Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia
Abstract
1. Introduction
2. Theoretical Background
2.1. Protection Motivation Theory (PMT) and Theory of Planned Behavior (TPB)
2.2. Acceptance of Innovative Food by Tourists
2.3. Individual Factors in the Acceptance of Innovative Food and Differences Between Generations
2.4. Theoretical Justification and Model Development
3. Methodological Framework
3.1. Empirical Context and Sample Characteristics
3.2. Constructs and Measurement
3.3. Analytical Procedures
4. Findings
4.1. Descriptive Outcomes and Factor Validation
4.2. Structural Equation Model Findings
4.3. Measurement Invariance and Multi-Group Analysis Results
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tišma, S.; Demonja, D.; Malić-Limari, S.; Janković, M. Protected Natural Areas at the Intersection of Tourism Growth and Threats: Resilience Challenges in Croatia. J. Geogr. Inst. Jovan Cvijić SASA 2025, 75, 269–283. [Google Scholar] [CrossRef]
- Galarraga, A.; Martinez de Albeniz, I. Innovation and Creativity in Gastronomy beyond Haute Cuisine Restaurants: Towards an Innovation Ecosystem in Gastronomytech in the Basque Country. Creat. Innov. Manag. 2025, 34, 3–29. [Google Scholar] [CrossRef]
- Yang, R.; Wibowo, S.; O’Connor, P. The Dark Side of Applying Unified Theory of Acceptance and Use of Technology: Behavioral Intentions toward Food Addiction and Food Waste among Food Delivery Applications’ Users in China. J. Sustain. Tour. 2024, 33, 63–84. [Google Scholar] [CrossRef]
- Shah, S.K.; Yuan, J.; Tajeddini, K.; Gamage, T.C.; Oláh, J.; Acevedo-Duque, Á. Exploring the Intention–Behavior Gap in Food Delivery Applications: A Digital Transformation Perspective in Smart Tourism. Br. Food J. 2025. online first. [Google Scholar] [CrossRef]
- Cimbaljević, M.; Panić, A.; Kovačić, S.; Knežević, M.; Pavluković, V. What Factors Do Tourists Consider Most Important When Evaluating the Competitiveness of Tourism? The Focus on Developing Economy. J. Geogr. Inst. Jovan Cvijić SASA 2025, 75, 67–85. [Google Scholar] [CrossRef]
- Moura, A.A.; Mira, M.D.R.; Teixeira, A.R. The Tourist Gastronomic Experience: Ties between Young Foodies’ Motivation and Destination Development in Portugal. Tour. Hosp. 2025, 6, 7. [Google Scholar] [CrossRef]
- Correia, R.; Aksionova, E.; Venciute, D.; Sousa, J.; Fontes, R. User-Generated Content’s Influence on Tourist Destination Image: A Generational Perspective. Consum. Behav. Tour. Hosp. 2025, 20, 167–185. [Google Scholar] [CrossRef]
- Hossain, M.S. A Mediated-Moderation Mechanism of Green Knowledge Sharing to Determine Restaurant Sustainable Performance. J. Culin. Sci. Technol. 2025, 23, 1–19. [Google Scholar] [CrossRef]
- Zhan, W.; Shi, Y.; Lin, C. The Impact of IRT and IDT on Metaverse Adoption in Tourism: The Moderating Role of Personal Innovativeness among China’s Generation Z. PLoS ONE 2025, 20, e0327239. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Maddux, J.E.; Rogers, R.W. Protection Motivation and Self-Efficacy: A Revised Theory of Fear Appeals and Attitude Change. J. Exp. Soc. Psychol. 1983, 19, 469–479. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Monaco, S.; Sacchi, G. Travelling the Metaverse: Potential Benefits and Main Challenges for Tourism Sectors and Research Applications. Sustainability 2023, 15, 3348. [Google Scholar] [CrossRef]
- An, S.; Eck, T.; Yim, H. Understanding Consumers’ Acceptance Intention to Use Mobile Food Delivery Applications through an Extended Technology Acceptance Model. Sustainability 2023, 15, 832. [Google Scholar] [CrossRef]
- Berakon, I.; Wibowo, M.G.; Nurdany, A.; Aji, H.M. An Expansion of the Technology Acceptance Model Applied to the Halal Tourism Sector. J. Islam. Mark. 2023, 14, 289–316. [Google Scholar] [CrossRef]
- Shukri, W.H.W.Z.; Jaafar, S.N.A.; Ismail, F.; Ubaidillah, N.H.N. “I Am Not Afraid to Try This Food!” Determinants of Tourists’ Risk Acceptance, Willingness-to-Try and Insights for Enhancing Food Tourism Strategies in Perhentian, Terengganu, Malaysia. e-Acad. J. 2024, 13, 150–164. Available online: https://e-ajuitmct.uitm.edu.my/v3/images/2024/Vol13Issue2/7_Determinants_of_Tourists__Risk_Acceptance_Willingness-to-Try_and_Insights_for_Enhancing_Food_Tourism_Strategies_in_Perhentian_Tereng.pdf (accessed on 17 September 2025).
