Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,300)

Search Parameters:
Keywords = restrainer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1010 KB  
Article
Preliminary Study of the Genetic Response of Grapevine Buds to a Preventive Natural Polysaccharide-Based Biogel Under Simulated Late Frost Conditions
by Alessandra Zombardo, Simone Garavelloni, Chiara Biselli, Agostino Fricano, Paolo Bagnaresi, Marco Ammoniaci and Mauro Eugenio Maria D’Arcangelo
Agriculture 2025, 15(21), 2219; https://doi.org/10.3390/agriculture15212219 (registering DOI) - 24 Oct 2025
Abstract
Late spring frosts represent a major threat to grapevine (Vitis vinifera L.), a risk increasingly exacerbated by climate change-driven shifts in phenology. To explore sustainable strategies for frost mitigation, this study investigated the effect of a natural polysaccharide-based biogel, derived from carob [...] Read more.
Late spring frosts represent a major threat to grapevine (Vitis vinifera L.), a risk increasingly exacerbated by climate change-driven shifts in phenology. To explore sustainable strategies for frost mitigation, this study investigated the effect of a natural polysaccharide-based biogel, derived from carob (Ceratonia siliqua L.), on the molecular response of grapevine buds exposed to severe cold stress. To this aim, a preliminary RNA-Seq analysis was carried out to compare the transcriptomes of biogel-treated frozen buds (BIOGEL), untreated frozen buds (NTF), and unstressed controls (TNT). The transcriptomic analysis revealed extensive reprogramming of gene expression under freezing stress, highlighting the involvement of pathways related to membrane stabilization, osmotic adjustment, and metabolic regulation. Interestingly, the biogel treatment appeared to attenuate the modulation of several cold-responsive genes, particularly those associated with membrane functionality. Based on these preliminary transcriptomic data, twelve candidate genes, representative of the functional classes affected by biogel treatment, were selected for qRT-PCR validation. The expression patterns confirmed the RNA-Seq trends, further suggesting that biogel application might mitigate the typical transcriptional activation induced by frost, while supporting genes involved in cellular protection and integrity maintenance. The overall analyses suggest that the biogel may act through a dual mechanism: (i) providing a physical barrier that reduces cold-induced cellular damage and stress perception, and (ii) promoting a selective adjustment of gene expression that restrains excessive defense activation while enhancing membrane stability. Although further field validation is required, this natural and biodegradable formulation represents a promising and sustainable tool for mitigating late frost injuries in viticulture. Full article
(This article belongs to the Special Issue Biostimulants for Crop Growth and Abiotic Stress Mitigation)
Show Figures

Figure 1

14 pages, 3482 KB  
Article
Neuroprotective Effects and Mechanisms of Arecoline Against H2O2-Induced Damage in SH-SY5Y Cells
by Xiangfei Zhang, Jingwen Cui, Jing Sun, Fengzhong Wang, Bei Fan and Cong Lu
Int. J. Mol. Sci. 2025, 26(21), 10355; https://doi.org/10.3390/ijms262110355 - 24 Oct 2025
Viewed by 51
Abstract
An overproduction of reactive oxygen species (ROS) creates oxidative stress that disrupts neuronal activity and contributes to the pathogenesis of neurodegenerative diseases. Arecoline, the predominant alkaloid component of Areca catechu L., is known for multiple biological activities, yet its involvement in neuronal oxidative [...] Read more.
An overproduction of reactive oxygen species (ROS) creates oxidative stress that disrupts neuronal activity and contributes to the pathogenesis of neurodegenerative diseases. Arecoline, the predominant alkaloid component of Areca catechu L., is known for multiple biological activities, yet its involvement in neuronal oxidative injury has not been fully clarified. This study investigated arecoline’s effect on hydrogen peroxide (H2O2)-induced toxicity in SH-SY5Y human neuroblastoma cells (SH-SY5Y). Arecoline pretreatment significantly improved cell viability and preserved plasma membrane integrity, accompanied by reduced lipid peroxidation and restoration of cellular antioxidant enzyme activities. Moreover, arecoline maintained mitochondrial membrane potential and suppressed apoptotic progression. At the molecular level, Arecoline stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression, concurrently diminishing Kelch-like ECH-associated protein 1 (Keap1) levels. In parallel, it altered the apoptosis profile by increasing B-cell lymphoma 2 (Bcl2) levels and decreasing Bcl-2-associated X protein (Bax) and total cysteine aspartate protease-3 (Caspase-3) protein expression. Collectively, the findings suggest that arecoline safeguards neurons against oxidative stress by simultaneously activating antioxidant defenses and restraining apoptosis. This study adds novel molecular evidence supporting the potential neuroprotective relevance of arecoline in oxidative stress-related neuropathology. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

