Revisiting the Solid Flux Theory
Abstract
:1. Introduction
2. Theory
2.1. Introducing the Lambert W Function and Dimensionless Groups
2.2. The Return Ratio by Dimensionless Groups
2.3. Normalized Hydraulic Loading Rate
2.4. Varying the Influent SS Concentration
2.5. The Domains of the SS Concentration and of the Solid Flux
3. Example of Application
4. Comparison with Experimental Data and the New Hydrodynamic Factor
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, N.F. Activated Sludge, Theory and Practice; Oxford University: Oxford, UK, 1990. [Google Scholar]
- Yang, Y.; Wang, L.; Xiang, F.; Zhao, L.; Qiao, Z. Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones. Int. J. Environ. Res. Public Health 2020, 17, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, S.; van Loosdrecht, M.C.M.; Colprim, J.; Meijer, S.C.F. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Res. 2008, 42, 4645–4655. [Google Scholar] [CrossRef] [PubMed]
- EEA. European Environment Agency. Urban Waste Water Treatment for 21st Century Challenges. 2019. Available online: https://www.eea.europa.eu/highlights/new-challenges-facing-europe2019s-wastewater (accessed on 12 August 2022).
- Abu-Madi, M.O.R. Incentive Systems for Wastewater Treatment and Reuse in Irrigated Agriculture in the MENA Region: Evidence from Jordan and Tunisia; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: London, UK, 2004. [Google Scholar]
- Keinath, T.M. Operational dynamics and control of secondary clarifiers. J. Water Pollut. Control Fed. 1985, 57, 770–776. [Google Scholar]
- Chancelier, J.P.; de Lara, M.C.; Joannis, C.; Pacard, F. New insight in dynamic modelling of a secondary settler—I. Flux theory and steady-states analysis. Water Res. 1997, 31, 1847–1856. [Google Scholar] [CrossRef]
- Ekama, G.A.; Barnard, J.L.; Günthert, F.W.; Krebs, P.; McCorquodale, J.A.; Parker, D.S.; Wahlberg, E.J. Secondary Settling Tanks: Theory, Modelling, Design and Operation; IAWQ Scientific and Technical Report No. 6; IWA Publishing: London, UK, 1997. [Google Scholar]
- Ozinsky, A.E.; Ekama, G.A.; Reddy, B.D. Mathematical Simulation of Dynamic Behaviour of Secondary Settling Tanks; Technical Report W85; Department of Civil Engineering, University of Cape Town: Cape Town, South Africa, 1994. [Google Scholar]
- Jasim, N.A. The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Eng. 2020, 7, 1723782. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, M.S.A.; Hoinkis, J. Optimal design of an activated sludge plant: Theoretical analysis. Appl. Water Sci. 2013, 3, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Vitasovic, Z. Continuous Settler Operation: A Dynamic Model Dynamic Modeling and Expert Systems in Wastewater Engineering; Patry, G.G., Chapman, D., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1989. [Google Scholar]
- Koehne, M.; Hoen, K.; Schuhen, M. Modelling and simulation of final clarifiers in wastewater treatment plants. Math. Comput. Simul. 1995, 39, 609–616. [Google Scholar] [CrossRef]
- Kim, H.S.; Shin, M.S.; Janga, D.S.; Jung, S.H.; Jin, J.H. Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Appl. Radiat. Isot. 2005, 63, 519–526. [Google Scholar] [CrossRef]
- Kynch, G.J. A theory of sedimentation. Trans. Faraday Soc. 1952, 48, 166–176. [Google Scholar] [CrossRef]
