Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Caracterization of Textile Wastewater
2.2. Reactor Description
2.3. New Dyeing Processes Reusing the Treated Water
2.4. Analytical Methods
2.5. Economical Analysis
2.6. Environmental Impact Analysis
3. Results and Discussion
3.1. Efficiency of the MBBR-MBR
3.2. Reuse of the Treated Water
3.3. Economic Analysis of the Hybrid System
3.3.1. Capital Expenditures (CAPEX)
3.3.2. Operational Expenditures (OPEX)
3.3.3. Evaluation of the Economic Feasibility (NPV and IRR)
3.4. LCA Analysis
3.4.1. Inventory Results
3.4.2. Environmental Impact Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Yang, B.; Liu, Y.; Li, F.; Shen, C.; Ma, C.; Tian, Q.; Song, X.; Sand, W. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: A mini-review. World J. Microbiol. Biotechnol. 2018, 34, 165. [Google Scholar] [CrossRef]
- López-Grimau, V.; Vilaseca, M.; Gutiérrez-Bouzán, C. Comparison of different wastewater treatments for colour removal of reactive dye baths. Desalin. Water Treat. 2016, 57, 2685–2692. [Google Scholar] [CrossRef] [Green Version]
- Umar, K.; Ibrahim, M.N.M.; Ahmad, A.; Rafatullah, M. Synthesis of Mn-doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants. Res. Chem. Intermed. 2019, 45, 2927–2945. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Bessegato, G.G.; Boldrin Zanoni, M.V. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016, 98, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.L.; Yan, Y.N.; Zhou, F.Y.; Sun, S.P. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J. Memb. Sci. 2020, 595, 117476. [Google Scholar] [CrossRef]
- Tianzhi, W.; Weijie, W.; Hongying, H.; Khu, S.T. Effect of coagulation on bio-treatment of textile wastewater: Quantitative evaluation and application. J. Clean. Prod. 2021, 312, 127798. [Google Scholar] [CrossRef]
- Sahinkaya, E.; Yurtsever, A.; Çınar, Ö. Treatment of textile industry wastewater using dynamic membrane bioreactor: Impact of intermittent aeration on process performance. Sep. Purif. Technol. 2017, 174, 445–454. [Google Scholar] [CrossRef]
- Decret 130/2003, Approving the Regulation of Public Sanitation Services. Available online: http://aca-web.gencat.cat/aca/documents/ca/legislacio/decrets/decret_130_2003.pdf (accessed on 26 October 2021).
- Cànon de L’aigua. Available online: http://aca.gencat.cat/web/.content/10_ACA/K_Canon_i_altres_tributs/canon_de_laigua/20_Industrial/GT_DUCA_tipus_vigents_industrials.pdf (accessed on 26 October 2021). (In Catalan).