26 pages, 2238 KB  
Article
Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia
by Tamara Gajić, Dragan Vukolić, Snežana Knežević, Ana Spasojević, Filip Đoković, Srđan Milošević, Mladen Radišić, Maja Radišić and Dušan Pevac
Foods 2025, 14(21), 3607; https://doi.org/10.3390/foods14213607 - 23 Oct 2025
Viewed by 172
Abstract
The readiness of tourists to accept innovative food is investigated in this research through the prism of the Protection Motivation Theory and the Theory of Planned Behavior, combining two previously developed yet seldom researched psychological dimensions, namely, food neophobia as a restraining force [...] Read more.
The readiness of tourists to accept innovative food is investigated in this research through the prism of the Protection Motivation Theory and the Theory of Planned Behavior, combining two previously developed yet seldom researched psychological dimensions, namely, food neophobia as a restraining force and food involvement as a motivating force. The quantitative approach and the generation-by-generation analysis using partial least squares (PLS-SEM) and multiple group analysis were used to conduct the study on a sample of 985 domestic tourists in Serbia. The results suggest that food involvement eases openness toward gastronomic innovations and mitigates the negative impact of neophobia, whereas the generational differences reveal that younger tourists are more willing to be experimental, and older generations tend to be conservative in their food consumption. The study is relevant to the academic literature because it puts motivational and barrier factors into context within the PMT and TPB paradigms and provides operational implications for the design of tourism propositions that can be used to promote innovative and sustainable gastronomic experiences. The novelty of the present study is that it uses the hybrid model of food neophobia and food involvement in the generational context of a post-transition society, i.e., Serbia. Full article
(This article belongs to the Special Issue Flavor, Palatability, and Consumer Acceptance of Foods)
Show Figures

Figure 1

18 pages, 1872 KB  
Article
Divergent Immunomodulatory Roles of Fungal DNA in Shaping Treg and Inflammatory Responses
by Dongmei Li, Idalia Cruz, Yahui Feng, Maha Moussa, Jie Cheng, Digvijay Patil, Alexander Kroemer and Joseph A. Bellanti
J. Fungi 2025, 11(11), 760; https://doi.org/10.3390/jof11110760 - 22 Oct 2025
Viewed by 377
Abstract
Fungal communities in the gut influence host immunity, yet most studies have focused on cell wall components rather than genetic materials. Here, we explore how fungal genomic DNA (gDNA) from Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans modulate immune responses in [...] Read more.
Fungal communities in the gut influence host immunity, yet most studies have focused on cell wall components rather than genetic materials. Here, we explore how fungal genomic DNA (gDNA) from Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans modulate immune responses in human CD4+ T cells, murine splenocytes, and THP-1-derived macrophages. We find that C. albicans gDNA promotes the development of regulatory T cells and increases IL-10, fostering immune tolerance and preserving CD4+ T cell viability in an inflammatory setting. S. cerevisiae gDNA induces moderate Treg responses with restrained effector T cell expansion and higher checkpoint gene expression, entirely consistent with its commensal nature. In contrast, C. neoformans gDNA elicits a strongly inflammatory profile, promoting Th1/Th17 cells and driving high cytokine production. Mechanistically, C. albicans and S. cerevisiae gDNA dampen DNA-sensing pathways and enhance immune checkpoint molecules that act as brakes against overactivation, while C. neoformans gDNA robustly activates innate sensing pathways with limited checkpoint induction. These species-specific signaling profiles reveal that fungal gDNA itself can influence whether the immune system adopts a tolerant or inflammatory response toward fungi. This discovery highlights fungal genomic DNA as a previously underappreciated regulator of host–fungus interactions, offering new insight into commensal persistence, pathogenic invasion, and the potential for DNA-based antifungal interventions. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Immunology)
Show Figures