- Yuen, W.A. Empirical Equations for the Limiting Solids Flux of Final Clarifiers. Water Environ. Res. 2002, 74, 2. [Google Scholar] [CrossRef]
- Daigger, G.T. Development of Refined Clarifier Operating Diagrams Using an Updated Settling Characteristics Database. Water Environ. Res. 1995, 67, 95. [Google Scholar] [CrossRef]
- Daigger, G.T.; Roper, R.E. The relationship between SVI and activated sludge settling characteristics. J. Water Pollut. Control Fed. 1985, 57, 859–866. [Google Scholar]
- Hermanowicz, S.W. Secondary Clarification of Activated Sludge: Development of Operating Diagrams. Water Environ. Res. 1998, 70, 10. [Google Scholar] [CrossRef]
- Keinath, T.M. Diagram for Designing and Operating Secondary Clarifiers According to the Thickening Criterion. J. Water Pollut. Control Fed. 1990, 62, 254. [Google Scholar]
- Koopman, B.; Cadee, K. Prediction of Thickening Capacity Using Diluted Sludge Volume Index. Water Res. 1983, 17, 1427. [Google Scholar] [CrossRef]
- Diehl, S. The solids-flux theory—Confirmation and extension by using partial differential equations. Water Res. 2008, 42, 4976–4988. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Li, T.; Zhang, Z.; Sun, Y.; Cao, Y. Three-dimensional simulation of the water flow field and the suspended-solids concentration in a circular sedimentation tank. Can. J. Civ. Eng. 2011, 38, 825–836. [Google Scholar] [CrossRef]
- Wett, B. A straight interpretation of the solids flux theory for a three-layer sedimentation model. Water Res. 2002, 36, 2949–2958. [Google Scholar] [CrossRef]
- Baiamonte, G. Simplified model to predict runoff generation time for well-drained and vegetated soils. J. Irrig. Drain. Eng. ASCE 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Baiamonte, G. Simple Relationships for the Optimal Design of Paired Drip Laterals on Uniform Slopes. J. Irrig. Drain. Eng. 2016, 142, 04015054. [Google Scholar] [CrossRef]
- Lessard, P.; Beck, M.B. Dynamic modeling of the activated sludge process: A case study. Water Res. 1993, 27, 963–978. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.; He, Z.; Zhang, X.; Wen, Y.; Wang, H. Modeling the Activated Sludge—Thickening Process in Secondary Settlers. Int. J. Environ. Res. Public Health 2015, 12, 15449–15458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Yin, F.; Xu, Y.; Yu, H.Q. A force-based mechanistic model for describing activated sludge settling process. Water Res. 2017, 127, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Vesilind, P.A. Design of Prototype Thickeners from Batch Settling Tests. Water Sew. Works 1968, 115, 302. [Google Scholar]
- Cho, S.H.; Colin, F.; Sardin, M.; Prost, C. Settling velocity of activated sludge. Water Res. 1993, 27, 1237–1242. [Google Scholar] [CrossRef]
- Watts, R.W.; Svoronos, S.A.; Koopman, B. One-Dimensional Clarifier Model with Sludge Blanket Heights. J. Environ. Eng. 1996, 122, 1094. [Google Scholar] [CrossRef]
- Vanderhasselt, A.; Vanrolleghem, P.A. Estimation of sludge sedimentation parameters from single batch settling curves. Water Res. 2000, 34, 395–406. [Google Scholar] [CrossRef]
- D’Antonio, G.; Carbone, P. Verifica sperimentale della teoria del flusso solido. Ingegneria Sanitaria 1987, 6, 325–336. (In Italian). Available online: http://www.diia.unina.it/pdf/pubb0546.pdf (accessed on 12 August 2022).
