Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = residential EV charging demand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 15106 KiB  
Article
A Spatially Aware Machine Learning Method for Locating Electric Vehicle Charging Stations
by Yanyan Huang, Hangyi Ren, Xudong Jia, Xianyu Yu, Dong Xie, You Zou, Daoyuan Chen and Yi Yang
World Electr. Veh. J. 2025, 16(8), 445; https://doi.org/10.3390/wevj16080445 - 6 Aug 2025
Abstract
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and [...] Read more.
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and spatial dependencies among factors influencing EVCS locations. To address this research gap and better understand the spatial impacts of urban activities on EVCS placement, this study presents a spatially aware machine learning (SAML) method that combines a multi-layer perceptron (MLP) model with a spatial loss function to optimize EVCS sites. Additionally, the method uses the Shapley additive explanation (SHAP) technique to investigate nonlinear relationships embedded in EVCS placement. Using the city of Wuhan as a case study, the SAML method reveals that parking site (PS), road density (RD), population density (PD), and commercial residential (CR) areas are key factors in determining optimal EVCS sites. The SAML model classifies these grid cells into no EVCS demand (0 EVCS), low EVCS demand (from 1 to 3 EVCSs), and high EVCS demand (4+ EVCSs) classes. The model performs well in predicting EVCS demand. Findings from ablation tests also indicate that the inclusion of spatial correlations in the model’s loss function significantly enhances the model’s performance. Additionally, results from case studies validate that the model is effective in predicting EVCSs in other metropolitan cities. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 - 1 Aug 2025
Viewed by 216
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 354
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 646
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Hierarchical Charging Scheduling Strategy for Electric Vehicles Based on NSGA-II
by Yikang Chen, Zhicheng Bao, Yihang Tan, Jiayang Wang, Yang Liu, Haixiang Sang and Xinmei Yuan
Energies 2025, 18(13), 3269; https://doi.org/10.3390/en18133269 - 22 Jun 2025
Cited by 1 | Viewed by 427
Abstract
Electric vehicles (EVs) are gradually gaining high penetration in transportation due to their low carbon emissions and high power conversion efficiency. However, the large-scale charging demand poses significant challenges to grid stability, particularly the risk of transformer overload caused by random charging. It [...] Read more.
Electric vehicles (EVs) are gradually gaining high penetration in transportation due to their low carbon emissions and high power conversion efficiency. However, the large-scale charging demand poses significant challenges to grid stability, particularly the risk of transformer overload caused by random charging. It is necessary that a coordinated charging strategy be carried out to alleviate this challenge. We propose a hierarchical charging scheduling framework to optimize EV charging consisting of demand prediction and hierarchical scheduling. Fuzzy reasoning is introduced to predict EV charging demand, better modeling the relationship between travel distance and charging demand. A hierarchical model was developed based on NSGA-II, where the upper layer generates Pareto-optimal power allocations and then the lower layer dispatches individual vehicles under these allocations. A simulation under this strategy was conducted in a residential scenario. The results revealed that the coordinated strategy reduced the user costs by 21% and the grid load variance by 64% compared with uncoordinated charging. Additionally, the Pareto front could serve as a decision-making tool for balancing user economic interest and grid stability objectives. Full article
Show Figures

Figure 1

30 pages, 4198 KiB  
Article
Enabling Low-Carbon Transportation: Resilient Energy Governance via Intelligent VPP and Mobile Energy Storage-Driven V2G Solutions
by Guwon Yoon, Myeong-in Choi, Keonhee Cho, Seunghwan Kim, Ayoung Lee and Sehyun Park
Buildings 2025, 15(12), 2045; https://doi.org/10.3390/buildings15122045 - 13 Jun 2025
Viewed by 384
Abstract
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station [...] Read more.
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station linkage data, and traffic volume data. The proposed system promotes eco-friendly EV usage, flexible energy management, and carbon neutrality through a polyfunctional Vehicle-to-Grid (V2G) architecture that integrates decentralized energy networks. Two core strategies are implemented: (1) configuring Virtual Power Plant (VPP)-based charging packages tailored to station types, and (2) utilizing EV batteries as distributed ESS units. K-means clustering based on spatial proximity and energy demand is followed by heuristic algorithms to improve the efficiency of mobile ESS operation. A three-layer framework is used to assess improvements in energy demand distribution, with demand-oriented VPPs deployed in high-demand zones to maximize ESS utilization. This approach enhances station stability, increases the load factor to 132.7%, and reduces emissions by 271.5 kgCO2. Economically, the system yields an annual benefit of USD 47,860, a Benefit–Cost Ratio (BCR) of 6.67, and a Levelized Cost of Energy (LCOE) of USD 37.78 per MWh. These results demonstrate the system’s economic viability and resilience, contributing to the development of a flexible and sustainable energy infrastructure for cities. Full article
Show Figures