- Sari Erkan, H.; Bakaraki Turan, N.; Önkal Engin, G. Membrane Bioreactors for Wastewater Treatment. In Comprehensive Analytical Chemistry; Chormey, D.S., Bakırdere, S., Turan, N.B., Engin, G.Ö., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 81, pp. 151–200. ISBN 9780444640642. [Google Scholar] [CrossRef]
- Jegatheesan, V.; Pramanik, B.K.; Chen, J.; Navaratna, D.; Chang, C.Y.; Shu, L. Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresour. Technol. 2016, 204, 202–212. [Google Scholar] [CrossRef]
- Galiano, F.; Friha, I.; Deowan, S.A.; Hoinkis, J.; Xiaoyun, Y.; Johnson, D.; Mancuso, R.; Hilal, N.; Gabriele, B.; Sayadi, S.; et al. Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. J. Colloid Interface Sci. 2018, 515, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.D.; Buscio, V.; López-Grimau, V.; Gutiérrez-Bouzán, C. LCA study of a new electrochemical and ultraviolet (EC-UV) combined system to decolourise and reuse textile saline effluents: Environmental evaluation and proposal to improve the production process. Chem. Eng. J. 2020, 392, 123696. [Google Scholar] [CrossRef]
- Pirani, S.; Natarajan, L.; Abbas, Z.; Arafat, H. Life cycle assessment of membrane bioreactor versus CAS wastewater treatment: Masdar City and beyond. In Proceedings of the Sixth Jordan International Chemical Engineering Conference, Amman, Jordan, 12–14 March 2012. [Google Scholar]
- Pretel, R.; Robles, A.; Ruano, M.V.; Seco, A.; Ferrer, J. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. J. Environ. Manag. 2016, 166, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Bertanza, G.; Canato, M.; Laera, G.; Vaccari, M.; Svanström, M.; Heimersson, S. A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: Techno-economic-environmental assessment. Environ. Sci. Pollut. Res. 2017, 24, 17383–17393. [Google Scholar] [CrossRef] [Green Version]
- Roccaro, P.; Vagliasindi, F.G.A. Techno-economic feasibility of membrane bioreactor (MBR). In Advances in Science, Technology and Innovation; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 269–270. [Google Scholar] [CrossRef]
- Yang, X.; Crespi, M.; López-Grimau, V. A review on the present situation of wastewater treatment in textile industry with membrane bioreactor and moving bed biofilm reactor. Desalin. Water Treat. 2018, 103, 315–322. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Wei, Y.; Dang, K.; Li, M.; Li, Y.; Li, Q.; Mu, R. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem. 2020, 99, 211–221. [Google Scholar] [CrossRef]
- Gzar, H.A.; Al-Rekabi, W.S.; Shuhaieb, Z.K. Applicaion of Moving Bed Biofilm Reactor (MBBR) for Treatment of Industrial Wastewater: A mini Review. J. Phys. Conf. Ser. 2021, 1973, 012024. [Google Scholar] [CrossRef]
- Kozak, M.; Cirik, K.; Basak, S. Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. J. Environ. Chem. Eng. 2021, 9, 105596. [Google Scholar] [CrossRef]
- Di Trapani, D.; Mannina, G.; Torregrossa, M.; Viviani, G. Comparison between hybrid moving bed biofilm reactor and activated sludge system: A pilot plant experiment. Water Sci. Technol. 2010, 61, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Park, H.O.; Oh, S.; Bade, R.; Shin, W.S. Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment. Korean J. Chem. Eng. 2010, 27, 893–899. [Google Scholar] [CrossRef]
- Pratiwi, R.; Notodarmojo, S.; Helmy, Q. Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; Institute of Physics Publishing: Jakarta, Indonesia, 2018; Volume 106, p. 12089. [Google Scholar] [CrossRef]
- Shin, D.H.; Shin, W.S.; Kim, Y.H.; Han, M.H.; Choi, S.J. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment. Water Sci. Technol. 2006, 54, 181–189. [Google Scholar] [CrossRef]
- Ke, P.; Zeng, D.; Xu, K.; Cui, J.; Li, X.; Wang, G. Preparation of Quaternary Ammonium Salt-Modified Chitosan Microspheres and Their Application in Dyeing Wastewater Treatment. ACS Omega 2020, 5, 24700–24707. [Google Scholar] [CrossRef]
- Dong, B.; Chen, H.; Yang, Y.; He, Q.; Dai, X. Treatment of printing and dyeing wastewater using MBBR followed by membrane separation process. Desalin. Water Treat. 2014, 52, 4562–4567. [Google Scholar] [CrossRef]
- Grilli, S.; Piscitelli, D.; Mattioli, D.; Casu, S.; Spagni, A. Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration. J. Environ. Sci. Health Part A 2011, 46, 1512–1518. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Wastewater, 23rd ed.; APHA-AWWA-WEF: Washington, DC, USA, 2017; Available online: https://cmc.marmot.org/Record/.b57522091 (accessed on 21 October 2021).