- Laureati, M.; De Boni, A.; Saba, A.; Lamy, E.; Minervini, F.; Delgado, A.M.; Sinesio, F. Determinants of Consumers’ Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024, 13, 1534. [Google Scholar] [CrossRef]
- Khan, S.; Mehmood, S. Factors Affecting Innovation Resistance of Fast-Food Employees’ Usage Intention of Robots: An Integrative Perspective. J. Hosp. Tour. Insights 2024, 7, 1456–1474. [Google Scholar] [CrossRef]
- Khan, S.; Mehmood, S.; Khan, I.U.; Khan, S.U. Understanding Tourists’ Adoption of Edible Food Packaging: The Role of Environmental Awareness. J. Hosp. Tour. Insights 2025, 8, 2317–2337. [Google Scholar] [CrossRef]
- Samaddar, K.; Mondal, S. Priming Tourists with Traditional Gastronomic Delicacies: Embracing a Responsible Approach towards Sustainable Consumption Practice. Consum. Behav. Tour. Hosp. 2024, 19, 383–403. [Google Scholar] [CrossRef]
- Wang, W. The Wait for Authenticity: The Role of Consumer Innovativeness in Shaping Food Truck Perceptions. Int. J. Hosp. Manag. 2025, 127, 104137. [Google Scholar] [CrossRef]
- Amiri, F.; Shishan, F.; Bazi, S.; Nimri, R.; Obeidat, Z. Examining Customers’ Continuous Intention to Use Self-Service Kiosks: An Extended Approach in the Context of Fast Food Restaurants Using the Technology Readiness Index and Technology Acceptance Model. Tour. Hosp. 2025. online first. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a Scale to Measure the Trait of Food Neophobia in Humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Chen, S.; Wang, D.; Wang, J.; Li, J. Consumer Willingness to Pay for Hybrid Food: The Role of Food Neophobia and Information Framing. Nutrients 2025, 17, 2326. [Google Scholar] [CrossRef] [PubMed]
- Cifci, I.; Ogretmenoglu, M.; Sengel, T.; Demirciftci, T.; Kandemir Altunel, G. Effects of Tourists’ Street Food Experience and Food Neophobia on Their Post-Travel Behaviors: The Roles of Destination Image and Corona-Phobia. J. Qual. Assur. Hosp. Tour. 2022, 25, 1278–1305. [Google Scholar] [CrossRef]
- Bell, R.; Marshall, D.W. The Construct of Food Involvement in Behavioral Research: Scale Development and Validation. Appetite 2003, 40, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Cheriyan, B.V.; Karunakar, K.K.; Anandakumar, R.; Murugathirumal, A.; Senthil Kumar, A. Eco-Friendly Extraction Technologies: A Comprehensive Review of Modern Green Analytical Methods. Sustain. Chem. Clim. Action 2025, 6, 100054. [Google Scholar] [CrossRef]
- Hamidah, S.; Chica’al Sandya, E. Cooked Rice Innovation to Increase the Tourism Attraction of Pindul Cave. GeoJournal Tour. Geosites 2021, 34, 42–46. [Google Scholar]
- Ding, L.; Jiang, C.; Qu, H. Generation Z Domestic Food Tourists’ Experienced Restaurant Innovativeness toward Destination Cognitive Food Image and Revisit Intention. Int. J. Contemp. Hosp. Manag. 2022, 34, 4157–4177. [Google Scholar] [CrossRef]