Figure 1

15 pages, 4053 KB  
Article
SpuA-Mediated Glycogen Metabolism Modulates Acid Stress Adaptation via Formic Acid and Amino Acid Utilization in Streptococcus pneumoniae
by Weichen Gong, Masayuki Ono, Xuefei Cheng, Yujiro Hirose, Keita Nishiyama, Haruki Kitazawa and Shigetada Kawabata
Microorganisms 2025, 13(10), 2409; https://doi.org/10.3390/microorganisms13102409 - 21 Oct 2025
Viewed by 173
Abstract
Glycogen metabolism plays a key role in bacterial adaptation. In Streptococcus pneumoniae, the glycogen-degrading enzyme SpuA is widely conserved, but its physiological significance remains unclear. In this study, we investigated how SpuA affects bacterial growth and response to acid stress. We found [...] Read more.
Glycogen metabolism plays a key role in bacterial adaptation. In Streptococcus pneumoniae, the glycogen-degrading enzyme SpuA is widely conserved, but its physiological significance remains unclear. In this study, we investigated how SpuA affects bacterial growth and response to acid stress. We found that the spuA deletion strain (ΔspuA) produced more acidic metabolites under anaerobic conditions than the wild-type strain. In a mouse infection model, bronchoalveolar lavage fluid (BALF) from ΔspuA-infected mice was more acidic on day 1 post-infection, showing a lower bacterial load than wild-type infection—a finding consistent with the early growth delay observed in vitro—but the mutant later exhibited enhanced persistence at 72 h. ΔspuA strains also showed greater tolerance to formic acid and higher intake of serum amyloid A1 (SAA1), which may further contribute to their survival in acidic environments. Transcriptomic analysis revealed reduced utilization of certain amino acids, particularly cysteine, in ΔspuA strains. However, the addition of 0.05% (v/v) formic acid restored amino acid utilization in ΔspuA strains, and co-supplementation with formic acid and cysteine significantly enhanced ΔspuA growth in vitro. These findings suggest that in the absence of SpuA, S. pneumoniae shifts its metabolism toward formic acid production, which may act both as a metabolic signal and a stressor that influences bacterial gene expression. This shift is accompanied by increased expression of tRNAs and growth rescue, suggesting enhanced amino acid utilization capacity. Although our findings reveal a potential link between formic acid metabolism and amino acid utilization through tRNA regulation, further validation using metabolic flux analyses or targeted metabolomics will be required to confirm this relationship. These observations imply a metabolic adaptation that facilitates bacterial growth under low-oxygen, acidic conditions during infection. Our results also raise the possibility that SpuA plays a role in restraining bacterial overgrowth in the host, thereby promoting a more balanced coexistence between pathogen and host. Full article
Show Figures