- AENOR. Textiles—Tests for Colour Fastness—Part J03: Calculation of Colour Differences (ISO 105-J03:2009). 2009. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0044887 (accessed on 21 October 2021).
- Sala, M.; López-Grimau, V.; Gutiérrez-Bouzán, C. Photoassisted electrochemical treatment of azo and phtalocyanine reactive dyes in the presence of surfactants. Materials 2016, 9, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, L.H.; Mendes, F.D.S.; Espindola, J.C.; Amaral, M.C.S. Reuse of dairy wastewater treated by membrane bioreactor and nanofiltration: Technical and economic feasibility. Braz. J. Chem. Eng. 2015, 32, 735–747. [Google Scholar] [CrossRef]
- ISO 14040: Environmental Management–Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006.
- Yang, X.; López-Grimau, V.; Vilaseca, M.; Crespi, M.; Ribera-Pi, J.; Calderer, M.; Martínez-Lladó, X. Reuse of textile wastewater treated by moving bed biofilm reactor coupled with membrane bioreactor. Color. Technol. 2021, 137, 484–492. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, M.; Huang, W.; Xu, X. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J. Hazard. Mater. 2011, 196, 123–130. [Google Scholar] [CrossRef]
- Lourenço, N.D.; Franca, R.D.G.; Moreira, M.A.; Gil, F.N.; Viegas, C.A.; Pinheiro, H.M. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. Biochem. Eng. J. 2015, 104, 57–63. [Google Scholar] [CrossRef]
- Yang, X. Study of a Hybrid System: Moving Bed Biofilm Reactor-Membrane Bioreactor (MBBR-MBR) in the Treatment and Reuse of Textile Industrial Effluents. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, July 2021. [Google Scholar]
- Mohamed-Zine, M.-B.; Hamouche, A.; Krim, L. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA). J. Environ. Health Sci. Eng. 2013, 11, 11–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; López-Grimau, V.; Vilaseca, M.; Crespi, M. Treatment of textilewaste water by CAS, MBR, and MBBR: A comparative study from technical, economic, and environmental perspectives. Water 2020, 12, 1306. [Google Scholar] [CrossRef]
- Lo, C.H.; McAdam, E.; Judd, S. The cost of a small membrane bioreactor. Water Sci. Technol. 2015, 72, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, R.; Simón, P.; Moragas, L.; Arce, A.; Rodriguez-Roda, I. Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors. Water Sci. Technol. 2017, 75, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Radjenović, J.; Matošić, M.; Mijatović, I.; Petrović, M.; Barceló, D. Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. In Emerging Contaminants from Industrial and Municipal Waste; Springer: Berlin/Heidelberg, Germany, 2008; pp. 37–101. [Google Scholar] [CrossRef]
- Endesa—Luz. Available online: https://www.endesatarifasluzygas.com/luz/?sem=sem-endesa-google-tl-75&adgroupid=77440481986&gclid=CjwKCAiAy9jyBRA6EiwAeclQhG_kGGL-xchrpwXH50-OM42n6Yx1KUOLsskbYiOKVgbKUWkNwAa99BoC-zkQAvD_BwE (accessed on 21 October 2021).
- Supplier: TIDE 2000 S.L. (Montornès del Vallès, B.) Discoloration Agent. Available online: http://www.tide2000.net/productos/coagulantes-y-decolorantes/ (accessed on 21 October 2021).
- Ley 2/2014, de 27 de Enero, de Medidas Fiscales, Administrativas, Financieras y del Sector Público. Diario Oficial de la Generalidad de Cataluña 2014, 61561–61567. Available online: https://www.boe.es/eli/es-ct/l/2014/01/27/2 (accessed on 21 October 2021).
- Spain—Inflation Rate 2025|Statista. Available online: https://www.statista.com/statistics/271077/inflation-rate-in-spain/ (accessed on 21 October 2021).
- Agència Catalana de L’aigua Informe Anual del Preu de L’aigua a Catalunya 2020; Barcelona, 2021. Available online: http://aca.gencat.cat/web/.content/10_ACA/J_Publicacions/05-estudis-preus-i-tarifes/18_observatori_preus_2020_ca.pdf (accessed on 26 October 2021).