- Smanov, Z.; Duisenbayev, S.; Zulpykharov, K.; Laiskhanov, S.; Turymtayev, Z.; Kozhayev, Z.; Taukebayev, O. Soil Salinization and Its Impact on the Degradation of Agricultural Landscapes of the Talas District, Kazakhstan. J. Geogr. Inst. Jovan Cvijić SASA 2025, 75, 233–250. [Google Scholar] [CrossRef]
- Hoang, D.P.; Nguyen Hai, D.; Nguyen, V.T.N.; Nong, H.T.; Pham, P.T.; Tran, T.M. Factors Affecting Restaurant Choices for Traditional Foods among Gen Y and Gen Z: A Multigenerational Study on Vietnamese “Pho”. J. Hosp. Tour. Insights 2024, 7, 868–888. [Google Scholar] [CrossRef]
- Poyoi, P.; Gassiot-Melian, A.; Coromina, L. Generation Z and Millennials’ Food-Sharing Behaviour: A Cross-Generational Analysis of Motivations, Satisfaction and Behavioural Intention. Br. Food J. 2024, 126, 207–225. [Google Scholar] [CrossRef]
- Sui, D.; He, J.; Liu, K.; Lv, X. Investigating the Impact of the Theory of Planned Behavior and Food Literacy on Green Food Purchasing Intentions among Chinese Baby Boomers, Generation X, and Generation Y. Sustainability 2024, 16, 10467. [Google Scholar] [CrossRef]
- Wiangkham, A.; Kieanwatana, K.; Vongvit, R. A Comparative Study of Baby Boomers and Gen Z on Virtual Reality Adoption for Travel Intentions: A PLS-MGA and GRNN Model. Int. J. Hum.-Comput. Interact. 2025, 41, 8224–8245. [Google Scholar] [CrossRef]
- Akoğul, E. Determinants of Sustainable Local Food Preferences of Generation Z Tourists. J. Multidiscip. Acad. Tour. 2025, 10, 173–184. [Google Scholar] [CrossRef]
- Mondal, M.S.H. Use of Traditional Knowledge to Forecast Flood: Evidence from Riverine Floodplain in Bangladesh. J. Geogr. Inst. Jovan Cvijić SASA 2025, 75, 167–182. [Google Scholar] [CrossRef]
- Qu, M. Exploring Tourist Perceptions and Expectations of Spa Tourism in Mile City, China: A Grounded Theory Approach. J. Geogr. Inst. Jovan Cvijić SASA 2025, 75, 51–66. [Google Scholar] [CrossRef]
- Karacaoğlu, S.; Cankül, D. The Effects of Food Neophobia and Openness to Different Cultures on Ethnic Food Consumption: The Case of Tourism Students. An. Bras. Estud. Turísticos 2024, 14, 10. [Google Scholar]
- Kılıç, G.D.; Özdemir, B. Impact of Neophobia and Liminoid Tendencies on Tourists’ Food Consumption Behaviors in All-Inclusive Hotels: A Study in Antalya. J. Culin. Sci. Technol. 2024, 22, 933–953. [Google Scholar] [CrossRef]
- Stone, M.J.; Zou, S. Consumption Value in Food Tourism: The Effects on Purchase Involvement and Post-Travel Behaviours. Tour. Recreat. Res. 2025, 50, 214–228. [Google Scholar] [CrossRef]
- Ramírez-Rivera, E.D.J.; Cabal-Prieto, A.; Gómez-Romero, E.; Oney-Montalvo, J.E.; Can-Herrera, L.A.; Hernández-Salinas, G.; Juárez-Barrientos, J.M. Challenges to Insect-Based Food Acceptance: An Analysis of Neophobia Exploring Cognitive Aspects of the Mexican Consumers. J. Food Sci. 2025, 90, e70398. [Google Scholar] [CrossRef]
- Bugi, M.A.; Jugănaru, I.; Simina, I.E.; Nicoară, D.M.; Cristun, L.I.; Brad, G.F.; Mărginean, O. Exploring Adult Eating Behaviors and Food Neophobia: A National Study in Romania. Foods 2024, 13, 1301. [Google Scholar] [CrossRef]