Figure 1

16 pages, 4413 KiB  
Article
Autonomous Control of Electric Vehicles Using Voltage Droop
by Hanchi Zhang, Rakesh Sinha, Hessam Golmohamadi, Sanjay K. Chaudhary and Birgitte Bak-Jensen
Energies 2025, 18(11), 2824; https://doi.org/10.3390/en18112824 - 29 May 2025
Viewed by 384
Abstract
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on [...] Read more.
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on Denmark’s residential distribution networks. A residential grid comprising 67 households powered by a 630 kVA transformer is studied using DiGSILENT PowerFactory. With the assumption of simultaneous charging of all EVs, the transformer can be heavily loaded up to 147.2%. Thus, a voltage-droop based autonomous control approach is adopted, where the EV charging power is dynamically adjusted based on the point-of-connection voltage of each charger instead of the fixed rated power. This strategy eliminates overloading of the transformers and cables, ensuring they operate within a pre-set limit of 80%. Voltage drops are mitigated within the acceptable safety range of ±10% from normal voltage. These results highlight the effectiveness of the droop control strategy in managing EV charging power. Finally, it exemplifies the benefits of intelligent EV charging systems in Horizon 2020 EU Projects like SERENE and SUSTENANCE. The findings underscore the necessity to integrate smart control mechanisms, consider reinforcing grids, and promote active consumer participation to meet the rising demand for a low-carbon future. Full article
Show Figures

Figure 1

24 pages, 3994 KiB  
Article
Smart Charging Recommendation Framework for Electric Vehicles: A Machine-Learning-Based Approach for Residential Buildings
by Nikolaos Tsalikidis, Paraskevas Koukaras, Dimosthenis Ioannidis and Dimitrios Tzovaras
Energies 2025, 18(6), 1528; https://doi.org/10.3390/en18061528 - 19 Mar 2025
Viewed by 581
Abstract
The transition to a decarbonized energy sector, driven by the integration of Renewable Energy Sources (RESs), smart building technology, and the rise of Electric Vehicles (EVs), has highlighted the need for optimized energy system planning. Increasing EV adoption creates additional challenges for charging [...] Read more.
The transition to a decarbonized energy sector, driven by the integration of Renewable Energy Sources (RESs), smart building technology, and the rise of Electric Vehicles (EVs), has highlighted the need for optimized energy system planning. Increasing EV adoption creates additional challenges for charging infrastructure and grid demand, while proactive and informed decisions by residential EV users can help mitigate such challenges. Our work develops a smart residential charging framework that assists residents in making informed decisions about optimal EV charging. The framework integrates a machine-learning-based forecasting engine that consists of two components: a stacking and voting meta-ensemble regressor for predicting EV charging load and a bidirectional LSTM for forecasting national net energy exchange using real-world data from local road traffic, residential charging sessions, and grid net energy exchange flow. The combined forecasting outputs are passed through a data-driven weighting mechanism to generate probabilistic recommendations that identify optimal charging periods, aiming to alleviate grid stress and ensure efficient operation of local charging infrastructure. The framework’s modular design ensures adaptability to local charging infrastructure within or nearby building complexes, making it a versatile tool for enhancing energy efficiency in residential settings. Full article
Show Figures