- Kumar, A.K.; Sharma, S.; Dixit, G.; Shah, E.; Patel, A. Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renew. Energy 2020, 145, 1620–1632. [Google Scholar] [CrossRef]
- REE. El Sistema Eléctrico Español 2020. 2021. Available online: https://www.ree.es/es/datos/publicaciones/informe-anual-sistema/informe-del-sistema-electrico-espanol-2020 (accessed on 21 October 2021). (In Spanish).
- IPCC. Guidelines for National Greenhouse Gas Inventories. Volume 3 Industrial Processes and Product Use. Chapter 3: Chemical Industry Emissions. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol3.html (accessed on 21 October 2021).
- Van Hoof, G.; Vieira, M.; Gausman, M.; Weisbrod, A. Indicator selection in life cycle assessment to enable decision making: Issues and solutions. Int. J. Life Cycle Assess. 2013, 18, 1568–1580. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
pH | – | 8.44 ± 0.54 |
conductivity | mS/cm | 5.15 ± 0.47 |
Chemical Oxygen Demand (COD) | mg/L | 1996 ± 440 |
5 days Biological Oxygen Demand (BOD5) | mg/L | 403 ± 88 |
Total Suspended Solids (TSS) | mg/L | 940 ± 121 |
Total Kjeldahl Nitrogen (TKN) | mg/L | 55 ± 21 |
Total Phosphorus (TP) | mg/L | 10 ± 2 |
Color | mg Pt-Co/L | 700 ± 234 |
Material | Polypropylene (PP)/Polyethylene (PE) |
---|---|
Specific Surface (m2/m3) | 590 |
Free volume | 90% |
Carrier diameter (mm) | 25 |
Weight per piece (g) | 2.1 |
Carrier density (kg/m3) | <1 |
Module | UF BT01 MOTIMO |
Configuration | hollow fiber flat plat membrane |
Membrane surface (m2) | 1 |
Material | polyvinylidene difluoride (PVDF) |
Pore size (µm) | 0.03 |
Maximum TMP (kPa) | 80 |
Operating TMP (kPa) | 10–60 |
Removal Efficiency | MBBR-MBR | CAS |
---|---|---|
COD | 93% | 83% |
TSS | 99% | 66% |
Color | 85% | 55% |
TN | 100% | 100% |
TP | 100% | 100% |
100% Effluent Reused | DLCMC | DCCMC | DHCMC | DECMC(2:1) |
---|---|---|---|---|
Yellow Procion HEXL | 0.34 | −0.38 | 0.90 | 1.04 |
Crimson Procion HEXL | −0.29 | −0.39 | −0.37 | 0.61 |
Navy Procion HEXL | 0.38 | 0.16 | −0.24 | 0.48 |
Concept | Total Price €/m3 | Reference | |||||
---|---|---|---|---|---|---|---|
(a) Consumption | Unit | Amount | Unit | Unit price | Convert to€/m3 | 0.55 | |
Electricity | kWh/m3 | 0.96 | €/kWh | 0.187 | 0.17952 | [44] | |
Decolorizing agent | kg/m3 | 0.2 | €/kg | 1.85 | 0.37 | [45] | |
(b) Environmental tax | Unit | Amount | Unit | Unit price | 0.86 | ||
Sludge generation | kg/m3 | 0.83 | €/kg | 0.158 | 0.013114 | [46] | |
Wastewater discharge | [10] | ||||||
OM 1 | kg/m3 | 0.23 | €/kg | 1.0023 | 0.230529 | ||
TSS | kg/m3 | 0.32 | €/kg | 0.5011 | 0.160352 | ||
N | kg/m3 | 0.008 | €/kg | 0.761 | 0.006088 | ||