- Gregana, M.J.V.; Ylagan, A.D. Tourist Gastronomic Engagement: Assessing Travel Motivation, Food Experiences, and Post-Visit Outcomes in Central Luzon’s Culinary Destinations. Int. J. Res. 2024, 12, 99–124. [Google Scholar] [CrossRef]
- Molina-Collado, A.; Santos-Vijande, M.L.; Gómez-Rico, M.; Del Cerro, J.S. Sensory versus Personal Environment as Antecedents of the Creative Food Tourism Experience. Int. J. Hosp. Manag. 2024, 118, 103688. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, R.; Chen, Q.; Zhang, J. Balancing Familiarity and Novelty: The Interplay of Cultural Familiarity and Food Neophilia in Shaping Tourists’ Local Food Experiences. Curr. Issues Tour. 2025. online first. [Google Scholar] [CrossRef]
- Naderi, N.; Naderi, N.; Boo, H.C.; Lee, K.H.; Chen, P.J. Food Tourism: Culture, Technology, and Sustainability. Front. Nutr. 2024, 11, 1390676. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Mir, M.A.; Nazki, A.A. Evaluation of Tourist Behavior towards Traditional Food Consumption: Validation of Extended Theory of Planned Behaviour. Cogent Soc. Sci. 2024, 10, 2298893. [Google Scholar] [CrossRef]
- Kamei, M.; Nishibe, M.; Horie, F.; Kusakabe, Y. Development and Validation of Japanese Version of Alternative Food Neophobia Scale (J-FNS-A): Association with Willingness to Eat Alternative Protein Foods. Front. Nutr. 2024, 11, 1356210. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, L.; Wiedmann, K.P.; Schmidt, S. The Impact of Innovation-Related Perception on Consumer Acceptance of Food Innovations—Development of an Integrated Framework of the Consumer Acceptance Process. Food Qual. Prefer. 2020, 84, 103958. [Google Scholar] [CrossRef]
- Thio, S.; Kristanti, M.; Sondak, M.R. The Role of Food Consumption Value and Attitude toward Food on Behavioral Intention: Culinary Tourist Behavior in Indonesia. Cogent Bus. Manag. 2024, 11, 2371985. [Google Scholar] [CrossRef]
- Hiamey, S.E.; Amenumey, E.K.; Mensah, I. Critical Success Factors for Food Tourism Destinations: A Socio-Cultural Perspective. Int. J. Tour. Res. 2021, 23, 192–205. [Google Scholar] [CrossRef]
- Payini, V.; Ramaprasad, B.S.; Mallya, J.; Sanil, M.; Patwardhan, V. The Relationship between Food Neophobia, Domain-Specific Innovativeness, and Food Festival Revisit Intentions: A Structural Equation Modeling Approach. Br. Food J. 2020, 122, 1849–1868. [Google Scholar] [CrossRef]
- Grinberga-Zalite, G.; Zvirbule, A.; Hernik, J. Fostering a Link between Creativity and Consumer Acceptance: Essential Factors for Advancing Innovations in Food Industry. Creat. Stud. 2024, 17, 309–322. [Google Scholar] [CrossRef]
- Cardon, P.W.; Huang, Y.; Power, G. Leadership Communication on Internal Digital Platforms, Emotional Capital, and Corporate Performance: The Case for Leader-Centric Listening. Int. J. Bus. Commun. 2025, 62, 495–521. [Google Scholar] [CrossRef]
- Pew Research Center. Where Millennials End and Generation Z Begins. 2019. Available online: https://www.pewresearch.org/short-reads/2019/01/17/where-millennials-end-and-generation-z-begins/ (accessed on 13 May 2025).