Figure 1

14 pages, 536 KB  
Article
Impact of a Short-Term Physical Activity Program on Emotion Regulation and Eating Behaviors Among Technical University Students
by Ofelia Popescu, Valentina Stefanica, Halil İbrahim Ceylan, Marko Joksimović, Nicoleta Leonte and Daniel Rosu
Healthcare 2025, 13(20), 2621; https://doi.org/10.3390/healthcare13202621 - 18 Oct 2025
Viewed by 426
Abstract
Background: Emotion regulation (ER) difficulties are closely linked to maladaptive coping strategies, including impulsive and emotional eating, which undermine health and well-being in young adults. Technical university students are particularly vulnerable due to factors such as a high academic workload, sedentary behavior, and [...] Read more.
Background: Emotion regulation (ER) difficulties are closely linked to maladaptive coping strategies, including impulsive and emotional eating, which undermine health and well-being in young adults. Technical university students are particularly vulnerable due to factors such as a high academic workload, sedentary behavior, and performance-related stress. This study evaluated the effects of a four-week structured physical activity intervention on ER and eating behaviors among engineering students. Methods: Seventy first- and second-year computer science and engineering students (40 males and 30 females, aged 19–25 years) from Politehnica University of Bucharest participated in the study. The intervention included three weekly supervised training sessions and a daily step count requirement (≥6000 steps), verified via weekly smartphone submissions. Pre- and post-intervention assessments employed the Difficulties in Emotion Regulation Scale (DERS-36) and the Adult Eating Behavior Questionnaire (AEBQ-35). Data were analyzed using Kolmogorov–Smirnov tests, Wilcoxon signed-rank tests, and paired-sample t-tests. Results: Significant improvements were observed in five ER domains—non-acceptance of emotional responses, goal-directed behavior, impulse control, access to regulation strategies, and emotional clarity (all p < 0.01). No change occurred in emotional awareness (p > 0.05). Eating behaviors (restrained, emotional, and external eating) showed no significant differences pre- and post-intervention (all p > 0.05). Conclusions: A short-term, structured physical activity program enhanced emotion regulation capacities but did not alter eating behaviors in the short run. These findings highlight the feasibility of embedding low-cost, exercise-based modules into higher education to strengthen students’ psychological resilience. Longer and multimodal interventions may be required to produce measurable changes in eating behaviors. Full article
Show Figures

Figure 1

28 pages, 11028 KB  
Article
Effectiveness of Advanced Support at Tunnel Face in ADECO-RS Construction
by Xiaoyu Dou, Chong Xu, Jiaqi Guo, Xin Huang and An Zhang
Buildings 2025, 15(20), 3744; https://doi.org/10.3390/buildings15203744 - 17 Oct 2025
Viewed by 187
Abstract
Tunnel construction in weak and fractured strata often faces risks such as tunnel face instability and large deformation of surrounding rock, which are difficult to effectively control using conventional support methods. Based on the engineering background of the No. 8# TA Tunnel in [...] Read more.
Tunnel construction in weak and fractured strata often faces risks such as tunnel face instability and large deformation of surrounding rock, which are difficult to effectively control using conventional support methods. Based on the engineering background of the No. 8# TA Tunnel in the F3 section of Georgia’s E60 Highway, this study employed ADECO-RS and developed a 3D numerical model with finite difference software to simulate full-face tunnel excavation process. The influence of advanced reinforcement measures on the stability of the surrounding rock was systematically investigated. The control effectiveness of different advanced reinforcement schemes was evaluated by comparing the displacement field, stress field, and plastic zone distribution of the surrounding rock under three conditions: no support, advanced pipe roof support, and a combination of pipe roof and glass fiber bolts. A comprehensive quantitative analysis of the synergistic effect of the combined reinforcement was also performed. The results indicated that significant extrusion deformation of the tunnel face and vault settlement occurred after excavation. The pressure arch developed within a range of 17.5 to 22 m above the tunnel vault. The surrounding rock of this tunnel was classified as type B (short-term stable). Deformation primarily occurred within one tunnel diameter ahead of the face, with the deformation rate significantly reduced after support. Advanced pipe roof support effectively restrained surrounding rock deformation, while the combination of advanced pipe roof and glass fiber bolts delivered better performance: reducing final convergence by 73.10%, pre-convergence by 82.69%, and face extrusion by 87.66%. The combined support also contracted the pressure arch boundaries from 17.5 to 22 m to 6–12.5 m, reduced the extent of major principal stress deflection, and significantly shrinks the plastic zone. Glass fiber bolts played a key role in controlling plastic zone expansion and ensuring stability. This study provides theoretical and numerical references for safe construction and advanced support design in tunnels under complex geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 3326 KB  
Article
Non-Dimensional Parameters to Design Damper Systems in RC Existing Framed Buildings
by Eliana Parcesepe, Alessandra De Angelis and Maria Rosaria Pecce
Appl. Sci. 2025, 15(20), 11029; https://doi.org/10.3390/app152011029 - 14 Oct 2025
Viewed by 207
Abstract
The use of dissipative bracing systems by hysteretic dampers represents one of the most efficient innovative techniques for the seismic retrofitting of existing structures, especially for reinforced concrete (RC) frame buildings. Many studies on design approaches and case studies have been developed in [...] Read more.
The use of dissipative bracing systems by hysteretic dampers represents one of the most efficient innovative techniques for the seismic retrofitting of existing structures, especially for reinforced concrete (RC) frame buildings. Many studies on design approaches and case studies have been developed in recent decades and are still in progress; however, the importance of the relation between the properties of the existing structure and of the damper system has not been analyzed, and the influence of the type of arrangement inside or outside the structure, has not been pointed out. In this paper, an innovative dimensionless approach is proposed to describe the dynamic structural properties of the retrofitted structure introducing ratios between the properties of the existing structure and damper system. Therefore, indications to optimize the design of the passive energy dissipation (PED) system can be clearly established for each case. Furthermore, a generalization of the design approach considering different solutions with internal and external bracings is proposed. The application of the dimensionless parameters to the design of a dissipation system for a single-bay three-story RC frame building and points out that damping can be reduced by two times if the capacity of the existing structure is used, further reducing the base shear transmitted to foundation. This result is also obtained by mounting the PED system on an external structure. The effect of infill walls on the stiffness of the existing structure requires an increment of the stiffness of the PED system with double the stiffness of the devices further than the buckling-restrained braces (BRBs). Full article
(This article belongs to the Special Issue Advances in Earthquake Engineering and Seismic Resilience)
Show Figures