- Von Sperling, M.; Fróes, C.M.V. Determination of the Required Surface Area for Activated Sludge Final Clarifiers Based on a Unified Database. Water Res. 1999, 33, 1887. [Google Scholar] [CrossRef]
- Schuler, A.J.; Jang, H. Density effects on activated sludge zone settling velocities. Water Res. 2007, 41, 1814–1822. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Serrano, S.E. Explicit Solution to Green and Ampt Infiltration Equation. J. Hydrol. Eng. 2001, 6, 336–340. [Google Scholar] [CrossRef]
- Baiamonte, G. Complex Rating Curves for Sharp Crested Orifices for Rectangular or Triangular Weirs under Unsteady Flow Conditions. J. Hydrol. Eng. 2021, 26, 04021005. [Google Scholar] [CrossRef]
- Sanin, F.D.; Clarkson, W.W.; Vesilind, P.A. Sludge Engineering: The Treatment and Disposal of Wastewater Sludges; Destech Pubns: Lancaster, PA, USA, 2011; p. 393. [Google Scholar]
- Mancell-Egala, W.A.S.K.; Kinnear, D.; Jones, K.L.; De Clippeleir, H.; Takács, I.; Murthy, S.N. Limit of stokesian settling concentration characterizes sludge settling velocity. Water Res. 2016, 90, 100–110. [Google Scholar] [CrossRef]
- Ekama, G.A.; Marais, G.V.R. Sludge Settleability. Secondary Settling Tank Design Procedures. J. Water Pollut. Control Fed. 1986, 85, 101. [Google Scholar]
- Gohle, F.; Finnson, A.; Hultman, B. Dynamic Simulation of Sludge Blanket Movements in a Full-Scale Rectangular Sedimentation Basin. Water Sci. Technol. 1996, 33, 89. [Google Scholar] [CrossRef]
v0 (m h−1) | uth (m h−1) | u*th | −e u*th | (k xL)th | (G*L)th | (k xr)th | (C*h)th |
---|---|---|---|---|---|---|---|
2.1 | 0.28 | 0.1353 | −0.3679 | 2 | 0.5413 | 4 | 0.1353 (Rc = 1) |
3 | 0.41 | ||||||
4 | 0.54 | ||||||
5 | 0.68 | ||||||
6 | 0.81 | ||||||
7 | 0.95 | ||||||
7.4 | 1.00 | ||||||
17.12 | 2.32 |
Dimensional Parameters | Symbol | Value |
---|---|---|
Settling velocity under zero SS concentration (x = 0) | v0 (m h−1) | 8.0 |
Exponential decay constant | k (m3 kg−1) | 0.375 |
Virtual solids flux under zero SS concentration (x = 0, v = v0) | G0 (kg m−2 h−1) | 21.35 |
Influent SS concentration to the final clarifier | x0 (kg m−3) | 4.27 |
Settling velocity for settling velocity for x = x0 | v (x0) (kg m−3) | 1.62 |
Total solid flux for x = x0 | G (x0) (kg m−2 h−1) | 8.43 |
Influent discharge to the treatment plant | Q (m3 h−1) | 54.0 |
Return sludge discharge | Qr (m3 h−1) | 21.6 |
SS concentration of the recycle flowrate | xr (kg m−3) | 14.94 |
Recycle velocity | u (m h−1) | 0.359 |
Limiting SS concentration | xL (kg m−3) | 11.47 |
Limiting solids flux | GL (kg m−2 h−1) | 5.37 |
Total solid flow to the final clarifier | (Q + Qr) x0 (kg h−1) | 322.8 |
Clarifier surface area | A (m2) | 60.16 |
Hydraulic loading rate | Ch (m h−1) | 0.90 |
Dimensionless Parameters | Symbol | Value |
---|---|---|
Return ratio | R | 0.40 |
Recycle velocity, u, normalized with respect to v0 | u* | 0.045 |
Dimensionless influent SS concentration | k x0 | 1.600 |
Dimensionless limiting SS concentration | k xL | 4.297 |
Limiting solids flux normalized with respect to G0 | G*L | 0.251 |
Dimensionless SS concentration of the recycle flowrate | k xr | 5.600 |
Hydraulic loading rate normalized with respect to v0 | C*h | 0.112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiamonte, G.; Baiamonte, C. Revisiting the Solid Flux Theory. Soil Syst. 2022, 6, 91. https://doi.org/10.3390/soilsystems6040091
Baiamonte G, Baiamonte C. Revisiting the Solid Flux Theory. Soil Systems. 2022; 6(4):91. https://doi.org/10.3390/soilsystems6040091
Chicago/Turabian StyleBaiamonte, Giorgio, and Cristina Baiamonte. 2022. "Revisiting the Solid Flux Theory" Soil Systems 6, no. 4: 91. https://doi.org/10.3390/soilsystems6040091
APA StyleBaiamonte, G., & Baiamonte, C. (2022). Revisiting the Solid Flux Theory. Soil Systems, 6(4), 91. https://doi.org/10.3390/soilsystems6040091