- Castellini, G.; Bryant, E.J.; Stewart-Knox, B.J.; Graffigna, G. Development and Validation of the Psychological Food Involvement Scale (PFIS). Food Qual. Prefer. 2023, 105, 104784. [Google Scholar] [CrossRef]
- Şahin, İ.N.; Atar, A.; Yaman, Ö.; Pulat Demir, H. Turkish Validity and Reliability Study of the Psychological Food Involvement Scale: PFIS-TR. BMC Psychol. 2025, 13, 84. [Google Scholar] [CrossRef]
- Brunsø, K.; Birch, D.; Memery, J.; Temesi, Á.; Lakner, Z.; Lang, M.; Grunert, K.G. Core Dimensions of Food-Related Lifestyle: A New Instrument for Measuring Food Involvement, Innovativeness and Responsibility. Food Qual. Prefer. 2021, 91, 104192. [Google Scholar] [CrossRef]
- Choe, J.Y.; Kim, S. Effects of Tourists’ Local Food Consumption Value on Attitude, Food Destination Image, and Behavioral Intention. Int. J. Hosp. Manag. 2018, 71, 1–10. [Google Scholar] [CrossRef]
- Mak, A.H.N.; Lumbers, M.; Eves, A.; Chang, R.C.Y. The Effects of Food-Related Personality Traits on Tourist Food Consumption Motivations. Asia Pac. J. Tour. Res. 2017, 22, 1–20. [Google Scholar] [CrossRef]
- Kim, Y.G.; Eves, A.; Scarles, C. Building a Model of Local Food Consumption on Trips and Holidays: A Grounded Theory Approach. Int. J. Hosp. Manag. 2009, 28, 423–431. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Sun, A.; Wang, Y.; Wu, D. Residents’ Green Purchasing Intentions in a Developing-Country Context: Integrating PLS-SEM and MGA Methods. Sustainability 2019, 12, 30. [Google Scholar] [CrossRef]
- Ocy, D.R.; Sarifah, I.; Riyadi, R. EFA and CFA Analysis: Development and Validation of a Test Instrument for Mathematical Abstraction Skills. J. Res. Adv. Math. Educ. 2025, 10, 101–119. [Google Scholar] [CrossRef]
- Marsh, H.W.; Muthén, B.; Asparouhov, T.; Lüdtke, O.; Robitzsch, A.; Morin, A.J.; Trautwein, U. Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students’ Evaluations of University Teaching. Struct. Equ. Model. 2009, 16, 439–476. [Google Scholar] [CrossRef]
- Sterner, P.; De Roover, K.; Goretzko, D. New Developments in Measurement Invariance Testing: An Overview and Comparison of EFA-Based Approaches. Struct. Equ. Model. 2025, 32, 117–135. [Google Scholar] [CrossRef]
- Chen, S.F.; Wang, S.; Chen, C.Y. A Simulation Study Using EFA and CFA Programs Based on the Impact of Missing Data on Test Dimensionality. Expert Syst. Appl. 2012, 39, 4026–4031. [Google Scholar] [CrossRef]
- Papia, E.M.; Kondi, A.; Constantoudis, V. Machine Learning Applications in SEM-Based Pore Analysis: A Review. Microporous Mesoporous Mater. 2025, 394, 113675. [Google Scholar] [CrossRef]
- Dossa, K.F.; Bissonnette, J.F.; Barrette, N.; Bah, I.; Miassi, Y.E. Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data. Climate 2025, 13, 19. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing Measurement Invariance of Composites Using Partial Least Squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Beltrão, G.; Sousa, S.; Lamas, D. Assessing the Measurement Invariance of the Human–Computer Trust Scale. Electronics 2025, 14, 1806. [Google Scholar] [CrossRef]
- Schoemann, A.M.; Moore, E.W.G.; Yagiz, G. How and Why to Follow Best Practices for Testing Mediation Models with Missing Data. Int. J. Psychol. 2025, 60, e13257. [Google Scholar] [CrossRef] [PubMed]