Figure 1

22 pages, 5859 KB  
Article
miR-21-5p Alleviates Retinal Ischemia–Reperfusion Injury by Inhibiting M1 Polarization of Microglia via Suppression of STAT3 Signaling
by Liangshi Qin, Junle Liao, Cheng Tan, Can Liu, Wenjia Shi and Dan Chen
Biomedicines 2025, 13(10), 2456; https://doi.org/10.3390/biomedicines13102456 - 9 Oct 2025
Viewed by 320
Abstract
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator [...] Read more.
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator of Transcription 3 (STAT3) in retinal I/R injury. Methods: An acute intraocular hypertension (AIH) rat model was used to induce retinal I/R. The interaction between miR-21-5p and STAT3 was examined by dual-luciferase reporter assays. miR-21-5p and STAT3 expression were quantified by qRT-PCR and Western blotting. Retinal morphology, microglial polarization, and RGC survival were assessed by H&E staining and immunofluorescence. In vitro, microglia and RGCs were subjected to oxygen–glucose deprivation/reperfusion (OGD/R), and microglial-conditioned media (MCM) were applied to RGCs. Results: (1) miR-21-5p ameliorated AIH-induced retinal damage in vivo. (2) Overexpression of miR-21-5p inhibits M1 polarization of RM cultured in vitro. (3) MCM from miR-21-5p-overexpressing microglia attenuated OGD/R-induced RGC death. (4) miR-21-5p downregulates STAT3 expression to inhibit RM M1 polarization. (5) miR-21-5p down-regulation of STAT3 levels inhibits M1 polarization and reduces apoptosis of RGCs in retinal microglia of AIH rats. Conclusions: miR-21-5p alleviates retinal I/R injury by restraining microglial M1 polarization through direct repression of STAT3, thereby promoting RGC survival. These findings identify the miR-21-5p/STAT3 axis as a potential therapeutic target for ischemic retinal diseases. Full article
Show Figures

