Communication
Phosphorus Fertilizers From Sewage Sludge Ash and Animal Blood Have No Effect on Earthworms
by Magdalena Jastrzębska, Marta K. Kostrzewska and Kinga Treder
Agronomy 2020, 10(4), 525; https://doi.org/10.3390/agronomy10040525 - 7 Apr 2020
Cited by 5 | Viewed by 3132
Abstract
Soil invertebrates are crucial for agroecosystem functioning yet sensitive to agricultural practices, including fertilization. Considering the postulates of circular phosphorus economy, the use of fertilizers from secondary raw materials is likely to return and increase and may even become obligatory. The effects of [...] Read more.
Soil invertebrates are crucial for agroecosystem functioning yet sensitive to agricultural practices, including fertilization. Considering the postulates of circular phosphorus economy, the use of fertilizers from secondary raw materials is likely to return and increase and may even become obligatory. The effects of recycled fertilizers on soil fauna communities, however, remain poorly understood. In this paper, the effect of phosphorus fertilizer (RecF) and biofertilizer (RecB) from sewage sludge ash and dried animal (porcine) blood on earthworm’s occurrence in soil is discussed. RecB is RecF activated by phosphorus-solubilizing bacteria, Bacillus megaterium. Waste-based fertilizers were assessed in field experiments against commercial superphosphate and no P fertilization. Three levels of P doses were established (17.6, 26.4, and 35.2 kg P ha−1). Earthworms were collected after the test crop harvest (spring or winter wheat). In the experiments two earthworm species, Aporrectodea caliginosa and Aporrectodea rosea, were identified. A large proportion of juvenile individuals were recorded in 2017. The recycled fertilizers used in the experiments used in recommended doses, similarly to superphosphate, did not alter the density, biomass, species composition, and structure of earthworms. Further long-term field research is recommended. Full article
Show Figures

Figure 1

Back to TopTop