- Gajić, T.; Vukolić, D.; Spasojević, A.; Blešić, I.; Petrović, M.D.; Bugarčić, J.; Milivojević, M. Exploring Attitudes on the Sustainable Balance between Nature Conservation and Economic Development through Ecotourism—Lessons from EU and Non-EU Countries. Land 2025, 14, 395. [Google Scholar] [CrossRef]
- Blešić, I.; Ivkov, M.; Gajić, T.; Petrović, M.D.; Radovanović, M.M.; Valjarević, A.; Lukić, T. Determinants Influencing Tourists’ Willingness to Visit Türkiye–Impact of Earthquake Hazards on Serbian Visitors’ Preferences. Open Geosci. 2024, 16, 20220670. [Google Scholar] [CrossRef]
- Vukolić, D.; Gajić, T.; Knežević, S.; Cilić, M. The Impact of the Quality of Gastronomic Services on Tourist Satisfaction in Agritourism Farms in Eastern Serbia. Menadž. Hotel. Tur. 2024, 12, 89–105. [Google Scholar] [CrossRef]



| Generation | Years of Birth | Label in Analysis | Key Characteristics |
|---|---|---|---|
| Baby Boomers | 1946–1964 | Older cohort | Tradition-oriented, cautious toward innovation |
| Generation Z | 1995–2010 | Younger cohort | Tech-savvy, experimental, innovation-oriented |
| Variable | Category | Gen Z (n = 482) | Boomers (n = 503) | Total |
|---|---|---|---|---|
| Gender | Male | 224 | 262 | 486 |
| Female | 258 | 241 | 499 | |
| Age | 1995–2010 | 482 | – | 482 |
| 1946–1964 | – | 503 | 503 | |
| Education | High school | 156 | 198 | 354 |
| College/Higher | 305 | 271 | 576 | |
| PhD | 21 | 34 | 55 | |
| Income (€) | <500 | 188 | 241 | 429 |
| 500–1000 | 224 | 201 | 425 | |
| 1000+ | 70 | 61 | 131 | |
| Employment | Student | 162 | 0 | 162 |
| Employed | 258 | 87 | 345 | |
| Unemployed | 34 | 29 | 63 | |
| Retired | 28 | 387 | 415 | |
| Type of travel | City tourism | 248 | 187 | 435 |
| Spas and wellness | 96 | 164 | 260 | |
| Mountain resorts | 138 | 152 | 290 |
| Constructs | Source | Statements (Likert 1–7) |
|---|---|---|
| Food Neophobia Scale (FNS) | Pliner & Hobden [20] | FNS1: I don’t like to try food that I have never eaten before. FNS2: I avoid dishes that seem too unfamiliar to me. FNS3: I am wary of unusual foods. FNS4: I prefer to choose foods that I am already familiar with. FNS5: New foods make me distrustful. |
| Food Involvement Scale (FIS) | Bell & Marshall [23] | FIS1: Food occupies an important place in my life. FIS2: I often think about food during the day. FIS3: I like to prepare and experiment with food. FIS4: When I travel, I always want to try local dishes. FIS5: I enjoy discovering new restaurants and tastes. |
| Tourist Acceptance of Innovative Foods (TAIF) | Ajzen [57], Kim et al. [58] | TAIF1: I am willing to try innovative dishes while traveling. TAIF2: If I am offered a new dish, I will try it without hesitation. TAIF3: I would accept plant-based or fusion dishes in a hotel/restaurant. TAIF4: I would recommend innovative dishes to other tourists. TAIF5: I accept innovative food as part of the tourist experience. |
| Construct | Item | m | sd | λ |
|---|---|---|---|---|
| FNS | FNS1 | 3.842 | 1.104 | 0.734 |
| FNS2 | 3.765 | 1.089 | 0.768 | |
| FNS3 | 3.921 | 1.147 | 0.751 | |
| FNS4 | 4.012 | 1.215 | 0.783 | |
| FNS5 | 3.876 | 1.093 | 0.759 | |
| FIS | FIS1 | 5.214 | 1.042 | 0.721 |
| FIS2 | 5.031 | 1.087 | 0.706 | |
| FIS3 | 4.983 | 1.192 | 0.744 | |
| FIS4 | 5.341 | 1.153 | 0.762 | |
| FIS5 | 5.148 | 1.083 | 0.737 | |
| TAIF | TAIF1 | 5.672 | 1.062 | 0.781 |
| TAIF2 | 5.489 | 1.108 | 0.764 | |
| TAIF3 | 5.415 | 1.172 | 0.748 | |
| TAIF4 | 5.608 | 1.125 | 0.792 | |
| TAIF5 | 5.534 | 1.137 | 0.806 |