Figure 1

18 pages, 5916 KB  
Article
Settlement Relevant Load Combinations and Force Redistribution in Structural Design
by Christian Wallner, Jakob Resch and Dirk Schlicke
Buildings 2025, 15(19), 3596; https://doi.org/10.3390/buildings15193596 - 7 Oct 2025
Viewed by 334
Abstract
Settlement-relevant load combinations play a critical role in the serviceability design of buildings, particularly for structures on soils with time-dependent deformation behavior. While permanent loads must be fully considered, the contribution of variable actions depends on their duration relative to soil response. This [...] Read more.
Settlement-relevant load combinations play a critical role in the serviceability design of buildings, particularly for structures on soils with time-dependent deformation behavior. While permanent loads must be fully considered, the contribution of variable actions depends on their duration relative to soil response. This study investigates suitable settlement-relevant load combinations and their influence on the restrained load redistribution within buildings, based on parametric finite element analyses of wall-type and frame-type structures on sand, silt, and clay using PLAXIS 3D (Version 2024.3). Results show that structural stiffness significantly affects force redistribution due to settlements: stiffer structures exhibit greater redistribution, while soft soils generate higher absolute restraining forces but are less sensitive to load combinations. Based on these findings, the reduced characteristic load combination (including αn) is recommended for coarse-grained, drained soils, as it balances safety and realistic deformation. For fine-grained, low-permeability soils, the quasi-permanent combination should be applied to capture long-term consolidation effects. Short-term load variations after consolidation have negligible impact and should be addressed through safety factors rather than separate settlement analyses. These recommendations provide a clear and practical framework for selecting settlement-relevant load combinations, enhancing reliability and efficiency in structural design. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

21 pages, 599 KB  
Article
Quantized Control of Switched Systems with Partly Unstabilizable Subsystems and Actuator Saturation
by Jingjing Yan, Yunhui Gu, Shengyang Shi and Yuqing Zheng
Math. Comput. Appl. 2025, 30(5), 109; https://doi.org/10.3390/mca30050109 - 5 Oct 2025
Viewed by 191
Abstract
This paper solves the stabilization problem of the continuous-time switched systems with partly unstabilizable subsystems subject to actuator saturation and data quantization. The static quantizer is designed by properly restraining the density of the finite partition. The relationship between an ellipse and a [...] Read more.
This paper solves the stabilization problem of the continuous-time switched systems with partly unstabilizable subsystems subject to actuator saturation and data quantization. The static quantizer is designed by properly restraining the density of the finite partition. The relationship between an ellipse and a polyhedral is established and a suitable expression for the controller suffered by data quantization and actuator saturation is obtained. By defining the attraction domain and the invariant set based on the union or intersection of ellipses, we guarantee the decrement of the Lyapunov function in the optimal case if the state is within a given annular area. On this basis, if average dwell time and activation time of stabilizable subsystems meet some constraints, we derive that every trajectory whose initial state is within the given region will fall into a small ellipsoid and stay in a slightly larger ellipsoid. An illustrative example is given to verify the validity of the theoretical analysis. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