P | kg/m3 | 0.003 | €/kg | 1.5222 | 0.0045666 | ||
Conductivity | S/cm | 0.00598 | €/Sm3/cm | 8.0198 | 0.0479584 | ||
Summation | 0.449494 | ||||||
ST 2 = 1.5 × SUM | 0.67424101 | ||||||
GT 3 | 0.163 | ||||||
Total price | 1.41 |
Concept | Total Price €/m3 | Reference | |||||
---|---|---|---|---|---|---|---|
(a) Consumption | Unit | Amount | Unit | Unit price | Convert to€/m3 | 0.21 | |
Electricity | kWh/m3 | 1.12 | €/kWh | 0.187 | 0.20944 | [43] | |
Decolorizing agent | kg/m3 | 0 | €/kg | 1.85 | 0 | [45] | |
(b) Environmental tax | Unit | Amount | Unit | Unit price | 0.35 | ||
Sludge generation | kg/m3 | 0.023 | €/kg | 0.158 | 0.003634 | [46] | |
Wastewater discharge | [10] | ||||||
OM | kg/m3 | 0.11 | €/kg | 1.0023 | 0.110253 | ||
TSS | kg/m3 | 0.006 | €/kg | 0.5011 | 0.003006 | ||
N | kg/m3 | 0.007 | €/kg | 0.761 | 0.005327 | ||
P | kg/m3 | 0.001 | €/kg | 1.5222 | 0.001522 | ||
Conductivity | S/cm | 0.00482 | €/Sm3/cm | 8.0198 | 0.038655 | ||
Summation | 0.123742 | ||||||
ST = 1.5 × SUM | 0.185613 | ||||||
GT | 0.163 | ||||||
(c) Membrane replacement | 0.01 | ||||||
(d) Maintenance and repair | 0.04 | ||||||
Total price | 0.61 |
Year | Revenues | Total Revenues | Expenditures | Total Expenditures | Net Cash Flow | ||
---|---|---|---|---|---|---|---|
Water Recovery | Reduction in Discharge | CAPEX | OPEX | ||||
1 | 0 | 0 | 0 | 462,403 | 0 | 462,403 | −462,403 |
2 | 87,275 | 134,029 | 221,304 | 0 | 135,847 | 135,847 | 85,457 |
3 | 88,497 | 135,905 | 224,402 | 0 | 137,749 | 137,749 | 86,653 |
4 | 89,736 | 137,808 | 227,544 | 0 | 139,677 | 139,677 | 87,867 |
5 | 90,992 | 139,737 | 230,730 | 0 | 141,633 | 141,633 | 89,097 |
6 | 92,266 | 141,694 | 233,960 | 0 | 143,616 | 143,616 | 90,344 |
7 | 93,558 | 143,677 | 237,235 | 0 | 145,626 | 145,626 | 91,609 |
8 | 94,868 | 145,689 | 240,556 | 0 | 147,665 | 147,665 | 92,891 |
9 | 96,196 | 147,729 | 243,924 | 0 | 149,732 | 149,732 | 94,192 |
10 | 97,542 | 149,797 | 247,339 | 0 | 151,829 | 151,829 | 95,511 |
11 | 98,908 | 151,894 | 250,802 | 0 | 153,954 | 153,954 | 96,848 |
12 | 100,293 | 154,020 | 254,313 | 0 | 156,110 | 156,110 | 98,204 |
13 | 101,697 | 156,177 | 257,874 | 0 | 158,295 | 158,295 | 99,578 |
14 | 103,121 | 158,363 | 261,484 | 0 | 160,511 | 160,511 | 100,972 |
15 | 104,564 | 160,580 | 265,145 | 0 | 162,758 | 162,758 | 102,386 |
Processes Included in LCA | MBBR | Unit/FU | Ecoinvent Unit Process | |
---|---|---|---|---|
Input | Output | |||
COD | 2 | 0.13 | kg | |
TSS | 0.94 | 0.01 | kg | |
N | 0.055 | 0.003 | kg | |
P | 0.010 | 0.001 | kg | |
Color | 700 | 105 | g Pt-co | |
Conductivity | 6.46 | 5.42 | mS/cm | |
Wastewater | 1 | 1 | m3 | |