Figure 1

19 pages, 4398 KiB  
Article
Slow but Steady: Assessing the Benefits of Slow Public EV Charging Infrastructure in Metropolitan Areas
by Giuliano Rancilio, Filippo Bovera and Maurizio Delfanti
World Electr. Veh. J. 2025, 16(3), 148; https://doi.org/10.3390/wevj16030148 - 4 Mar 2025
Viewed by 1301
Abstract
Vehicle-grid integration (VGI) is critical for the future of electric power systems, with decarbonization targets anticipating millions of electric vehicles (EVs) by 2030. As EV adoption grows, charging demand—particularly during peak hours in cities—may place significant pressure on the electrical grid. Charging at [...] Read more.
Vehicle-grid integration (VGI) is critical for the future of electric power systems, with decarbonization targets anticipating millions of electric vehicles (EVs) by 2030. As EV adoption grows, charging demand—particularly during peak hours in cities—may place significant pressure on the electrical grid. Charging at high power, especially during the evening when most EVs are parked in residential areas, can lead to grid instability and increased costs. One promising solution is to leverage long-duration, low-power charging, which can align with typical user behavior and improve grid compatibility. This paper delves into how public slow charging stations (<7.4 kW) in metropolitan residential areas can alleviate grid pressures while fostering a host of additional benefits. We show that, with respect to a reference (22 kW infrastructure), such stations can increase EV user satisfaction by up to 20%, decrease grid costs by 40% owing to a peak load reduction of 10 to 55%, and provide six times the flexibility for energy markets. Cities can overcome the limitation of private garage scarcity with this charging approach, thus fostering the transition to EVs. Full article
Show Figures

Figure 1

18 pages, 4512 KiB  
Article
Carbon-Aware Demand Response for Residential Smart Buildings
by Jiamin Zou, Sha Liu, Luxia Ouyang, Jiaqi Ruan and Shuoning Tang
Electronics 2024, 13(24), 4941; https://doi.org/10.3390/electronics13244941 - 14 Dec 2024
Cited by 1 | Viewed by 1293
Abstract
The stability and reliability of a smart grid are challenged by the inherent intermittency and unpredictability of renewable energy as its integration into the smart grid increases. This places enormous pressure on the smart grid to manage high loads and volatility. To effectively [...] Read more.
The stability and reliability of a smart grid are challenged by the inherent intermittency and unpredictability of renewable energy as its integration into the smart grid increases. This places enormous pressure on the smart grid to manage high loads and volatility. To effectively mitigate the impact of new energy integration on smart grids, demand response (DR) can be altered to the demand-side burdens. Using residential smart buildings (RSBs) in Shanghai, this study proposes a carbon-aware demand response (CADR) model that is predicated on the coordination of power carbon intensity and real-time electricity prices. In order to accomplish a more comprehensive reduction in overall electricity consumption costs, we conducted real-time scheduling of a building’s electrical devices using a greedy algorithm. In addition, a model of an optimal charging and discharging scheme for household electric vehicles was established, which is based on various charging modes, taking into account the electrification of the transportation sector. The cost of EV charging is reduced by an average of 23.18% and 33.2% under the two common charging modes, while the integrated cost of the total annual electricity consumption of household devices is reduced by 8.69%, as indicated by the simulation results. Full article
Show Figures

Figure 1

28 pages, 724 KiB  
Article
Dynamic Capacity Sharing for Cyber–Physical Resilience of EV Charging
by Erdem Gümrükcü, Charukeshi Joglekar, Grace Muriithi, Ali Arsalan, Ahmed Aboulebdeh, Behnaz Papari, Alparslan Zehir, Ferdinanda Ponci and Antonello Monti
Energies 2024, 17(24), 6277; https://doi.org/10.3390/en17246277 - 12 Dec 2024
Viewed by 1079
Abstract
Electric vehicle (EV) charging infrastructure hardware–software solutions and communication protocols have inherent vulnerabilities against cyberattacks. Due to the wide range of back doors and infiltration possibilities, there is an important need for solutions that can maintain critical service continuity during incidents. This study [...] Read more.
Electric vehicle (EV) charging infrastructure hardware–software solutions and communication protocols have inherent vulnerabilities against cyberattacks. Due to the wide range of back doors and infiltration possibilities, there is an important need for solutions that can maintain critical service continuity during incidents. This study proposes a dynamic capacity sharing method for effective use of the constrained grid capacity between neighboring charging clusters in distribution grids when the communication link between the clusters’ operators and the grid operator is disrupted due to hardware faults or cyberattacks. The performance of the developed solution is thoroughly investigated in a Denial-of-Service cyberattack scenario that may take place at different times of the day in realistic scenarios involving residential demand and stochastic EV charging behavior. The analyses validated the effectiveness of the proposed method in improving the deteriorated service level per charging cluster and better utilization of an overall constrained capacity. Full article
Show Figures