23 pages, 15416 KB  
Article
Experimental and Analytical Study of a Segmented Buckling Restrained Brace
by Shuai Xu, Yuchao Yin, Yanyan Liu, Xiuli Wang, Wei Wang and Yan Li
Buildings 2025, 15(19), 3564; https://doi.org/10.3390/buildings15193564 - 2 Oct 2025
Viewed by 456
Abstract
Buckling-restrained braces (BRBs) are widely recognized as effective energy-dissipation components that enhance the seismic resilience of structures. This study introduces a segmented buckling-restrained brace (S-BRB), composed of a Q235 steel core plate, restraining members, limiting plates, and bolts. A prototype S-BRB was designed, [...] Read more.
Buckling-restrained braces (BRBs) are widely recognized as effective energy-dissipation components that enhance the seismic resilience of structures. This study introduces a segmented buckling-restrained brace (S-BRB), composed of a Q235 steel core plate, restraining members, limiting plates, and bolts. A prototype S-BRB was designed, fabricated, and tested under quasi-static loading to investigate its failure mechanisms and hysteretic behavior. A corresponding numerical model was developed in ABAQUS to further evaluate its seismic performance. Test results demonstrate that the limiting plates effectively restrict the deformation of each core plate segment, enabling progressive yielding and preventing premature fracture at weaker sections. The S-BRB exhibited stable hysteretic loops, excellent energy-dissipation capacity, and strong deformation ability. Overall, the S-BRB shows reliable seismic behavior and adaptability in design, indicating strong potential for meeting practical seismic performance requirements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Viewed by 374
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2057 KB  
Article
Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods
by Jiancheng Qin, Jingzhe Tang, Lei Gao, Kun Zhang and Hui Tao
Energies 2025, 18(19), 5204; https://doi.org/10.3390/en18195204 - 30 Sep 2025
Viewed by 336
Abstract
Using the Kaya identity and LMDI method, this study analyzes the influence of population, GDP per capita, energy intensity, and carbon intensity on Xinjiang’s carbon emissions, and compares the effects of industrial structure, energy intensity, and carbon intensity on the industrial sectors during [...] Read more.
Using the Kaya identity and LMDI method, this study analyzes the influence of population, GDP per capita, energy intensity, and carbon intensity on Xinjiang’s carbon emissions, and compares the effects of industrial structure, energy intensity, and carbon intensity on the industrial sectors during the Eighth to Twelfth Five-Year Plan (FYP) periods. Key findings are as follows: (1) Xinjiang’s carbon emissions center on resource- and energy-intensive sectors, emissions from sectors such as extraction of petroleum and natural gas, fuel processing, chemicals, ceramics and cement, iron and steel, and non-ferrous and power generation accounted for 62% of carbon emissions in 2015; (2) after the Sixth FYP, GDP per capita effect turned into the core driver of carbon emission growth, while the population effect played an auxiliary role. Meanwhile, the energy intensity effect exerted a marked inhibitory impact on the increase in carbon emissions, yet the restraining effect of carbon intensity was comparatively limited; (3) during the Eighth to Twelfth FYPs, carbon emission growth was mainly attributed to industrial structure effects of the mining and washing of coal, extraction of petroleum and natural gas, fuel processing, chemicals, ceramics and cement, iron and steel, non-ferrous and power generation. Energy intensity and carbon intensity effects in various industries inhibited emission growth. Based on new trends in Xinjiang’s socioeconomic development, policy recommendations proposed including promoting the low-carbon transformation of industrial structure, profound restructuring of energy consumption, and improving energy efficiency by advancing energy-saving technology. Full article
Show Figures

Figure 1

12 pages, 219 KB  
Article
The Future of Nostalgia: Loss and Absence in the Age of Algorithmic Temporality
by Silvia Pierosara
Humanities 2025, 14(10), 187; https://doi.org/10.3390/h14100187 - 25 Sep 2025
Viewed by 335
Abstract
For human beings, accepting loss and absence is a constant effort, particularly when it comes to accepting their own finitude, which becomes apparent as time passes and people leave us. This is closely linked to nostalgia and the processes of remembrance. While there [...] Read more.
For human beings, accepting loss and absence is a constant effort, particularly when it comes to accepting their own finitude, which becomes apparent as time passes and people leave us. This is closely linked to nostalgia and the processes of remembrance. While there are many nuances, we can distinguish between constructive and destructive nostalgia. The former cannot accept absence or the passage of time and deludes itself into thinking that it can recover what has been lost. The latter recognizes the temptation to recover everything, but knows that this is impossible, and accepts that the past can only be preserved by transforming it into something else. Contemporary technologies that use algorithms can exacerbate the former tendency by manipulating memory processes and distorting the meaning of the virtual. The aim of this contribution is to shed light on the dynamics and implications of nostalgia as it is influenced by algorithms. To this end, it is divided into three stages. In the first stage, nostalgia is examined for its “restraining” power in relation to deterministically progressive philosophies of history, also through a reference to the original philosophical meaning of the term ‘virtual’. In the second stage, the relation to progress is thematized through a reflection on technologies and artificial intelligence, which uses algorithms and devours our data. In the third stage, it will be shown how thinking about nostalgia and artificial and algorithmic ‘intelligence(s)’ can be a valuable test case for distinguishing between the uses and abuses of nostalgia, between constructive nostalgia and destructive nostalgia. Full article
Back to TopTop