| Construct | α | ρA | CR | AVE |
|---|---|---|---|---|
| Total (N = 985) | ||||
| FNS | 0.841 | 0.86 | 0.879 | 0.592 |
| FIS | 0.827 | 0.85 | 0.866 | 0.568 |
| TAIF | 0.860 | 0.87 | 0.890 | 0.621 |
| Gen Z (N = 563) | ||||
| FNS | 0.819 | 0.84 | 0.870 | 0.575 |
| FIS | 0.805 | 0.83 | 0.857 | 0.552 |
| TAIF | 0.851 | 0.87 | 0.885 | 0.613 |
| Boomers (N = 422) | ||||
| FNS | 0.848 | 0.87 | 0.886 | 0.609 |
| FIS | 0.835 | 0.86 | 0.874 | 0.583 |
| TAIF | 0.870 | 0.89 | 0.903 | 0.645 |
| Model | R2 (TAIF) | ΔR2 | Q2 (TAIF) |
|---|---|---|---|
| Basic (no interaction) | 0.546 | – | 0.278 |
| + Interaction FNS × FIS | 0.563 | 0.017 | 0.293 |
| Hypothesis | Path | β | SE | t | p | f2 | R2 | Q2 | Confirmation |
|---|---|---|---|---|---|---|---|---|---|
| H1 | FNS → TAIF | –0.312 | 0.058 | 5.379 | <0.001 | 0.082 | confirmed | ||
| H2 | FIS → TAIF | 0.451 | 0.062 | 7.274 | <0.001 | 0.146 | confirmed | ||
| H3 | FNS × FIS → TAIF | –0.087 | 0.041 | 2.134 | 0.033 | 0.021 | 0.563 | 0.293 | confirmed |
| Construct | RMSE (PLS) | RMSE (LM) | MAE (PLS) | MAE (LM) | Q2_Predict |
|---|---|---|---|---|---|
| FNS | 0.912 | 0.954 | 0.721 | 0.748 | 0.214 |
| FIS | 0.875 | 0.902 | 0.695 | 0.713 | 0.239 |
| TAIF | 0.843 | 0.881 | 0.668 | 0.689 | 0.267 |
| Step | Test | Result | Permutation p-Value | Conclusions |
|---|---|---|---|---|
| 1 | Configural invariance | Satisfied | – | Identical setup confirmed |
| 2 | Compositional invariance | Correlation = 0.996 | 0.432 | Invariance established (p > 0.05) |
| 3a | Equality of means (FNS) | ΔMean = 0.021 | 0.287 | Equal across groups |
| 3b | Equality of variances (FNS) | ΔVar = 0.018 | 0.351 | Equal across groups |
| 3a | Equality of means (FIS) | ΔMean = 0.034 | 0.298 | Equal across groups |
| 3b | Equality of variances (FIS) | ΔVar = 0.027 | 0.410 | Equal across groups |
| 3a | Equality of means (TAIF) | ΔMean = 0.016 | 0.365 | Equal across groups |
| 3b | Equality of variances (TAIF) | ΔVar = 0.022 | 0.389 | Equal across groups |
| Path | Gen Z (β) | Boomers (β) | Δβ | p-Value | Conclusions |
|---|---|---|---|---|---|
| FNS → TAIF | −0.281 | −0.402 | 0.121 | 0.018 | stronger negative effect in Boomers |
| FIS → TAIF | 0.496 | 0.379 | 0.117 | 0.031 | stronger positive effect in Gen Z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajić, T.; Vukolić, D.; Knežević, S.; Spasojević, A.; Đoković, F.; Milošević, S.; Radišić, M.; Radišić, M.; Pevac, D. Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia. Foods 2025, 14, 3607. https://doi.org/10.3390/foods14213607
Gajić T, Vukolić D, Knežević S, Spasojević A, Đoković F, Milošević S, Radišić M, Radišić M, Pevac D. Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia. Foods. 2025; 14(21):3607. https://doi.org/10.3390/foods14213607
Chicago/Turabian StyleGajić, Tamara, Dragan Vukolić, Snežana Knežević, Ana Spasojević, Filip Đoković, Srđan Milošević, Mladen Radišić, Maja Radišić, and Dušan Pevac. 2025. "Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia" Foods 14, no. 21: 3607. https://doi.org/10.3390/foods14213607
APA StyleGajić, T., Vukolić, D., Knežević, S., Spasojević, A., Đoković, F., Milošević, S., Radišić, M., Radišić, M., & Pevac, D. (2025). Acceptance of Innovative Food Among Tourists: Psychological Factors and Generational Differences in the Post-Transition Context of Serbia. Foods, 14(21), 3607. https://doi.org/10.3390/foods14213607