Figure 1

22 pages, 3041 KiB  
Article
Impact of Electric Vehicles Charging on Urban Residential Power Distribution Networks
by Mohamed El-Hendawi, Zhanle Wang, Raman Paranjape, James Fick, Shea Pederson and Darcy Kozoriz
Energies 2024, 17(23), 5905; https://doi.org/10.3390/en17235905 - 25 Nov 2024
Cited by 1 | Viewed by 987
Abstract
Achieving transportation decarbonization and reducing carbon emissions are global initiatives that have attracted a lot of effort. The use of electric vehicles (EVs) has experienced a significant increase lately, which will have a considerable impact on current power systems. This study develops a [...] Read more.
Achieving transportation decarbonization and reducing carbon emissions are global initiatives that have attracted a lot of effort. The use of electric vehicles (EVs) has experienced a significant increase lately, which will have a considerable impact on current power systems. This study develops a framework to evaluate/mitigate the negative impact of increasing EV charging on urban power distribution systems. This framework includes data analytics of actual residential electrical load and EV charging profiles, and the development of optimal EV charging management and AC load flow models using an actual residential power distribution system in Saskatchewan, Canada. We use statistical methods to identify a statistically-extreme situation for a power system, which a power utility needs to prepare for. The philosophy is that if the power system can accommodate this situation, the power system will be stable 97.7% of the time. Simulation results show the house voltage and transformer loading at various EV penetration levels under this statistically-extreme situation. We also identify that the particular 22-house power distribution system can accommodate a maximum number of 11 EVs (representing 50% EV penetration) under this statistically-extreme situation. The results also show that the proposed optimal EV charging management model can reduce the peak demand by 43%. Since we use actual data for this study, it reflects the current real-world situation, which presents a useful reference for power utilities. The framework can also be used to evaluate/mitigate the impact of EV charging on power systems and optimize EV infrastructure development. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

34 pages, 4258 KiB  
Article
Collaborative Optimization Framework for Coupled Power and Transportation Energy Systems Incorporating Integrated Demand Responses and Electric Vehicle Battery State-of-Charge
by Lijun Geng, Chengxia Sun, Dongdong Song, Zilong Zhang, Chenyang Wang and Zhigang Lu
Energies 2024, 17(20), 5234; https://doi.org/10.3390/en17205234 - 21 Oct 2024
Viewed by 1269
Abstract
The growing adoption of electric vehicles (EVs) and advancements in dynamic wireless charging (DWC) technology have strengthened the interdependence between power distribution networks (PDNs) and electrified transportation networks (ETNs), leading to the emergence of coupled power and transportation energy systems (CPTESs). This development [...] Read more.
The growing adoption of electric vehicles (EVs) and advancements in dynamic wireless charging (DWC) technology have strengthened the interdependence between power distribution networks (PDNs) and electrified transportation networks (ETNs), leading to the emergence of coupled power and transportation energy systems (CPTESs). This development introduces new challenges, particularly as DWC technology shifts EV charging demand from residential plug-in charging to charging-while-driving during commuting hours, causing simultaneous congestion in both ETNs and PDNs during peak times. The present work addresses this issue by developing a collaborative optimization framework for CPTESs that incorporates integrated demand responses (IDRs) and EVs battery state-of-charge (SOC). In the ETN, a multiperiod traffic assignment model with time-shiftable traffic demands (MTA-TSTD) is established to optimize travelers’ routes and departure times while capturing traffic flow distribution. Meanwhile, effective path generation models with EVs battery SOC are proposed to optimize charging energy during driving and construct the effective path sets for MTA-TSTD. In the PDN, a multiperiod optimal power flow model with time-shiftable power demands (MOPF-TSPD) is formulated to schedule local generators and flexible power demands while calculating the power flow distribution. To enhance temporal and spatial coordination in CPTESs, a distributed coordinated operation model considering IDRs is proposed, aiming to optimize energy consumption, alleviate congestion, and ensure system safety. Finally, an adaptive effective path generation algorithm and an ETN–PDN interaction algorithm are devised to efficiently solve these models. Numerical results on two test systems validate the effectiveness of the proposed models and algorithms. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