Sludge | 0.021 | kg | ||
Decolorizing agent | 0 | kg | diethylenetriaminepentaacetic acid (DTPA), at plant/RER(Europe) Unit | |
Electricity | 1.12 | kWh | Electricity, medium voltage, production ES, at grid/ES(Spain) Unit |
Treatment | Inputs | Human Health (mPt) | Ecosystems (mPt) | Resources (mPt) | |
---|---|---|---|---|---|
CAS | Electricity (kWh/m3) | 0.96 | 22.8 | 1.9 | 31.8 |
Decolorizing agent(kg/m3) | 0.2 | 34.4 | 3.4 | 81.2 | |
TOTAL | 57.2 | 5.3 | 113.0 | ||
MBBR-MBR | Electricity (kWh/m3) | 1.12 | 26.6 | 2.2 | 37.1 |
Decolorizing agent(kg/m3) | 0 | 0 | 0 | 0 | |
TOTAL | 26.6 | 2.2 | 37.1 |
Impact Category | Unit | CAS | MBBR-MBR | Impact Reduction of MBBR-MBR |
---|---|---|---|---|
Climate change Human Health | kg CO2-eq | 1.29 | 0.08 | 94% |
Ozone depletion | kg CFC-11 eq | 1.39 × 10−7 | 2.89 × 10−8 | 79% |
Human toxicity | kg 1.4-DB eq | 0.12 | 0.03 | 79% |
Photochemical oxidant formation | kg NMVOC | 3.89 × 10−3 | 2.30 × 10−3 | 41% |
Particulate matter formation | kg PM10 eq | 1.95 × 10−3 | 1.40 × 10−3 | 28% |
Ionizing radiation | kg U235 eq | 0.16 | 0.11 | 33% |
Terrestrial acidification | kg SO2-eq | 6.46 × 10−3 | 4.83 × 10−3 | 25% |
Freshwater eutrophication | kg P-eq | 7.84 × 10−5 | 2.79 × 10−5 | 64% |
Marine eutrophication | kg N-eq | 2.24 × 10−3 | 1.76 × 10−4 | 92% |
Terrestrial ecotoxicity | kg 1.4-DB eq | 2.96 × 10−4 | 6.69 × 10−5 | 76% |
Freshwater ecotoxicity | kg 1.4-DB eq | 7.40 × 10−3 | 1.02 × 10−4 | 99% |
Marine ecotoxicity | kg 1.4-DB eq | 1.04 × 10−3 | 2.14 × 10−4 | 79% |
Agricultural land occupation | m2 year | 5.51 × 10−3 | 5.22 × 10−3 | 5% |
Urban land occupation | m2 year | 2.16 × 10−3 | 1.79 × 10−3 | 17% |
Natural land transformation | m2 year | 1.25 × 10−5 | 1.10 × 10−5 | 12% |
Water depletion | m3 | 1.12 × 10−2 | 3.33 × 10−3 | 70% |
Metal depletion | kg 1Fe eq | 2.02 × 10−3 | 8.57 × 10−4 | 58% |
Fossil depletion | kg oil eq | 5.17 × 10−7 | 1.70 × 10−7 | 67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; López-Grimau, V. Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System. Membranes 2021, 11, 892. https://doi.org/10.3390/membranes11110892
Yang X, López-Grimau V. Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System. Membranes. 2021; 11(11):892. https://doi.org/10.3390/membranes11110892
Chicago/Turabian StyleYang, Xuefei, and Víctor López-Grimau. 2021. "Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System" Membranes 11, no. 11: 892. https://doi.org/10.3390/membranes11110892
APA StyleYang, X., & López-Grimau, V. (2021). Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System. Membranes, 11(11), 892. https://doi.org/10.3390/membranes11110892