20 pages, 5342 KiB  
Article
Optimal EV Charging and PV Siting in Prosumers towards Loss Reduction and Voltage Profile Improvement in Distribution Networks
by Christina V. Grammenou, Magdalini Dragatsika and Aggelos S. Bouhouras
World Electr. Veh. J. 2024, 15(10), 462; https://doi.org/10.3390/wevj15100462 - 11 Oct 2024
Cited by 1 | Viewed by 1451
Abstract
In this paper, the problem of simultaneous charging of Electrical Vehicles (EVs) in distribution networks (DNs) is examined in order to depict congestion issues, increased power losses, and voltage constraint violations. To this end, this paper proposes an optimal EV charging schedule in [...] Read more.
In this paper, the problem of simultaneous charging of Electrical Vehicles (EVs) in distribution networks (DNs) is examined in order to depict congestion issues, increased power losses, and voltage constraint violations. To this end, this paper proposes an optimal EV charging schedule in order to allocate the charging of EVs in non-overlapping time slots, aiming to avoid overloading conditions that could stress the DN operation. The problem is structured as a linear optimization problem in GAMS, and the linear Distflow is utilized for the power flow analysis required. The proposed approach is compared to the one where EV charging is not optimally scheduled and each EV is expected to start charging upon its arrival at the residential charging spot. Moreover, the analysis is extended to examine the optimal siting of small-sized residential Photovoltaic (PV) systems in order to provide further relief to the DN. A mixed-integer quadratic optimization model was formed to integrate the PV siting into the optimization problem as an additional optimization variable and is compared to a heuristic-based approach for determining the sites for PV installation. The proposed methodology has been applied in a typical low-voltage (LV) DN as a case study, including real power demand data for the residences and technical characteristics for the EVs. The results indicate that both the DN power losses and the voltage profile are further improved in regard to the heuristic-based approach, and the simultaneously scheduled penetration of EVs and PVs could yield up to a 66.3% power loss reduction. Full article
(This article belongs to the Special Issue Data Exchange between Vehicle and Power System for Optimal Charging)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Orderly Charging Control of Electric Vehicles: A Smart Meter-Based Approach
by Ang Li, Yi Chen, Xinyu Xiang, Chuanzi Xu, Muchun Wan, Yingning Huo and Guangchao Geng
World Electr. Veh. J. 2024, 15(10), 449; https://doi.org/10.3390/wevj15100449 - 3 Oct 2024
Cited by 1 | Viewed by 1310
Abstract
The charging load of electric vehicles (EV) is one of the most rapidly increasing loads in current power distribution systems. It may cause distribution transformer/feeder overload without proper coordination or control, especially in residential area where household load and EV charging load are [...] Read more.
The charging load of electric vehicles (EV) is one of the most rapidly increasing loads in current power distribution systems. It may cause distribution transformer/feeder overload without proper coordination or control, especially in residential area where household load and EV charging load are sharing transformer capacity. Existing smart meter-based orderly charging control (OCC) approaches commonly require costly but unreliable communication schemes to control EV charging behavior. In this work, a smart meter-based distributed controller is designed to establish a meter-to-EV communication interface with low cost and enhanced reliability, based on the state-of-the-art charging standard. An event-driven OCC algorithm is developed, and then, deployed in the data hub (concentrator) of the AMI with an easy-to-implement optimization formulation. The effectiveness of the proposed approach is validated using a numerical case study and a practical field test in Hangzhou, China. Both results indicate promising advantages of the proposed OCC approach in reducing the peak load of emerging EV charging demand by more than 30%. Full article
Show Figures

Figure 1

Back to TopTop